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The fixed point method has been applied for the first time, in proving the stability results for functional equations, by Baker (1991);
he used a variant of Banach’s fixed point theorem to obtain the stability of a functional equation in a single variable. However, most
authors follow the approaches involving a theorem of Diaz and Margolis. The main aim of this survey is to present applications of
different fixed point theorems to the theory of stability of functional equations, motivated by a problem raised by Ulam in 1940.

1. Introduction

Speaking of the stability of a functional equation we follow
a question raised in 1940 by Ulam, concerning approximate
homomorphisms of groups (see [1]). The first partial answer
(in the case of Cauchy’s functional equation in Banach spaces)
to Ulam’s question was given by Hyers (see [2]). After his
result a great number of papers (see for instance monographs
[3–5], survey articles [6–14], and the references given there)
on the subject have been published, generalizing Ulam’s
problem and Hyers’s theorem in various directions and to
other (not necessarily functional) equations.

The method used by Hyers in [2] (quite often called the
direct method) has been successfully applied for study of the
stability of large variety of equations, but unfortunately, as it
was shown in [15], it does not work in numerous significant
cases. Apart from it, there are also several other efficient
approaches to the Hyers-Ulam stability, using different tools,
for example, the method of invariant means (introduced in
[16]), the method based on sandwich theorems (see [17]), and
the method using the concept of shadowing (see [18]).

It this paper we discuss the fixed point method, which is
the second most popular technique of proving the stability
of functional equations. It was used for the first time by
Baker (see [19]) who applied a variant of Banach’s fixed point

theorem to obtain the Hyers-Ulam stability of a functional
equation in a single variable. At present, numerous authors
follow Radu’s approach (see [20]) and make use of a theorem
of Diaz and Margolis. Our aim is to show connections
between different fixed point theorems and the theory of
stability, inspired by the problem of Ulam (see [5, 7, 9]).

The paper contains both classical andmore recent results.
In Section 2 we present applications of some classical fixed
point theorems. Section 3 shows a somewhat different (but
still fixed point) approach, when the results on the stability
are simple consequences of the proved (new) fixed point
theorems. In Section 4 we deal with the stability of the fixed
point equation and its generalization. Section 5 contains final
remarks.

In the paper N denotes the set of positive integers and we
put N

0
:= N ∪ {0}, R

+
:= [0,∞).

2. Applications of Known
Fixed Point Theorems

2.1. (Some Variants of) Banach’s Theorem. The fixed point
method was used for the investigation of the Hyers-Ulam
stability of functional equations for the first time by Baker
in [19], where actually he applied the following variant of
Banach’s fixed point theorem.
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Theorem 1 ([19],Theorem 1). Assume that (𝑌, 𝜌) is a complete
metric space and 𝑇 : 𝑌 → 𝑌 is a contraction (i.e., there is a
𝜆 ∈ [0, 1) such that 𝜌(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝜆𝜌(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑌).
Then 𝑇 has a unique fixed point 𝑝 ∈ 𝑌. Moreover,

𝜌 (𝑢, 𝑝) ≤

𝜌 (𝑢, 𝑇 (𝑢))

1 − 𝜆

, 𝑢 ∈ 𝑌. (1)

He obtained in this way the subsequent result concerning
the stability of a quite general functional equation in a single
variable.

Theorem 2 ([19], Theorem 2). Let 𝑆 be a nonempty set, (𝑋, 𝑑)

be a complete metric space, 𝜑 : 𝑆 → 𝑆, 𝐹 : 𝑆 × 𝑋 → 𝑋,
𝜆 ∈ [0, 1) and

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝜆𝑑 (𝑢, V) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋. (2)

If 𝑔 : 𝑆 → 𝑋, 𝛿 > 0 and

𝑑 (𝑔 (𝑡) , 𝐹 (𝑡, 𝑔 (𝜑 (𝑡)))) ≤ 𝛿, 𝑡 ∈ 𝑆, (3)

then there is a unique function 𝑓 : 𝑆 → 𝑋 such that

𝑓 (𝑡) = 𝐹 (𝑡, 𝑓 (𝜑 (𝑡))) , 𝑡 ∈ 𝑆, (4)

𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) ≤

𝛿

1 − 𝜆

, 𝑡 ∈ 𝑆. (5)

Theorem 2 with

𝐹 (𝑡, 𝑥) := 𝛼 (𝑡) + 𝛽 (𝑡) 𝑥, 𝑡 ∈ 𝑆, 𝑥 ∈ 𝐸 (6)

gives the following.

Corollary 3 ([19], Theorem 3). Let 𝑆 be a nonempty set, 𝐸 a
real (or complex) Banach space, 𝜑 : 𝑆 → 𝑆, 𝛼 : 𝑆 → 𝐸,
𝛽 : 𝑆 → R (or C), 𝜆 ∈ [0, 1) and

󵄨
󵄨
󵄨
󵄨
𝛽 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝜆, 𝑡 ∈ 𝑆. (7)

If 𝑔 : 𝑆 → 𝐸, 𝛿 > 0 and
󵄩
󵄩
󵄩
󵄩
𝑔 (𝑡) − (𝛼 (𝑡) + 𝛽 (𝑡) 𝑔 (𝜑 (𝑡)))

󵄩
󵄩
󵄩
󵄩
≤ 𝛿, 𝑡 ∈ 𝑆, (8)

then there exists a unique function 𝑓 : 𝑆 → 𝐸 such that

𝑓 (𝑡) = 𝛼 (𝑡) + 𝛽 (𝑡) 𝑓 (𝜑 (𝑡)) , 𝑡 ∈ 𝑆, (9)

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡) − 𝑔 (𝑡)

󵄩
󵄩
󵄩
󵄩
≤

𝛿

1 − 𝜆

, 𝑡 ∈ 𝑆. (10)

The following stability result for amore general functional
equation has been deduced in [21] fromTheorem 1.

Theorem 4 ([21], Theorem 2.2). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) be a complete metric space, 𝜑 : 𝑆 → 𝑆,𝐹 : 𝑋×𝑋 → 𝑋,
𝜆, 𝜇 ∈ R

+
and

𝑑 (𝐹 (𝑠, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝜇𝑑 (𝑠, 𝑡) + 𝜆𝑑 (𝑢, V) , 𝑠, 𝑡, 𝑢, V ∈ 𝑋.

(11)

Assume also that 𝑔 : 𝑆 → 𝑋, Φ : 𝑆 → R
+
are such that

𝑑 (𝑔 (𝑡) , 𝐹 (𝑔 (𝑡) , 𝑔 (𝜑 (𝑡)))) ≤ Φ (𝑡) , 𝑡 ∈ 𝑆, (12)

and there exists an 𝐿 ∈ [0, 1) with

𝜆Φ (𝜑 (𝑡)) + 𝜇Φ (𝑡) ≤ 𝐿Φ (𝑡) , 𝑡 ∈ 𝑆. (13)

Then there is a unique function 𝑓 : 𝑆 → 𝑋 such that

𝑓 (𝑡) = 𝐹 (𝑓 (𝑡) , 𝑓 (𝜑 (𝑡))) , 𝑡 ∈ 𝑆

𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) ≤

Φ (𝑡)

1 − 𝐿

, 𝑡 ∈ 𝑆.

(14)

In some recent papers the authors applied the weighted
space method to prove the generalized Hyers-Ulam stability
properties of several nonlinear functional equations. We
recall that the weighted spacemethod uses the classical math-
ematical results in spaces endowed with weighted distances.
In those papers, the classical mathematical result is just the
Banach fixed point theorem. This new method is used to
prove a stability result for (4), described in the following
theorem.

Theorem 5 ([22], Theorem 2.1). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, and the functions 𝜑 : 𝑆 → 𝑆,
𝐹 : 𝑆 × 𝑋 → 𝑋, 𝛼 : 𝑆 → (0,∞) satisfy

𝛼 (𝜑 (𝑡)) 𝑑 (𝐹 (𝑡, 𝑢 (𝜑 (𝑡))) , 𝐹 (𝑡, V (𝜑 (𝑡))))

≤ 𝜆𝛼 (𝑡) 𝑑 (𝑢 (𝜑 (𝑡)) , V (𝜑 (𝑡))) ,

(15)

for any 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋
𝑆 and 𝜆 ∈ [0, 1).

If 𝑔 : 𝑆 → 𝑋 satisfies the inequality

𝑑 (𝑔 (𝑡) , 𝐹 (𝑡, 𝑔 (𝜑 (𝑡)))) ≤ 𝛼 (𝑡) , 𝑡 ∈ 𝑆, (16)

then there exists a solution 𝑓 : 𝑆 → 𝑋 of (4) such that

𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) ≤

𝛼 (𝑡)

1 − 𝜆

, 𝑡 ∈ 𝑆. (17)

The results inTheorems 2, 4, and 5 have been extended in
[23], where a result on the generalized Hyers-Ulam stability
of the nonlinear equation

𝑦 (𝑥) = 𝐹 (𝑥, 𝑦 (𝑥) , 𝑦 (𝜂 (𝑥))) (18)

has been obtained, also by the weighted space method. Here,
𝑆 is a nonempty set, (𝑋, 𝑑) is a complete metric space, 𝐹 :

𝑆 × 𝑋 × 𝑋 → 𝑋 and 𝜂 : 𝑆 → 𝑆 are given mappings (the
unknown function in (18) is 𝑦 : 𝑆 → 𝑋).

Theorem 6 ([23], Theorem 2). Suppose that 𝐿 ∈ [0, 1) and
𝜆, 𝜇 : 𝑆 → R

+
satisfy

𝜆 (𝑥) 𝜑 (𝑥) + 𝜇 (𝑥) 𝜑 (𝜂 (𝑥)) ≤ 𝐿𝜑 (𝑥) , 𝑥 ∈ 𝑆, (19)

for some given function 𝜑 : 𝑆 → (0,∞). Suppose also that
𝐹 : 𝑆 × 𝑋 × 𝑋 → 𝑋 fulfils the inequality

𝑑 (𝐹 (𝑥, 𝑢 (𝑥) , 𝑢 (𝜂 (𝑥))) , 𝐹 (𝑥, V (𝑥) , V (𝜂 (𝑥))))

≤ 𝜆 (𝑥) 𝑑 (𝑢 (𝑥) , V (𝑥)) + 𝜇 (𝑥) 𝑑 (𝑢 (𝜂 (𝑥)) , V (𝜂 (𝑥))) ,

(20)

for all 𝑥 ∈ 𝑆 and for all 𝑢, V : 𝑆 → 𝑋.
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If 𝑦 : 𝑆 → 𝑋 is a mapping with the property

𝑑 (𝑦 (𝑥) , 𝐹 (𝑥, 𝑦 (𝑥) , 𝑦 (𝜂 (𝑥)))) ≤ 𝜑 (𝑥) , 𝑥 ∈ 𝑆, (21)

then there exists a unique 𝑦
0
: 𝑆 → 𝑋 such that

𝑦
0 (

𝑥) = 𝐹 (𝑥, 𝑦
0 (

𝑥) , 𝑦0
(𝜂 (𝑥))) , 𝑥 ∈ 𝑆,

𝑑 (𝑦 (𝑥) , 𝑦0 (
𝑥)) ≤

𝜑 (𝑥)

1 − 𝐿

, 𝑥 ∈ 𝑆.

(22)

For the proof it is enough to show that the set

Y := {𝑢 : 𝑆 → 𝑋 : sup
𝑥∈𝑆

𝑑 (𝑢 (𝑥) , 𝑦 (𝑥))

𝜑 (𝑥)

< ∞} (23)

is a complete metric space with the weighted metric

𝜌 (𝑢, V) = sup
𝑥∈𝑆

𝑑 (𝑢 (𝑥) , V (𝑥))

𝜑 (𝑥)

; (24)

moreover, it can be proved that the nonlinear operator 𝑇 :

Y → Y given by

(𝑇𝑢) (𝑥) := 𝐹 (𝑥, 𝑢 (𝑥) , 𝑢 (𝜂 (𝑥))) , (25)

is a strictly contractive self-mapping ofY, with the Lipschitz
constant 𝐿 < 1.

On the other hand, if

𝐹 (𝑥, 𝑦 (𝑥) , 𝑦 (𝜂 (𝑥))) := 𝑔 (𝑥) ⋅ 𝑦 (𝜂 (𝑥)) + ℎ (𝑥) , (26)

then (18) becomes

𝑦 (𝑥) = 𝑔 (𝑥) ⋅ 𝑦 (𝜂 (𝑥)) + ℎ (𝑥) , (27)

where 𝑔, 𝜂, ℎ are given mappings and 𝑦 is the unknown
function. The above equation is called a linear functional
equation and was intensively investigated by a lot of authors
(e.g., Kuczma et al. in [24] obtained some results concerning
monotonic, regular, and convex solutions of (27)). The fol-
lowing theorem contains a generalized Hyers-Ulam stability
result for the above linear functional equation, obtained as a
particular case of Theorem 6.

Let us consider a nonempty set 𝑆, a real (or complex)
Banach space 𝑋, endowed with the norm ‖ ⋅ ‖ and the given
functions 𝜂 : 𝑆 → 𝑆, 𝑔 : 𝑆 → R (or C) and ℎ : 𝑆 → 𝑋.

Theorem 7 ([23], Theorem 5). Let 𝐿 ∈ [0, 1) and 𝜆, 𝜇 : 𝑆 →

R
+
satisfy

𝜆 (𝑥) 𝜑 (𝑥) + 𝜇 (𝑥) 𝜑 (𝜂 (𝑥)) ≤ 𝐿𝜑 (𝑥) , 𝑥 ∈ 𝑆, (28)

for some fixed mapping 𝜑 : 𝑆 → (0,∞). Let 𝐹 : 𝑆 ×𝑋 ×𝑋 →

𝑋 fulfil

(
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
− 𝜇 (𝑥))

󵄩
󵄩
󵄩
󵄩
𝑢 (𝜂 (𝑥)) − V (𝜂 (𝑥))

󵄩
󵄩
󵄩
󵄩

≤ 𝜆 (𝑥) ‖𝑢 (𝑥) − V (𝑥)‖ ,

(29)

for all 𝑥 ∈ 𝑆 and for all 𝑢, V : 𝑆 → 𝑋. If 𝑦 : 𝑆 → 𝑋 has the
property

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥) − 𝑔 (𝑥) 𝑦 (𝜂 (𝑥)) − ℎ (𝑥)

󵄩
󵄩
󵄩
󵄩
≤ 𝜑 (𝑥) , 𝑥 ∈ 𝑆, (30)

then there exists a unique mapping 𝑦
0
: 𝑆 → 𝑋, defined by

𝑦
0 (

𝑥) = ℎ (𝑥)

+ lim
𝑛→∞

(𝑦 (𝜂
𝑛
(𝑥))

𝑛−1

∏

𝑖=0

𝑔 (𝜂
𝑖
(𝑥))

+

𝑛−2

∑

𝑗=0

ℎ (𝜂
𝑗+1

(𝑥))

𝑗

∏

𝑖=0

𝑔 (𝜂
𝑖
(𝑥))) ,

(31)

for 𝑥 ∈ 𝑆, such that

𝑦
0
(𝑥) = 𝑔 (𝑥) 𝑦

0
(𝜂 (𝑥)) + ℎ (𝑥) , 𝑥 ∈ 𝑆,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥) − 𝑦

0 (
𝑥)

󵄩
󵄩
󵄩
󵄩
≤

𝜑 (𝑥)

1 − 𝐿

, 𝑥 ∈ 𝑆.

(32)

The following outcome proved by the weighted space
method concerns a generalized Hyers-Ulam stability for a
general class of the Volterra nonlinear integral equations, in
Banach spaces.

Let us consider a Banach space 𝑋 over the (real or
complex) field K, an interval 𝐼 = [𝑎, 𝑏] (𝑎 < 𝑏) and the
continuous given functions 𝐿 : 𝐼 × 𝐼 → R

+
and 𝜑 : 𝐼 →

(0,∞). We write

C (𝐼, 𝑋) := {𝑓 : 𝐼 → 𝑋 : 𝑓 is continuous} (33)

and denote by ‖ ⋅ ‖ the norm in 𝑋.
The result on stability of the nonlinear Volterra integral

equation

𝑦 (𝑥) = ℎ (𝑥) + 𝜆∫

𝑥

𝑎

𝐺 (𝑥, 𝑡, 𝑦 (𝑡)) 𝑑𝑡, 𝑥 ∈ 𝐼 (34)

(𝑦 : 𝐼 → 𝑋 is an unknown function, ℎ : 𝐼 → 𝑋 and 𝐺 :

𝐼 × 𝐼 × 𝑋 → 𝑋 are continuous given mappings and 𝜆 ∈ K is
a fixed nonzero scalar), reads as follows.

Theorem 8 ([23], Theorem 8). Suppose that there exists a
positive constant 𝛼 such that

∫

𝑥

𝑎

𝐿 (𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡 ≤ 𝛼𝜑 (𝑥) , 𝑥 ∈ 𝐼. (35)

Suppose also that𝐺 : 𝐼 × 𝐼×𝑋 → 𝑋 is a continuous function,
which satisfies

‖𝐺 (𝑥, 𝑡, 𝑢 (𝑡)) − 𝐺 (𝑥, 𝑡, V (𝑡))‖

≤ 𝐿 (𝑥, 𝑡) ‖𝑢 (𝑡) − V (𝑡)‖ , 𝑥, 𝑡 ∈ 𝐼, 𝑢, V ∈ C (𝐼, 𝑋) .

(36)

If 𝑦 : 𝐼 → 𝑋 is continuous and has the property
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦 (𝑥) − ℎ (𝑥) − 𝜆∫

𝑥

𝑎

𝐺 (𝑥, 𝑡, 𝑦 (𝑡)) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜑 (𝑥) , 𝑥 ∈ 𝐼

(37)
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and if

|𝜆| <

1

𝛼

, (38)

then there exists a unique 𝑦
0
∈ C(𝐼, 𝑋) such that

𝑦
0
(𝑥) = ℎ (𝑥) + 𝜆∫

𝑥

𝑎

𝐺 (𝑥, 𝑡, 𝑦
0
(𝑡)) 𝑑𝑡, 𝑥 ∈ 𝐼,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥) − 𝑦

0 (
𝑥)

󵄩
󵄩
󵄩
󵄩
≤

𝜑 (𝑥)

1 − |𝜆| 𝛼

, 𝑥 ∈ 𝐼.

(39)

Note that, if we replace inTheorem 8 the functions𝐺 and
𝐿 by 𝜆𝐺 and |𝜆|𝐿, respectively, and write 𝜇 := |𝜆|𝛼, then the
theorem takes the subsequent equivalent, and a bit simpler,
form.

Theorem 9. Suppose that there is a positive constant 𝜇 < 1

such that

∫

𝑥

𝑎

𝐿 (𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡 ≤ 𝜇𝜑 (𝑥) , 𝑥 ∈ 𝐼. (40)

Suppose also that𝐺 : 𝐼 × 𝐼×𝑋 → 𝑋 is a continuous function,
which satisfies

‖𝐺 (𝑥, 𝑡, 𝑢 (𝑡)) − 𝐺 (𝑥, 𝑡, V (𝑡))‖

≤ 𝐿 (𝑥, 𝑡) ‖𝑢 (𝑡) − V (𝑡)‖ , 𝑥, 𝑡 ∈ 𝐼, 𝑢, V ∈ C (𝐼, 𝑋) .

(41)

If 𝑦 : 𝐼 → 𝑋 is continuous and has the property
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑦 (𝑥) − ℎ (𝑥) − ∫

𝑥

𝑎

𝐺 (𝑥, 𝑡, 𝑦 (𝑡)) 𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜑 (𝑥) , 𝑥 ∈ 𝐼, (42)

then there exists a unique 𝑦
0
∈ C(𝐼, 𝑋) such that

𝑦
0
(𝑥) = ℎ (𝑥) + ∫

𝑥

𝑎

𝐺 (𝑥, 𝑡, 𝑦
0
(𝑡)) 𝑑𝑡, 𝑥 ∈ 𝐼,

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑥) − 𝑦

0
(𝑥)

󵄩
󵄩
󵄩
󵄩
≤

𝜑 (𝑥)

1 − 𝜇

, 𝑥 ∈ 𝐼.

(43)

Next, following [25], we recall some notations.
Let 𝑋 be a nonempty set, (𝑌, 𝑑) a complete metric space,

𝑓 : 𝑋 → 𝑌 and 𝜑 : 𝑋 → R
+
. Then (Δ

𝑓,𝜑
, 𝜌
𝑓,𝜑

) is a complete
metric space and 𝑓 ∈ Δ

𝑓,𝜑
, where Δ

𝑓,𝜑
denotes the set of all

𝑢 : 𝑋 → 𝑌 such that there is a real constant 𝐾
𝑢
≥ 0 with

𝑑 (𝑢 (𝑥) , 𝑓 (𝑥)) ≤ 𝐾
𝑢
𝜑 (𝑥) , 𝑥 ∈ 𝑋, (44)

𝜌
𝑓,𝜑 (𝑢, V) := inf {𝐾 ≥ 0 : 𝑑 (𝑢 (𝑥) , V (𝑥))

≤ 𝐾𝜑 (𝑥) , 𝑥 ∈ 𝑋} , 𝑢, V ∈ Δ
𝑓,𝜑

.

(45)

Let 𝜎 : 𝑋 → 𝑋, 𝜏 : 𝑌 → 𝑌, 𝑢 : 𝑋 → 𝑌 and 𝜀 : 𝑋
2

→

R
+
. Put

(𝑇
𝜎,𝜏

𝑢) (𝑥) := 𝜏 (𝑢 (𝜎 (𝑥))) , 𝑥 ∈ 𝑋,

𝛼
𝜎,𝜀

:= inf {𝐾 ≥ 0 : 𝜀 (𝜎 (𝑥) , 𝜎 (𝑥)) ≤ 𝐾𝜀 (𝑥, 𝑥) , 𝑥 ∈ 𝑋} ,

𝛽
𝜎,𝜑

:= inf {𝐾 ≥ 0 : 𝜑 (𝜎 (𝑥)) ≤ 𝐾𝜑 (𝑥) , 𝑥 ∈ 𝑋} ,

𝛾
𝜏 := inf {𝐾 ≥ 0 : 𝑑 (𝜏 (𝑥) , 𝜏 (𝑦)) ≤ 𝐾𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑌} .

(46)

In [25], the authors used the contraction principle to get
the following fixed point result.

Theorem 10 ([25], Proposition 1.1). Let 𝑋 be a nonempty set,
(𝑌, 𝑑) be a complete metric space, 𝑓 : 𝑋 → 𝑌, 𝜑 : 𝑋 → R

+
,

𝜎 : 𝑋 → 𝑋 and 𝜏 : 𝑌 → 𝑌. If 𝑇
𝜎,𝜏

𝑓 ∈ Δ
𝑓,𝜑

, 𝛽
𝜎,𝜑

< ∞,
𝛾
𝜏
< ∞ and 𝛽

𝜎,𝜑
𝛾
𝜏
< 1, then 𝑇

𝜎,𝜏
(Δ

𝑓,𝜑
) ⊂ Δ

𝑓,𝜑
and 𝑇

𝜎,𝜏
has a

unique fixed point 𝑓
∞

in Δ
𝑓,𝜑

. Moreover,

lim
𝑛→∞

𝑑 ((𝑇
𝑛

𝜎,𝜏
𝑓) (𝑥) , 𝑓

∞
(𝑥)) = 0, 𝑥 ∈ 𝑋,

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) =

𝜌
𝑓,𝜑

(𝑇
𝜎,𝜏

𝑓, 𝑓)

1 − 𝛽
𝜎,𝜑

𝛾
𝜏

𝜑 (𝑥) , 𝑥 ∈ 𝑋.

(47)

Next, applying Theorem 10, they have proved the follow-
ing theorem.

Theorem 11 ([25], Theorem 2.1). Let 𝑋 be a nonempty set, 𝛿 :

𝑋 → R
+
, 𝜀 : 𝑋

2
→ R

+
, ∘ : 𝑋

2
→ 𝑋 and 𝜎̂ : 𝑥 󳨃→ 𝑥 ∘ 𝑥 an

automorphism of (𝑋, ∘). Assume also that (𝑌, 𝑑) is a complete
metric space, ⬦ : 𝑌

2
→ 𝑌 is continuous and 𝜏 : 𝑦 󳨃→ 𝑦 ⬦ 𝑦 is

an endomorphism of (𝑌, ⬦). If𝛼
𝜎
−1

,𝜀
< ∞,𝛽

𝜎
−1

,𝛿
< ∞, 𝛾

𝜏
< ∞,

𝛾
𝜏
max{𝛼

𝜎
−1

,𝜀
, 𝛽

𝜎
−1

,𝛿
} < 1 and mappings 𝑓, 𝑔 : 𝑋 → 𝑌 satisfy

𝑑 (𝑓 (𝑥 ∘ 𝑦) , 𝑔 (𝑥) ⬦ 𝑔 (𝑦)) ≤ 𝜀 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, (48)

𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) ≤ 𝛿 (𝑥) , 𝑥 ∈ 𝑋, (49)

then there exists a unique mapping 𝑓
∞

: 𝑋 → 𝑌 such that

𝑓
∞

(𝑥 ∘ 𝑦) = 𝑓
∞

(𝑥) ⬦ 𝑓
∞

(𝑦) , 𝑥, 𝑦 ∈ 𝑋, (50)

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛼
𝜎
−1

,𝜀
𝜀 (𝑥, 𝑥) + 𝛽

𝜎
−1

,𝛿
𝛾
𝜏
𝛿 (𝑥)

1 − 𝛾
𝜏
max {𝛼

𝜎
−1

,𝜀
, 𝛽

𝜎
−1

,𝛿
}

, 𝑥 ∈ 𝑋,

𝑑 (𝑔 (𝑥) , 𝑓∞ (𝑥)) ≤

𝛼
𝜎
−1

,𝜀
𝜀 (𝑥, 𝑥) + 𝛿 (𝑥)

1 − 𝛾
𝜏
max {𝛼

𝜎
−1

,𝜀
, 𝛽

𝜎
−1

,𝛿
}

, 𝑥 ∈ 𝑋.

(51)

Theorem 11 with 𝑔 = 𝑓 and 𝛿 ≡ 0 gives the following
corollary, which corresponds to the results in [26–31].

Corollary 12 ([25], Corollary 2.1). Let 𝑋 be a nonempty set,
𝜀 : 𝑋

2
→ R

+
, ∘ : 𝑋

2
→ 𝑋 and 𝜎̂ : 𝑥 󳨃→ 𝑥 ∘ 𝑥 be an

automorphism of (𝑋, ∘). Assume also that (𝑌, 𝑑) is a complete
metric space, ⬦ : 𝑌

2
→ 𝑌 is continuous and 𝜏 : 𝑦 󳨃→ 𝑦 ⬦ 𝑦 is

an endomorphism of (𝑌, ⬦). If𝛼
𝜎
−1

,𝜀
< ∞, 𝛾

𝜏
< ∞, 𝛾

𝜏
𝛼
𝜎
−1

,𝜀
< 1

and a mapping 𝑓 : 𝑋 → 𝑌 satisfies

𝑑 (𝑓 (𝑥 ∘ 𝑦) , 𝑓 (𝑥) ⬦ 𝑓 (𝑦)) ≤ 𝜀 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, (52)

then there exists a uniquemapping𝑓
∞

: 𝑋 → 𝑌 fulfilling (50)
and

𝑑 (𝑓 (𝑥) , 𝑓∞ (𝑥)) ≤

𝛼
𝜎
−1

,𝜀
𝜀 (𝑥, 𝑥)

1 − 𝛾
𝜏
𝛼
𝜎
−1

,𝜀

, 𝑥 ∈ 𝑋. (53)

Another consequence of Theorem 11 is the following.



Journal of Function Spaces 5

Theorem 13 ([25], Theorem 3.1). Let 𝑋 be a nonempty set,
𝛿, 𝜀 : 𝑋 → R

+
and 𝜎 : 𝑋 → 𝑋 be a bijection. Assume

also that (𝑌, 𝑑) is a complete metric space and 𝜏 : 𝑌 →

𝑌 is continuous. If 𝛽
𝜎
−1

,𝜀
< ∞, 𝛽

𝜎
−1

,𝛿
< ∞, 𝛾

𝜏
< ∞,

𝛾
𝜏
max{𝛽

𝜎
−1

,𝜀
, 𝛽

𝜎
−1

,𝛿
} < 1 and mappings 𝑓, 𝑔 : 𝑋 → 𝑌 satisfy

(49) and

𝑑 (𝑓 (𝜎 (𝑥)) , 𝜏 (𝑔 (𝑥))) ≤ 𝜀 (𝑥) , 𝑥 ∈ 𝑋, (54)

then there exists a unique mapping 𝑓
∞

: 𝑋 → 𝑌 such that

𝑓
∞

(𝜎 (𝑥)) = 𝜏 (𝑓
∞

(𝑥)) , 𝑥 ∈ 𝑋, (55)

𝑑 (𝑓 (𝑥) , 𝑓∞ (𝑥)) ≤

𝛽
𝜎
−1

,𝜀
𝜀 (𝑥) + 𝛽

𝜎
−1

,𝛿
𝛾
𝜏
𝛿 (𝑥)

1 − 𝛾
𝜏
max {𝛽

𝜎
−1

,𝜀
, 𝛽

𝜎
−1

,𝛿
}

, 𝑥 ∈ 𝑋,

𝑑 (𝑔 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛽
𝜎
−1

,𝜀
𝜀 (𝑥) + 𝛿 (𝑥)

1 − 𝛾
𝜏
max {𝛽

𝜎
−1

,𝜀
, 𝛽

𝜎
−1

,𝛿
}

, 𝑥 ∈ 𝑋.

(56)

Theorem 13 with 𝑔 = 𝑓 and 𝛿 ≡ 0 implies the following.

Corollary 14 ([25], Corollary 3.1). Let 𝑋 be a nonempty set,
𝜀 : 𝑋 → R

+
and 𝜎 : 𝑋 → 𝑋 a bijection. Assume also that

(𝑌, 𝑑) is a complete metric space and 𝜏 : 𝑌 → 𝑌 is continuous.
If 𝛽

𝜎
−1

,𝜀
< ∞, 𝛾

𝜏
< ∞, 𝛾

𝜏
𝛽
𝜎
−1

,𝜀
< 1 and amapping𝑓 : 𝑋 → 𝑌

satisfies the inequality

𝑑 (𝑓 (𝜎 (𝑥)) , 𝜏 (𝑓 (𝑥))) ≤ 𝜀 (𝑥) , 𝑥 ∈ 𝑋, (57)

then there exists a uniquemapping𝑓
∞

: 𝑋 → 𝑌 fulfilling (55)
and

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛽
𝜎
−1

,𝜀
𝜀 (𝑥)

1 − 𝛾
𝜏
𝛽
𝜎
−1

,𝜀

, 𝑥 ∈ 𝑋. (58)

Theorem 15 ([25],Theorem 2.2). Let𝑋 be a nonempty set, 𝛿 :

𝑋 → R
+
, 𝜀 : 𝑋

2
→ R

+
, ∘ : 𝑋

2
→ 𝑋 and 𝜎̂ : 𝑥 󳨃→ 𝑥 ∘ 𝑥 an

endomorphism of (𝑋, ∘). Assume also that (𝑌, 𝑑) is a complete
metric space, ⬦ : 𝑌

2
→ 𝑌 is continuous and 𝜏 : 𝑦 󳨃→ 𝑦 ⬦ 𝑦 is

an automorphism of (𝑌, ⬦). If 𝛼
𝜎,𝜀

< ∞, 𝛽
𝜎,𝛿

< ∞, 𝛾
𝜏
−1 < ∞,

𝛾
𝜏
−1 max{𝛼

𝜎,𝜀
, 𝛽

𝜎,𝛿
} < 1 and mappings 𝑓, 𝑔 : 𝑋 → 𝑌 satisfy

inequalities (48) and (49), then there exists a unique mapping
𝑓
∞

: 𝑋 → 𝑌 such that (50) holds,

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛾
𝜏
−1𝜀 (𝑥, 𝑥) + 𝛿 (𝑥)

1 − 𝛾
𝜏
−1 max {𝛼

𝜎,𝜀
, 𝛽

𝜎,𝛿
}

, 𝑥 ∈ 𝑋,

𝑑 (𝑔 (𝑥) , 𝑓∞ (𝑥)) ≤

𝛾
𝜏
−1 (𝜀 (𝑥, 𝑥) + 𝛽

𝜎,𝛿
𝛿 (𝑥))

1 − 𝛾
𝜏
−1 max {𝛼

𝜎,𝜀
, 𝛽

𝜎,𝛿
}

, 𝑥 ∈ 𝑋.

(59)

Theorem 15 with 𝑔 = 𝑓 and 𝛿 ≡ 0 yields the next
corollary.

Corollary 16 ([25], Corollary 2.3). Let 𝑋 be a nonempty set,
𝜀 : 𝑋

2
→ R

+
, ∘ : 𝑋

2
→ 𝑋 and 𝜎̂ : 𝑥 󳨃→ 𝑥 ∘ 𝑥

an endomorphism of 𝑋. Assume also that (𝑌, 𝑑) is a complete
metric space, ⬦ : 𝑌

2
→ 𝑌 is continuous and 𝜏 : 𝑦 󳨃→ 𝑦 ⬦ 𝑦

is an automorphism of 𝑌. If 𝛼
𝜎,𝜀

< ∞, 𝛾
𝜏
−1 < ∞, 𝛾

𝜏
−1𝛼

𝜎,𝜀
< 1

and a mapping 𝑓 : 𝑋 → 𝑌 satisfies inequality (52), then there
exists a unique mapping 𝑓

∞
: 𝑋 → 𝑌 such that (50) holds

and

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛾
𝜏
−1𝜀 (𝑥, 𝑥)

1 − 𝛾
𝜏
−1𝛼

𝜎,𝜀

, 𝑥 ∈ 𝑋. (60)

Another consequence of Theorem 15 is the following.

Theorem 17 ([25], Theorem 3.2). Let 𝑋 be a nonempty set,
𝛿, 𝜀 : 𝑋 → R

+
and 𝜎 : 𝑋 → 𝑋. Assume also that (𝑌, 𝑑) is a

completemetric space and 𝜏 : 𝑌 → 𝑌 is a continuous bijection.
If 𝛽

𝜎,𝜀
< ∞, 𝛽

𝜎,𝛿
< ∞, 𝛾

𝜏
−1 < ∞, 𝛾

𝜏
−1 max{𝛽

𝜎,𝜀
, 𝛽

𝜎,𝛿
} < 1 and

mappings𝑓, 𝑔 : 𝑋 → 𝑌 satisfy (49) and (48), then there exists
a unique mapping 𝑓

∞
: 𝑋 → 𝑌 such that (55) holds,

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛾
𝜏
−1𝜀 (𝑥) + 𝛿 (𝑥)

1 − 𝛾
𝜏
−1 max {𝛽

𝜎,𝜀
, 𝛽

𝜎,𝛿
}

, 𝑥 ∈ 𝑋,

𝑑 (𝑔 (𝑥) , 𝑓∞ (𝑥)) ≤

𝛾
𝜏
−1 (𝜀 (𝑥) + 𝛽

𝜎,𝛿
𝛿 (𝑥))

1 − 𝛾
𝜏
−1 max {𝛽

𝜎,𝜀
, 𝛽

𝜎,𝛿
}

, 𝑥 ∈ 𝑋.

(61)

Theorem 17 with 𝑔 = 𝑓 and 𝛿 ≡ 0 implies the following.

Corollary 18 ([25], Corollary 3.2). Let 𝑋 be a nonempty set,
𝜀 : 𝑋 → R

+
and 𝜎 : 𝑋 → 𝑋. Assume also that (𝑌, 𝑑) is a

completemetric space and 𝜏 : 𝑌 → 𝑌 is a continuous bijection.
If 𝛽

𝜎,𝜀
< ∞, 𝛾

𝜏
−1 < ∞, 𝛾

𝜏
−1𝛽

𝜎,𝜀
< 1 and amapping𝑓 : 𝑋 → 𝑌

satisfies (57), then there exists a unique mapping𝑓
∞

: 𝑋 → 𝑌

such that (55) holds and

𝑑 (𝑓 (𝑥) , 𝑓
∞

(𝑥)) ≤

𝛾
𝜏
−1𝜀 (𝑥)

1 − 𝛾
𝜏
−1𝛽

𝜎,𝜀

, 𝑥 ∈ 𝑋. (62)

Let us finally mention that it is also shown in [25]
that the above results imply some classical outcomes on the
generalized stability of the Cauchy functional equation.

2.2. Other Classical Theorems. In this section, we present
applications of three other fixed point theorems. To formulate
the first of them we need two more definitions.

A nondecreasing function 𝛾 : R
+

→ R
+
is called a

comparison function [32, 33] or Matkowski gauge function
[34, 35] if

lim
𝑛→∞

𝛾
𝑛
(𝑡) = 0, 𝑡 ∈ (0,∞) . (63)

Given such a mapping 𝛾 and a metric space (𝑋, 𝑑), we say
that a function 𝜓 : 𝑋 → 𝑋 is aMatkowski 𝛾-contraction if

𝑑 (𝜓 (𝑥) , 𝜓 (𝑦)) ≤ 𝛾 (𝑑 (𝑥, 𝑦)) , 𝑥, 𝑦 ∈ 𝑋. (64)

We can now recall Matkowski’s fixed point theorem from
[36].

Theorem 19. If (𝑋, 𝑑) is a complete metric space and𝑇 : 𝑋 →

𝑋 is a Matkowski contraction, then 𝑇 has a unique fixed point
𝑝 ∈ 𝑋 and the sequence (𝑇

𝑛
(𝑥))

𝑛∈N converges to 𝑝 for every
𝑥 ∈ 𝑋.

In [37], this theorem was applied to prove the following
generalization of Theorem 2.
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Theorem 20 ([37], Theorem 2.2). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) be a complete metric space, 𝜑 : 𝑆 → 𝑆, 𝐹 : 𝑆×𝑋 → 𝑋.
Assume also that

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝛾 (𝑑 (𝑢, V)) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋, (65)

where 𝛾 : R
+

→ R
+
is a comparison function, and let 𝑔 :

𝑆 → 𝑋, 𝛿 > 0 be such that (3) holds. Then there is a unique
function 𝑓 : 𝑆 → 𝑋 satisfying (4) and

𝜌 (𝑓, 𝑔) := sup {𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) : 𝑡 ∈ 𝑆} < ∞. (66)

Moreover,

𝜌 (𝑓, 𝑔) − 𝛾 (𝜌 (𝑓, 𝑔)) ≤ 𝛿. (67)

Theorem 20 with

𝐹 (𝑡, 𝑥) := 𝜓 (𝑥) , 𝑡 ∈ 𝑆, 𝑥 ∈ 𝑋 (68)

gives the subsequent result.

Corollary 21 ([37], Corollary 2.3). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜑 : 𝑆 → 𝑆. Assume also that
𝜓 : 𝑋 → 𝑋 is a Matkowski 𝛾-contraction and let 𝑔 : 𝑆 → 𝑋,
𝛿 > 0 be such that

𝑑 ((𝜓 ∘ 𝑔 ∘ 𝜑) (𝑡) , 𝑔 (𝑡)) ≤ 𝛿, 𝑡 ∈ 𝑆. (69)

Then there is a unique function 𝑓 : 𝑆 → 𝑋 satisfying the
equation

𝜓 ∘ 𝑓 ∘ 𝜑 = 𝑓 (70)

and condition (66). The function 𝑓 is given by

𝑓 (𝑡) = lim
𝑛→∞

𝜓
𝑛
(𝑔 (𝜑

𝑛
(𝑡))) , 𝑡 ∈ 𝑆. (71)

On the other hand, in [38], the following variant of Ćirić’s
fixed point theorem was proved.

Theorem 22 ([38], Theorem 2.1). Assume that (𝑌, 𝜌) is a
complete metric space and 𝑇 : 𝑌 → 𝑌 is a mapping such that

𝜌 (𝑇 (𝑥) , 𝑇 (𝑦))

≤ 𝛼
1
(𝑥, 𝑦) 𝜌 (𝑥, 𝑦) + 𝛼

2
(𝑥, 𝑦) 𝜌 (𝑥, 𝑇 (𝑥))

+ 𝛼
3
(𝑥, 𝑦) 𝜌 (𝑦, 𝑇 (𝑦)) + 𝛼

4
(𝑥, 𝑦) 𝜌 (𝑥, 𝑇 (𝑦))

+ 𝛼
5
(𝑥, 𝑦) 𝜌 (𝑦, 𝑇 (𝑥)) , 𝑥, 𝑦 ∈ 𝑌,

(72)

where 𝛼
1
, . . . , 𝛼

5
: 𝑌 × 𝑌 → R

+
satisfy

5

∑

𝑖=1

𝛼
𝑖
(𝑥, 𝑦) ≤ 𝜆, (73)

for all 𝑥, 𝑦 ∈ 𝑌 and some fixed 𝜆 ∈ [0, 1). Then 𝑇 has a unique
fixed point 𝑝 ∈ 𝑌 and

𝜌 (𝑢, 𝑝) ≤

(2 + 𝜆) 𝜌 (𝑢, 𝑇 (𝑢))

2 (1 − 𝜆)

, 𝑢 ∈ 𝑌. (74)

Next, Baker’s idea and Theorem 22 were used to obtain
the following result concerning the stability of (4).

Theorem 23 ([38], Theorem 2.2). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜑 : 𝑆 → 𝑆, 𝐹 : 𝑆 × 𝑋 → 𝑋

and
𝑑 (𝐹 (𝑡, 𝑥) , 𝐹 (𝑡, 𝑦))

≤ 𝛼
1
(𝑥, 𝑦) 𝑑 (𝑥, 𝑦) + 𝛼

2
(𝑥, 𝑦) 𝑑 (𝑥, 𝐹 (𝑡, 𝑥))

+ 𝛼
3
(𝑥, 𝑦) 𝑑 (𝑦, 𝐹 (𝑡, 𝑦)) + 𝛼

4
(𝑥, 𝑦) 𝑑 (𝑥, 𝐹 (𝑡, 𝑦))

+ 𝛼
5
(𝑥, 𝑦) 𝑑 (𝑦, 𝐹 (𝑡, 𝑥)) , 𝑡 ∈ 𝑆, 𝑥, 𝑦 ∈ 𝑋,

(75)

where 𝛼
1
, . . . , 𝛼

5
: 𝑋 × 𝑋 → R

+
satisfy (73) for all 𝑥, 𝑦 ∈ 𝑋

and some 𝜆 ∈ [0, 1). If 𝑔 : 𝑆 → 𝑋, 𝛿 > 0 and (3) holds, then
there is a unique function 𝑓 : 𝑆 → 𝑋 satisfying (4) and

𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) ≤

(2 + 𝜆) 𝛿

2 (1 − 𝜆)

, 𝑡 ∈ 𝑆. (76)

A consequence of Theorem 23 is the following.

Corollary 24 ([38], Theorem 2.3). Let 𝑆 be a nonempty set,
𝐸 a real or complex Banach space, 𝜑 : 𝑆 → 𝑆, 𝛼 : 𝑆 → 𝐸,
𝐵 : 𝑆 → L(𝐸) (here L(𝐸) denotes the Banach algebra of all
bounded linear operators on 𝐸), 𝜆 ∈ [0, 1) and

‖𝐵 (𝑡)‖ ≤ 𝜆, 𝑡 ∈ 𝑆. (77)

If 𝑔 : 𝑆 → 𝐸, 𝛿 > 0 and
󵄩
󵄩
󵄩
󵄩
𝑔 (𝑡) − (𝛼 (𝑡) + 𝐵 (𝑡) (𝑔 (𝜑 (𝑡))))

󵄩
󵄩
󵄩
󵄩
≤ 𝛿, 𝑡 ∈ 𝑆, (78)

then there exists a unique function 𝑓 : 𝑆 → 𝐸 satisfying the
equation

𝑓 (𝑡) = 𝛼 (𝑡) + 𝐵 (𝑡) (𝑓 (𝜑 (𝑡))) , 𝑡 ∈ 𝑆 (79)

and condition (10).

Now, let us recall the Markov-Kakutani theorem (see [39,
40]).

Theorem 25. Let𝑌 be a linear topological space and let𝐾 ⊂ 𝑌

be a nonempty convex compact subset of 𝑌. LetF be a family
of affine continuous self-mappings of 𝐾 such that

𝐹 ∘ 𝐺 = 𝐺 ∘ 𝐹, 𝐹, 𝐺 ∈ F. (80)

Then there is a common fixed point 𝑦 ∈ 𝐾 of familyF; that is,

𝐹 (𝑦) = 𝑦, 𝐹 ∈ F. (81)

Theorem 25 has been applied in [41] to provide an
alternative (quite involved) proof of the following classical
stability result due to Hyers [2].

Theorem 26. Let 𝑆 be an abelian semigroup, 𝜀 ≥ 0, K ∈

{R,C}, 𝑓 : 𝑆 → K and
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑥, 𝑦 ∈ 𝑆. (82)

Then there exists an additive function 𝑎 : 𝑆 → K such that
󵄨
󵄨
󵄨
󵄨
𝑎 (𝑠) − 𝑓 (𝑠)

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑠 ∈ 𝑆. (83)
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2.3. Fixed Point Alternatives Theorems on Generalized Metric
Space. In this part of the paper, we show how several fixed
points alternatives can be used to get some Hyers-Ulam
stability results.

In order to do this let us first recall (see [42, 43]) that 𝑑 :

𝑋
2

→ [0,∞] is said to be a generalizedmetric on a nonempty
set 𝑋 if and only if for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have

𝑑 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) ,

𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) .

(84)

In 2002, at the 14th European Conference on Iteration
Theory (ECIT 2002 - Evora, Portugal), L. Cădariu and V.
Radu delivered a lecture titled “On the stability of the
Cauchy functional equation: a fixed points approach.” They
presented a generalized Hyers-Ulam stability result for the
Cauchy functional equation, in the case when the equation
perturbation is controlled by a givenmapping𝜑, with a simple
property of contractive type. Their idea was to obtain the
existence of the exact solution and the error estimations by
using the following fixed point alternative theorem of Diaz
and Margolis [44].

Theorem 27. Let (𝑋, 𝑑) be a complete generalized metric
space. Assume that 𝑇 : 𝑋 → 𝑋 is a strictly contractive
operator with the Lipschitz constant 𝐿 < 1.Then, for each given
element 𝑥 ∈ 𝑋, either

(𝐴
1
) 𝑑(𝑇

𝑛
𝑥, 𝑇

𝑛+1
𝑥) = +∞, for all 𝑛 ≥ 0, or

(𝐴
2
) there exists 𝑛

0
∈ N such that 𝑑(𝑇

𝑛
𝑥, 𝑇

𝑛+1
𝑥) <

+∞,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛
0
. Actually, if (𝐴

2
) holds, then the

following three conditions are valid.
(𝐴

21
) The sequence (𝑇

𝑛
(𝑥))

𝑛∈N converges to a fixed point 𝑦∗
of 𝑇.

(𝐴
22
) 𝑦

∗ is the unique fixed point of 𝑇 in the set

𝑍 := {𝑦 ∈ 𝑋 : 𝑑 (𝑇
𝑛
0

(𝑥) , 𝑦) < ∞} . (85)

(𝐴
23
) If 𝑦 ∈ 𝑍, then

𝑑 (𝑦, 𝑦
∗
) ≤

1

1 − 𝐿

𝑑 (𝑇 (𝑦) , 𝑦) . (86)

Remark 28. If the fixed point 𝑦
∗ exists, it is not necessarily

unique in the whole space𝑋; this may depend on the starting
approximation. It is worth noting that, in case (𝐴

2
), the pair

(𝑍, 𝑑) is a complete metric space and 𝐴(𝑍) ⊂ 𝑍. Therefore,
properties (𝐴

21
)–( 𝐴

23
) follow from Banach’s Contraction

Principle.
This method has been next used in [20] (for the additive

Cauchy equation) and in [45] (for Jensen’s equation).
Now, let us remind one of themost classical results, which

was first proved by the direct method: for 𝑝 ∈ [0, 1) in [46]
(see also [47], where a similar result has been obtained under
some regularity assumptions), and for 𝑝 ∈ (1,∞) in [48]
(see also for instance [5] and [20,Theorem]; information and
recent results on the case 𝑝 < 0 can be found in [49, 50]).

Theorem 29. Let 𝐸 be a real normed space, 𝐹 a real Banach
space, 𝜃 ∈ [0,∞), 𝑝 ∈ [0,∞)\{1} and 𝑓 : 𝐸 → 𝐹 be such that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩
≤ 𝜃 (‖𝑥‖

𝑝
+

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑝
) , 𝑥, 𝑦 ∈ 𝐸.

(87)

Then there exists a unique additive mapping 𝑎 : 𝐸 → 𝐹 such
that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑎 (𝑥)

󵄩
󵄩
󵄩
󵄩
≤

2𝜃

|2 − 2
𝑝
|

‖𝑥‖
𝑝
, 𝑥 ∈ 𝐸. (88)

The lecture from ECIT 2002 was materialized in [51] in
the following extension of Theorem 29.

Theorem 30 ([51], Theorem 2.5). Let 𝐸
1
, 𝐸

2
be two linear

spaces over the same (real or complex) field, 𝐸
2
a complete 𝛽-

normed space, 𝑞
0

= 2, 𝑞
1

= 1/2, and 𝜑 : 𝐸
1
× 𝐸

1
→ R

+
.

Assume that 𝑓 : 𝐸
1

→ 𝐸
2
with 𝑓(0) = 0 satisfies

󵄩
󵄩
󵄩
󵄩
𝑓(𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩𝛽

≤ 𝜑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝐸
1
. (89)

If there exist an 𝑖 ∈ {0, 1} and a positive constant 𝐿 < 1 such
that the mapping

𝑥 󳨀→ 𝜓 (𝑥) = 𝜑 (

𝑥

2

,

𝑥

2

) (90)

has the property

𝜓 (𝑥) ≤ 𝐿 ⋅ 𝑞
𝛽

𝑖
⋅ 𝜓 (

𝑥

𝑞
𝑖

) , 𝑥 ∈ 𝐸
1
, (91)

and 𝜑 satisfies the condition

lim
𝑛→∞

𝜑 (𝑞
𝑛

𝑖
𝑥, 𝑞

𝑛

𝑖
𝑦)

𝑞
𝑛𝛽

𝑖

= 0, 𝑥, 𝑦 ∈ 𝐸
1
, (92)

then there exists a unique additive mapping 𝑎 : 𝐸
1

→ 𝐸
2
such

that

󵄩
󵄩
󵄩
󵄩
𝑓(𝑥) − 𝑎(𝑥)

󵄩
󵄩
󵄩
󵄩𝛽

≤

𝐿
1−𝑖

1 − 𝐿

𝜓 (𝑥) , 𝑥 ∈ 𝐸
1
. (93)

Let 𝐸 be a linear space over the field K ∈ {R,C}. Recall
that a mapping ‖ ⋅ ‖

𝛽
: 𝐸 → R

+
is called a 𝛽-norm provided

it has the following properties:

𝑛
𝐼

𝛽
: ‖𝑥‖

𝛽
= 0 if and only if 𝑥 = 0;

𝑛
𝐼𝐼

𝛽
: ‖𝜆 ⋅ 𝑥‖

𝛽
= |𝜆|

𝛽
⋅ ‖𝑥‖

𝛽
, 𝑥 ∈ 𝐸, 𝜆 ∈ K;

𝑛
𝐼𝐼𝐼

𝛽
: ‖𝑥 + 𝑦‖

𝛽
≤ ‖𝑥‖

𝛽
+ ‖𝑦‖

𝛽
, 𝑥, 𝑦 ∈ 𝐸.

The idea emphasized in [20, 45, 51] has been subsequently
used for the quadratic equation in [52], the cubic equation
in [53], the quartic equation in [54], equations (2) and (5)

in [55], and the monomial equation in [56]. We present that
last result below. To this end, let us recall that a function 𝑓

(mapping an abelian group (𝑋, +) into a real vector space 𝑌)
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is called amonomial function of degree𝑁 (𝑁 is a fixed positive
integer) if it is a solution of themonomial functional equation

Δ
𝑁

𝑦
𝑓 (𝑥) − 𝑁!𝑓 (𝑦) = 0, 𝑥, 𝑦 ∈ 𝑋, (94)

where the difference operator Δ
𝑁

𝑦
is defined in the following

manner:

Δ
1

𝑦
𝑔 (𝑥) := 𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) , 𝑥, 𝑦 ∈ 𝑋, 𝑔 ∈ 𝑌

𝑋
, (95)

and, inductively,

Δ
𝑛+1

𝑦
= Δ

1

𝑦
∘ Δ

𝑛

𝑦
, 𝑛 ∈ N, 𝑦 ∈ 𝑋. (96)

Theorem 31 ([56], Theorem 2.1). Let 𝑋 be a group that is
uniquely divisible by 2 (i.e., for any 𝑥 ∈ 𝑋 there exists a unique
𝑎 ∈ 𝑋 with 𝑥 = 2𝑎), 𝑌 a (real or complex) complete 𝛽-normed
space, and 𝜑 : 𝑋 × 𝑋 → R

+
fulfil the following property:

lim
𝑚→∞

𝜑 (𝑟
𝑚
𝑥, 𝑟

𝑚
𝑦)

𝑟
𝑚𝑁𝛽

= 0, 𝑥, 𝑦 ∈ 𝑋, 𝑟 ∈ {2,

1

2

} . (97)

Suppose 𝑓 : 𝑋 → 𝑌, with 𝑓(0) = 0, satisfies the condition

󵄩
󵄩
󵄩
󵄩
󵄩
Δ
𝑁

𝑦
𝑓(𝑥) − 𝑁!𝑓(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩𝛽

≤ 𝜑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋. (98)

If there exists a positive constant 𝐿 < 1 such that the mapping

𝑥 󳨀→ 𝜓 (𝑥) =

1

(𝑁!)
𝛽
(𝜑 (0, 𝑥) +

𝑁

∑

𝑖=0

(

𝑁

𝑁 − 𝑖

)𝜑(

𝑖𝑥

2

,

𝑥

2

)) ,

𝑥 ∈ 𝑋,

(99)

satisfies the inequality

𝜓 (𝑟
𝑗
𝑥) ≤ 𝐿𝑟

𝑁𝛽

𝑗
𝜓 (𝑥) , 𝑥 ∈ 𝑋, (100)

then there exists a unique monomial mapping 𝑔 : 𝑋 → 𝑌 of
degree 𝑁 with

󵄩
󵄩
󵄩
󵄩
𝑓(𝑥) − 𝑔(𝑥)

󵄩
󵄩
󵄩
󵄩𝛽

≤

𝐿
1−𝑗

1 − 𝐿

𝜓 (𝑥) , 𝑥 ∈ 𝑋. (101)

In [43], Mihet has given one more generalization of
Theorem 2; he obtained it by proving another fixed point
alternative.

Recall that a mapping 𝛾 : [0,∞] → [0,∞] is called a
generalized strict comparison function if it is nondecreasing,
𝛾(∞) = ∞,

lim
𝑛→∞

𝛾
𝑛
(𝑡) = 0, 𝑡 ∈ (0,∞) (102)

and lim
𝑡→∞

(𝑡 − 𝛾(𝑡)) = ∞. Given such a mapping 𝛾 and a
generalized metric space (𝑋, 𝑑), we say that a function 𝜓 :

𝑋 → 𝑋 is a strict 𝛾-contraction if it satisfies inequality (64).
Now, we can formulate the fixed point result from [43].

Theorem 32 ([43], Theorem 2.2). Let (𝑋, 𝑑) be a complete
generalizedmetric space and𝑇 : 𝑋 → 𝑋 a strict 𝛾-contraction
such that 𝑑(𝑥, 𝑇(𝑥)) < ∞ for an 𝑥 ∈ 𝑋. Then 𝑇 has a unique
fixed point 𝑝 in the set

𝑍 := {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) < ∞} , (103)

and the sequence (𝑇
𝑛
(𝑦))

𝑛∈N converges to 𝑝 for every 𝑦 ∈ 𝑍.
Moreover,

𝑑 (𝑝, 𝑥) ≤ sup {𝑠 > 0 : 𝑠 − 𝛾 (𝑠) ≤ 𝑑 (𝑥, 𝑇 (𝑥))} , 𝑥 ∈ 𝑋.

(104)

Using this theorem we can get the following generaliza-
tion of Theorem 2.

Theorem 33 ([43], Theorem 3.1). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜑 : 𝑆 → 𝑆, 𝐹 : 𝑆 × 𝑋 → 𝑋.
Assume also that

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝛾 (𝑑 (𝑢, V)) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋, (105)

where 𝛾 : [0,∞] → [0,∞] is a generalized strict comparison
function, and let 𝑔 : 𝑆 → 𝑋, 𝛿 > 0 be such that (3) holds.
Then there is a unique function 𝑓 : 𝑆 → 𝑋 satisfying (4) and

𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) ≤ sup {𝑠 > 0 : 𝑠 − 𝛾 (𝑠) ≤ 𝛿} , 𝑡 ∈ 𝑆. (106)

We also have the following.

Theorem 34 ([43], Theorem 4.1). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜑 : 𝑆 → 𝑆, 𝜓 : 𝑋 → 𝑋.
Assume also that 𝑔 : 𝑆 → 𝑋 and 𝛿 > 0 are such that
(69) holds. If 𝛾 : [0,∞] → [0,∞] is a generalized strict
comparison function satisfying inequality (64), then there is a
unique mapping𝑓 : 𝑆 → 𝑋 such that (70) and (106) hold.The
function 𝑓 is given by formula (71).

We end this section with some applications of the fixed
point alternatives of the Bianchini-Grandolfi and Matkowski
types. To this end, we introduce some notations and defini-
tions.

A nondecreasing function 𝑐 : R
+

→ R
+
is said to

be a c-comparison function [32] or Bianchini-Grandolfi gauge
function [35, 57] if for each 𝑡 ∈ (0,∞) the series ∑

∞

𝑘=0
𝑐
𝑘
(𝑡) is

convergent (here 𝑐
𝑘 denotes the 𝑘th iteration of 𝑐).

A self-mapping 𝐴 of the metric space (𝑋, 𝑑) for which
there exists a 𝑐-comparison function 𝑐 such that

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝑐 (𝑑 (𝑥, 𝑦)) , 𝑥, 𝑦 ∈ 𝑋 (107)

is called a Bianchini-Grandolfi contraction [34] (see also the
notion of a Matkowski contraction in Section 2.2).

The following result is the fixed point alternative of
Bianchini and Grandolfi [57] (see [58, Lemma 2.1]).

Theorem 35. Let (𝑋, 𝑑) be a complete generalized metric
space, that is, one for which 𝑑 may assume infinite values, and
𝐴 : 𝑋 → 𝑋 a Bianchini-Grandolfi contraction.Then, for each
𝑥 ∈ 𝑋, either

(𝐴
1
) 𝑑(𝐴

𝑛
𝑥, 𝐴

𝑛+1
𝑥) = +∞, for all 𝑛 ≥ 0, or
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(𝐴
2
) there exists 𝑛

0
∈ N such that 𝑑(𝐴𝑛

𝑥, 𝐴
𝑛+1

𝑥) < +∞ for
𝑛 ≥ 𝑛

0
.

If (𝐴
2
) holds, then the sequence (𝐴𝑛

(𝑥))
𝑛∈N converges to a fixed

point 𝑦∗ of 𝐴, 𝑦∗ is the unique fixed point of 𝐴 in the set

Z := {𝑦 ∈ 𝑋 : 𝑑 (𝐴
𝑛
0

(𝑥) , 𝑦) < ∞} ,

𝑑 (𝑦, 𝑦
∗
) ≤

∞

∑

𝑘=0

𝑐
𝑘
(𝑑 (𝑦, 𝐴 (𝑦))) , 𝑦 ∈ Z.

(108)

Next, we introduce the notion of an admissible pair. Let us
consider a 2-divisible group𝑋 and denote byM the family of
all mappings 𝑚 : 𝑋 × R

+
→ R

+
with the properties:

(i) 𝑚
𝑥
is continuous at 0, for each 𝑥 ∈ 𝑋;

(ii) 𝑚
𝑥
is superadditive; that is

𝑚
𝑥
(𝑡 + 𝑠) ≥ 𝑚

𝑥
(𝑡) + 𝑚

𝑥
(𝑠) , 𝑡, 𝑠 ∈ R

+
, (109)

where 𝑚
𝑥
:= 𝑚(𝑥, ⋅) for each 𝑥 ∈ 𝑋.

Let us consider a comparison function 𝑐, an element 𝑚 ∈

M and numbers 𝑟
0
= 2 and 𝑟

1
= 1/2.

Given 0 < 𝛽 ≤ 1 and 𝑁 ∈ N, we say that (𝑚, 𝑐) is a 𝑗-
admissible pair of order 𝑁𝛽 if

𝑚(𝑟
𝑗
𝑥, 𝑡) ≤ 𝑟

𝑁𝛽

𝑗
𝑚(𝑥, 𝑐 (𝑡)) , 𝑡 ∈ R

+
, 𝑥 ∈ 𝑋. (𝐴

𝑗
)

Now, we are in a position to present a stability theorem
for monomial functional equation (94) of degree 𝑁.

Theorem 36 ([58], Theorem 3.1). Let (𝐺, +) be a 2-divisible
group, 𝑌 a (real or complex) complete 𝛽-normed space, 𝑐 be
a c-comparison function, and (𝑚, 𝑐) be a 𝑗-admissible pair of
order𝑁𝛽, with a 𝑗 ∈ {0, 1}. Suppose that 𝜑 : 𝐺×𝐺 → R

+
and

𝑓 : 𝐺 → 𝑌 with 𝑓(0) = 0 satisfy the inequality
󵄩
󵄩
󵄩
󵄩
󵄩
Δ
𝑁

𝑦
𝑓(𝑥) − 𝑁!𝑓(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩𝛽

≤ 𝜑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝐺. (110)

If there exist 𝑗 ∈ {0, 1} and 𝛿 > 0 such that

1

(𝑁!)
𝛽
(𝜑 (0, 𝑥) +

𝑁

∑

𝑖=0

(

𝑁

𝑁 − 𝑖

)𝜑(

𝑖𝑥

2

,

𝑥

2

)) ≤ 𝑚 (𝑥, 𝛿) ,

𝑥 ∈ 𝐺,

lim
𝑚→∞

𝜑 (𝑟
𝑚

𝑗
𝑥, 𝑟

𝑚

𝑗
𝑦)

𝑟
𝑚𝑁𝛽

𝑗

= 0, 𝑥, 𝑦 ∈ 𝐺,

(111)

then there exists a unique monomial function 𝑔 : 𝐺 → 𝑌 of
degree 𝑁 such that

󵄩
󵄩
󵄩
󵄩
𝑓(𝑥) − 𝑔(𝑥)

󵄩
󵄩
󵄩
󵄩𝛽

≤ 𝑚(𝑥,

∞

∑

𝑘=0

𝑐
𝑘+1−𝑗

(𝛿)) , 𝑥 ∈ 𝐺. (112)

Remark 37. If (in Theorem 36) 𝑚(𝑥, 𝑡) = 𝜇(𝑡) ⋅ (𝛾(𝑡) + 𝜓(𝑥)),
with 𝛾 and 𝜇 having suitable properties, then we obtain [58,
Corollary 4.1]; if 𝜇(𝑡) = 𝑡, 𝛾 ≡ 0 and 𝑐(𝑡) = 𝐿𝑡 with an 𝐿 < 1,
then we get Theorem 31.

The fixed point alternative of Bianchini andGrandolfi has
been used in [59] to prove a generalized Hyers-Ulam stability
result for the additive Cauchy functional equation. In what
follows, we yet recall the fixed point alternative of Matkowski
and the corresponding outcome on stability of the Cauchy
equation.

Theorem 38 ([59], Lemma 3.2). Let (𝑋, 𝑑) be a complete
generalized metric space and 𝐴 : 𝑋 → 𝑋 a 𝛾-Matkowski
contraction. Then, for each 𝑥 ∈ 𝑋, either

(𝐴
1
) 𝑑(𝐴

𝑛
𝑥, 𝐴

𝑛+1
𝑥) = +∞, for all 𝑛 ≥ 0, or

(𝐴
2
) there exists an 𝑛

0
∈ N such that 𝑑(𝐴𝑛

𝑥, 𝐴
𝑛+1

𝑥) < +∞,
for all 𝑛 ≥ 𝑛

0
.

If (𝐴
2
) holds, then the sequence (𝐴𝑛

(𝑥))
𝑛∈N converges to a fixed

point 𝑦∗ of 𝐴 and 𝑦
∗ is the unique fixed point of 𝐴 in the set

Z := {𝑦 ∈ 𝑋 : 𝑑 (𝐴
𝑛
0

(𝑥) , 𝑦) < ∞} ; (113)

moreover, if additionally the mapping 𝛾
0

: 𝑡 󳨃→ 𝑡 − 𝛾(𝑡) is a
bijection, then

𝑑 (𝑦, 𝑦
∗
) ≤ 𝛾

−1

0
(𝑑 (𝑦, 𝐴 (𝑦))) , 𝑦 ∈ Z. (114)

The above fixed point result has been used to prove the
following stability result for the Cauchy equation.

Theorem 39 ([59],Theorem 2.5). Let us consider a real linear
space𝑋, a complete 𝛽-normed space 𝑌, a comparison function
𝛾, and a 𝑗-admissible pair (𝑚, 𝛾) of order𝛽with a 𝑗 ∈ {0, 1}. Let
us suppose that the mapping 𝛾

0
: 𝑡 󳨃→ 𝑡 − 𝛾(𝑡) is an increasing

bijection and that a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0

satisfies the inequality
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦)

󵄩
󵄩
󵄩
󵄩𝛽

≤ 𝜑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, (115)

where 𝜑 : 𝑋 × 𝑋 → R
+
is a given function such that

lim
𝑛→∞

𝜑 (𝑟
𝑛

𝑗
𝑥, 𝑟

𝑛

𝑗
𝑦)

𝑟
𝑛𝛽

𝑗

= 0, 𝑥, 𝑦 ∈ 𝑋. (116)

If there exists a 𝛿 > 0 such that

𝜑(

𝑥

2

,

𝑥

2

) ≤ 𝑚 (𝑥, 𝛿) , 𝑥 ∈ 𝑋, (117)

then there exists a unique additive mapping 𝑎 : 𝑋 → 𝑌 such
that

󵄩
󵄩
󵄩
󵄩
𝑓(𝑥) − 𝑎(𝑥)

󵄩
󵄩
󵄩
󵄩𝛽

≤ 𝑚(𝑥, 𝛾
−1

0
(𝛾

1−𝑗
(𝛿))) , 𝑥 ∈ 𝑋. (118)

3. New Fixed Point Theorems and
Their Applications

In this section, we present a somewhat different fixed point
approach to the stability of functional equations, in which the
stability results are simple consequences of some new fixed
point theorems.
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Given a nonempty set 𝑆 and a metric space (𝑋, 𝑑), we
define a mapping Δ : (𝑋

𝑆
)

2

→ R
+

𝑆 (𝐴𝐵 denotes the family
of all functions mapping a set 𝐵 into a set 𝐴) by

Δ (𝜉, 𝜇) (𝑡) := 𝑑 (𝜉 (𝑡) , 𝜇 (𝑡)) , 𝜉, 𝜇 ∈ 𝑋
𝑆
, 𝑡 ∈ 𝑆. (119)

With this notation, we have the following.

Theorem 40 ([60], Theorem 1). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝑘 ∈ N, 𝑓

1
, . . . , 𝑓

𝑘
: 𝑆 → 𝑆,

𝐿
1
, . . . , 𝐿

𝑘
: 𝑆 → R

+
and Λ : R

+

𝑆
→ R

+

𝑆 be given by

(Λ𝛿) (𝑡) :=

𝑘

∑

𝑖=1

𝐿
𝑖 (

𝑡) 𝛿 (𝑓
𝑖 (

𝑡)) , 𝛿 ∈ R
+

𝑆
, 𝑡 ∈ 𝑆. (120)

IfT : 𝑋
𝑆

→ 𝑋
𝑆 is an operator satisfying the inequality

Δ (T𝜉,T𝜇) (𝑡)

≤ Λ (Δ (𝜉, 𝜇)) (𝑡) , 𝜉, 𝜇 ∈ 𝑋
𝑆
, 𝑡 ∈ 𝑆

(121)

and functions 𝜀 : 𝑆 → R
+
and 𝑔 : 𝑆 → 𝑋 are such that

Δ (T𝑔, 𝑔) (𝑡) ≤ 𝜀 (𝑡) , 𝑡 ∈ 𝑆, (122)
∞

∑

𝑛=0

(Λ
𝑛
𝜀) (𝑡) =: 𝜎 (𝑡) < ∞, 𝑡 ∈ 𝑆, (123)

then for every 𝑡 ∈ 𝑆 the limit

lim
𝑛→∞

(T
𝑛
𝑔) (𝑡) =: 𝑓 (𝑡) (124)

exists and the function 𝑓 : 𝑆 → 𝑋, defined in this way, is a
unique fixed point ofT with

Δ (𝑔, 𝑓) (𝑡) ≤ 𝜎 (𝑡) , 𝑡 ∈ 𝑆. (125)

A consequence of Theorem 40 is the following result on
the stability of a quite wide class of functional equations in a
single variable.

Corollary 41 ([60], Corollary 3). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) be a complete metric space, 𝑘 ∈ N, 𝑓

1
, . . . , 𝑓

𝑘
: 𝑆 → 𝑆,

𝐿
1
, . . . , 𝐿

𝑘
: 𝑆 → R

+
, a function Φ : 𝑆 × 𝑋

𝑘
→ 𝑋 satisfy the

inequality

𝑑 (Φ (𝑡, 𝑦
1
, . . . , 𝑦

𝑘
) , Φ (𝑡, 𝑧

1
, . . . , 𝑧

𝑘
)) ≤

𝑘

∑

𝑖=1

𝐿
𝑖 (

𝑡) 𝑑 (𝑦
𝑖
, 𝑧
𝑖
)

(126)

for any (𝑦
1
, . . . , 𝑦

𝑘
), (𝑧

1
, . . . , 𝑧

𝑘
) ∈ 𝑋

𝑘 and 𝑡 ∈ 𝑆, and T :

𝑋
𝑆

→ 𝑋
𝑆 be an operator defined by

(T𝜑) (𝑡) := Φ (𝑡, 𝜑 (𝑓
1
(𝑡)) , . . . , 𝜑 (𝑓

𝑘
(𝑡))) , 𝜑 ∈ 𝑋

𝑆
, 𝑡 ∈ 𝑆.

(127)

Assume also that Λ is given by (120) and functions 𝑔 : 𝑆 → 𝑋

and 𝜀 : 𝑆 → R
+
are such that

𝑑 (𝑔 (𝑡) , Φ (𝑡, 𝑔 (𝑓
1
(𝑡)) , . . . , 𝑔 (𝑓

𝑘
(𝑡)))) ≤ 𝜀 (𝑡) , 𝑡 ∈ 𝑆

(128)

and (123) holds. Then for every 𝑡 ∈ 𝑆 limit (124) exists and the
function 𝑓 : 𝑆 → 𝑋 is a unique solution of the functional
equation

Φ(𝑡, 𝑓 (𝑓
1
(𝑡)) , . . . , 𝑓 (𝑓

𝑘
(𝑡))) = 𝑓 (𝑡) , 𝑡 ∈ 𝑆 (129)

satisfying inequality (125).

Another application of Theorem 40 has been given in
[61]; it concerns stability of the polynomial equation (for a
survey on related results see [62]).

Next, following [63], we consider the case of non-
Archimedeanmetric spaces (let us mention here that the first
paper dealing with the Hyers-Ulam stability of functional
equations in non-Archimedean normed spaces was [64],
whereas [65] seems to be the first one in which the stability
problem in a particular type of these spaces was considered).
In order to do this, we introduce some notations and
definitions.

Let 𝑆 be a nonempty set. For any 𝛿
1
, 𝛿
2

∈ R𝑆

+
we write

𝛿
1
≤ 𝛿

2
provided

𝛿
1
(𝑡) ≤ 𝛿

2
(𝑡) , 𝑡 ∈ 𝑆, (130)

and we say that an operator Λ : R𝑆

+
→ R𝑆

+
is nondecreasing

if it satisfies the condition

Λ𝛿
1
≤ Λ𝛿

2
, 𝛿

1
, 𝛿
2
∈ R

𝑆

+
, 𝛿

1
≤ 𝛿

2
. (131)

Moreover, given a sequence (𝑔
𝑛
)
𝑛∈N in R𝑆

+
, we write

lim
𝑛→∞

𝑔
𝑛
= 0 provided

lim
𝑛→∞

𝑔
𝑛
(𝑡) = 0, 𝑡 ∈ 𝑆. (132)

We will also use the following hypothesis concerning
operators Λ : R𝑆

+
→ R𝑆

+
:

(C) lim
𝑛→∞

Λ𝛿
𝑛

= 0 for every sequence (𝛿
𝑛
)
𝑛∈N in R𝑆

+

with lim
𝑛→∞

𝛿
𝑛
= 0.

Finally, let us recall that a metric 𝑑 on a nonempty set 𝑋
is called non-Archimedean (or an ultrametric) provided

𝑑 (𝑥, 𝑧) ≤ max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑦, 𝑧)} , 𝑥, 𝑦, 𝑧 ∈ 𝑋. (133)

We can now formulate the following fixed point theorem.

Theorem42 ([63],Theorem 1). Let 𝑆 be a nonempty set, (𝑋, 𝑑)

a complete non-Archimedean metric space and Λ : R
+

𝑆
→

R
+

𝑆 a nondecreasing operator satisfying hypothesis (C). If
T : 𝑋

𝑆
→ 𝑋

𝑆 is an operator satisfying inequality (121) and
functions 𝜀 : 𝑆 → R

+
and 𝑔 : 𝑆 → 𝑋 are such that

lim
𝑛→∞

Λ
𝑛
𝜀 = 0 (134)

and (122) holds, then for each 𝑡 ∈ 𝑆 limit (124) exists and the
function 𝑓 : 𝑆 → 𝑋, defined in this way, is a fixed point ofT
with

Δ (𝑔, 𝑓) (𝑡) ≤ sup
𝑛∈N
0

(Λ
𝑛
𝜀) (𝑡) =: 𝜎 (𝑡) , 𝑡 ∈ 𝑆. (135)



Journal of Function Spaces 11

If, moreover,

(Λ𝜎) (𝑡) ≤ sup
𝑛∈N

(Λ
𝑛
𝜀) (𝑡) , 𝑡 ∈ 𝑆, (136)

then 𝑓 is the unique fixed point ofT satisfying (135).

An immediate consequence of Theorem 42 is the fol-
lowing result on the stability of (129) in the complete non-
Archimedean metric spaces.

Corollary 43 (see [63]). Let 𝑆 be a nonempty set, (𝑋, 𝑑) a
complete non-Archimedean metric space, 𝑘 ∈ N, 𝑓

1
, . . . , 𝑓

𝑘
:

𝑆 → 𝑆, 𝐿
1
, . . . , 𝐿

𝑘
: 𝑆 → R

+
, a function Φ : 𝑆 × 𝑋

𝑘
→ 𝑋

satisfy the inequality

𝑑 (Φ (𝑡, 𝑦
1
, . . . , 𝑦

𝑘
) , Φ (𝑡, 𝑧

1
, . . . , 𝑧

𝑘
))

≤ max
𝑖∈{1,...,𝑘}

𝐿
𝑖
(𝑡) 𝑑 (𝑦

𝑖
, 𝑧
𝑖
)

(137)

for any (𝑦
1
, . . . , 𝑦

𝑘
), (𝑧

1
, . . . , 𝑧

𝑘
) ∈ 𝑋

𝑘 and 𝑡 ∈ 𝑆, and T :

𝑋
𝑆

→ 𝑋
𝑆 an operator defined by (127). Assume also that Λ is

given by

(Λ𝛿) (𝑡) := max
𝑖∈{1,...,𝑘}

𝐿
𝑖 (

𝑡) 𝛿 (𝑓
𝑖 (

𝑡)) , 𝛿 ∈ R
+

𝑆
, 𝑡 ∈ 𝑆 (138)

and functions 𝑔 : 𝑆 → 𝑋 and 𝜀 : 𝑆 → R
+
are such that (128)

and (134) hold. Then for every 𝑡 ∈ 𝑆 limit (124) exists and the
function 𝑓 : 𝑆 → 𝑋 is a solution of functional equation (129)
satisfying inequality (135).

A variant of Theorem 42 in arbitrary complete metric
spaces was also proved in [63, Theorem 2]. A slightly
improved version of this outcome was obtained in [66] in
response to an open problem concerning the uniqueness of
the mapping𝜓, defined below. Namely, we have the following
result.

Theorem 44 ([66], Corollary 2.2). Let 𝑋 be a nonempty set,
(𝑌, 𝑑) a complete metric space and Λ : R𝑋

+
→ R𝑋

+
a

nondecreasing operator satisfying the hypothesis

lim
𝑛→∞

𝛿
𝑛
(𝑡) = 0 󳨐⇒ lim

𝑛→∞
(Λ𝛿

𝑛
) (𝑡) = 0, (C

1
)

for every sequence (𝛿
𝑛
)
𝑛∈N of elements of R𝑋

+
and every 𝑡 ∈ 𝑋.

IfT : 𝑌
𝑋

→ 𝑌
𝑋 is an operator satisfying the inequality

𝑑 ((T𝜉) (𝑥) , (T𝜇) (𝑥))

≤ Λ (Δ (𝜉, 𝜇)) (𝑥) , 𝜉, 𝜇 ∈ 𝑌
𝑋
, 𝑥 ∈ 𝑋,

(139)

and the functions 𝜀 : 𝑋 → R
+
, 𝜑 : 𝑋 → 𝑌 are such that

𝑑 ((T𝜑) (𝑥) , 𝜑 (𝑥)) ≤ 𝜀 (𝑥) , 𝑥 ∈ 𝑋, (140)

𝜀
∗
(𝑥) :=

∞

∑

𝑘=0

(Λ
𝑘
𝜀) (𝑥) < ∞, 𝑥 ∈ 𝑋, (C

2
)

then, for every 𝑥 ∈ 𝑋, the limit

𝜓 (𝑥) := lim
𝑛→∞

(T
𝑛
𝜑) (𝑥) (141)

exists and the function 𝜓 ∈ 𝑌
𝑋, defined in this way, is a fixed

point ofT with

𝑑 (𝜑 (𝑥) , 𝜓 (𝑥)) ≤ 𝜀
∗
(𝑥) , 𝑥 ∈ 𝑋. (142)

Moreover, if the condition

lim
𝑛→∞

(Λ
𝑛
𝜀
∗
) (𝑡) = 0, 𝑡 ∈ 𝑋, (C

3
)

holds, then the mapping 𝜓 is the unique fixed point ofT with
the property

𝑑 (𝜑 (𝑥) , 𝜓 (𝑥)) ≤ 𝜀
∗
(𝑥) , 𝑥 ∈ 𝑋. (143)

Theorem 44 is a consequence of the following fixed point
theorem for a class of operators satisfying some very general
conditions (recall that given Λ : R𝑋

+
→ R𝑋

+
, we say that

T : 𝑌
𝑋

→ 𝑌
𝑋 is Λ-contractive if for any 𝑢, V : 𝑋 → 𝑌 and

𝛿 ∈ R𝑋

+
with 𝑑(𝑢(𝑡), V(𝑡)) ≤ 𝛿(𝑡) for 𝑡 ∈ 𝑋, it follows that

𝑑((T𝑢)(𝑡), (TV)(𝑡)) ≤ (Λ𝛿)(𝑡) for 𝑡 ∈ 𝑋).

Theorem 45 ([66], Theorem 2.1). Let 𝑋 be a nonempty set,
(𝑌, 𝑑) a complete metric space and Λ : R𝑋

+
→ R𝑋

+
. Suppose

that T : 𝑌
𝑋

→ 𝑌
𝑋 is Λ-contractive, hypotheses (C

1
) and

(C
2
) hold, and 𝑓 ∈ 𝑌

𝑋 fufils

𝑑 ((T𝑓) (𝑡) , 𝑓 (𝑡)) ≤ 𝜀 (𝑡) , 𝑡 ∈ 𝑋. (144)

Then, for every 𝑡 ∈ 𝑋, the limit

𝑔 (𝑡) := lim
𝑛→∞

(T
𝑛
𝑓) (𝑡) , (145)

exists and the mapping 𝑔 is the unique fixed point of T with
the property

𝑑 ((T
𝑚
𝑓) (𝑡) , 𝑔 (𝑡)) ≤

∞

∑

𝑘=𝑚

(Λ
𝑘
𝜀) (𝑡) , 𝑡 ∈ 𝑋, 𝑚 ∈ N.

(146)

Moreover, if we have

lim
𝑛→∞

(Λ
𝑛
𝜀
∗
) (𝑡) = 0, 𝑡 ∈ 𝑋, (147)

then 𝑔 is the unique fixed point ofT with the property

𝑑 (𝑓 (𝑡) , 𝑔 (𝑡)) ≤ 𝜀
∗
(𝑡) , 𝑡 ∈ 𝑋. (148)

It is also worth noting that Theorem 40 can be directly
obtained fromTheorem 45 (see [66] for details).

Given nonempty sets 𝑆, 𝑍 and functions 𝜑 : 𝑆 → 𝑆, 𝐹 :

𝑆 × 𝑍 → 𝑍, we define an operatorL𝐹

𝜑
: 𝑍

𝑆
→ 𝑍

𝑆 by

L
𝐹

𝜑
(𝑔) (𝑡) := 𝐹 (𝑡, 𝑔 (𝜑 (𝑡))) , 𝑔 ∈ 𝑍

𝑆
, 𝑡 ∈ 𝑆, (149)

and we say that U : 𝑍
𝑆

→ 𝑍
𝑆 is an operator of substitution

providedU = L𝐺

𝜓
with some𝜓 : 𝑆 → 𝑆 and𝐺 : 𝑆×𝑍 → 𝑍.

Moreover, if 𝐺(𝑡, ⋅) is continuous for each 𝑡 ∈ 𝑆 (with respect
to a topology in 𝑍), then we say thatU is continuous.
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Theorem 46 ([67], Theorem 2.1). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, Λ : 𝑆 ×R

+
→ R

+
,T : 𝑋

𝑆
→

𝑋
𝑆, 𝜑 : 𝑆 → 𝑆 and

Δ (T𝛼,T𝛽) (𝑡) ≤ Λ (𝑡, Δ (𝛼 ∘ 𝜑, 𝛽 ∘ 𝜑) (𝑡)) ,

𝛼, 𝛽 ∈ 𝑋
𝑆
, 𝑡 ∈ 𝑆.

(150)

Assume also that for every 𝑡 ∈ 𝑆,Λ
𝑡
:= Λ(𝑡, ⋅) is nondecreasing,

𝜀 : 𝑆 → R
+
, 𝑔 : 𝑆 → 𝑋,

∞

∑

𝑛=0

((L
Λ

𝜑
)

𝑛

𝜀) (𝑡) =: 𝜎 (𝑡) < ∞, 𝑡 ∈ 𝑆 (151)

and (122) holds. Then for every 𝑡 ∈ 𝑆 limit (124) exists
and inequality (125) is satisfied. Moreover, the following two
statements are true.

(i) If T is a continuous operator of substitution or Λ
𝑡
is

continuous at 0 for each 𝑡 ∈ 𝑆, then 𝑓 is a fixed point of
T.

(ii) If Λ
𝑡
is subadditive; that is,

Λ
𝑡
(𝑎 + 𝑏) ≤ Λ

𝑡
(𝑎) + Λ

𝑡
(𝑏) (152)

for all 𝑎, 𝑏 ∈ R
+
, 𝑡 ∈ 𝑆, then T has at most one fixed

point 𝑓 ∈ 𝑋
𝑆 such that there exists 𝑀 ∈ N with

Δ (𝑔, 𝑓) (𝑡) ≤ 𝑀𝜎 (𝑡) , 𝑡 ∈ 𝑆. (153)

Actually, it can be deduced from the proof of [67, Theo-
rem 2.1] that Theorem 46 can be derived fromTheorem 44.

Theorem 46 with T = L𝐹

𝜑
immediately gives the

following generalization of Theorem 2.

Corollary 47 ([67], Corollary 2.1). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝐹 : 𝑆×𝑋 → 𝑋,Λ : 𝑆×R

+
→

R
+
and

𝑑 (𝐹 (𝑡, 𝑥) , 𝐹 (𝑡, 𝑦)) ≤ Λ (𝑡, 𝑑 (𝑥, 𝑦)) , 𝑡 ∈ 𝑆, 𝑥, 𝑦 ∈ 𝑋.

(154)

Assume also that 𝜑 : 𝑆 → 𝑆, 𝜀 : 𝑆 → R
+
, (151) holds, 𝑔 :

𝑆 → 𝑋, for every 𝑡 ∈ 𝑆, Λ
𝑡
:= Λ(𝑡, ⋅) is nondecreasing, 𝐹(𝑡, ⋅)

is continuous and

𝑑 (𝑔 (𝑡) , 𝐹 (𝑡, 𝑔 (𝜑 (𝑡)))) ≤ 𝜀 (𝑡) , 𝑡 ∈ 𝑆. (155)

Then for every 𝑡 ∈ 𝑆 the limit

𝑓 (𝑡) := lim
𝑛→∞

(L
𝐹

𝜑
)

𝑛

(𝑔) (𝑡) (156)

exists, (125) holds and 𝑓 is a solution of (4). Moreover, if Λ
𝑡
is

subadditive for every 𝑡 ∈ 𝑆 and 𝑀 ∈ N, then 𝑓 : 𝑆 → 𝑋 is the
unique solution of (4) fulfilling (153).

Some results related to those presented above, proved for
functions taking values in Riesz spaces, can be found in [68].

Further applications of Theorem 40 have been proposed
in [49, 50] (in solving a problem ofTh.M. Rassias concerning

optimality of estimations in Theorem 29) and in [69] (in
proving stability of the equation of𝑝-Wright affine functions);
in particular, it has been discovered in this way in [49] that the
property of hyperstability for the additive Cauchy equation
appears quite often in a natural way (see [8, 70] for more
information on this issue and related results); generalizations
of that approach have been presented in [71, 72]. Similar
methods (also involving Theorem 42) have been applied for
some other equations in [73–78].

4. Stability of the Fixed Point
Equation and Its Generalization

In [79] one can find the following definition (as well as
some related notions concerning the generalizedUlam-Hyers
stability).

Let (𝑋, 𝑑) be a metric space and 𝑓 : 𝑋 → 𝑋. We say that
the fixed point equation

𝑥 = 𝑓 (𝑥) (157)

is Ulam-Hyers stable if there is a 𝑠 > 0 such that for any 𝜀 > 0

and 𝑦 ∈ 𝑋 with

𝑑 (𝑦, 𝑓 (𝑦)) ≤ 𝜀 (158)

there exists an 𝑥 ∈ 𝑋 satisfying (157) and

𝑑 (𝑦, 𝑥) ≤ 𝑠𝜀. (159)

Let us recall (see [79, 80]) that 𝑓 : 𝑋 → 𝑋 is called
a weakly Picard operator if for every 𝑥 ∈ 𝑋 the sequence
(𝑓

𝑛
(𝑥))

𝑛∈N is convergent and its limit, denoted by 𝑓
∞

(𝑥), is
a fixed point of 𝑓. Given such an operator 𝑓 and a 𝑐 > 0, we
say that 𝑓 is a 𝑐-weakly Picard operator if

𝑑 (𝑥, 𝑓
∞

(𝑥)) ≤ 𝑐𝑑 (𝑥, 𝑓 (𝑥)) , 𝑥 ∈ 𝑋. (160)

The following two results comes from [79].

Theorem 48 ([79], Remark 2.1). Let (𝑋, 𝑑) be a metric space
and 𝑐 > 0. If 𝑓 : 𝑋 → 𝑋 is a 𝑐-weakly Picard operator, then
(157) is Ulam-Hyers stable.

Theorem 49 ([79], Remark 2.2). Let (𝑋, 𝑑) be a metric space,
𝐼 ̸= 0 a set and 𝑋 = ⋃

𝑖∈𝐼
𝑋
𝑖
. Assume also that 𝑓 : 𝑋 → 𝑋

satisfies 𝑓(𝑋
𝑖
) ⊂ 𝑋

𝑖
for 𝑖 ∈ 𝐼. If for every 𝑖 ∈ 𝐼, the equation

𝑥 = 𝑓|
𝑋
𝑖

(𝑥) (161)

is Ulam-Hyers stable, then (157) is also Ulam-Hyers stable.

Let us mention here that in [79] some applications of
these outcomes (e.g., to the stability of an integral equation)
are also presented.

Now, let (𝑋, 𝑑) and (𝑌, 𝜌) be metric spaces, and 𝑓, 𝑔 :

𝑋 → 𝑌. The coincidence equation

𝑓 (𝑥) = 𝑔 (𝑥) (162)
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is calledUlam-Hyers stable if there is a 𝑠 > 0 such that for any
𝜀 > 0 and 𝑦 ∈ 𝑋 with

𝜌 (𝑔 (𝑦) , 𝑓 (𝑦)) ≤ 𝜀 (163)

there exists an 𝑥 ∈ 𝑋 satisfying (162) and (159).
Let 𝑐 > 0 and 𝑓, 𝑔 : 𝑋 → 𝑌. We say that (𝑓, 𝑔) is a

𝑐-weakly Picard pair if there exists a weakly Picard operator
ℎ : 𝑋 → 𝑋 such that

{𝑥 ∈ 𝑋 : ℎ (𝑥) = 𝑥} = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑔 (𝑥)} ,

𝑑 (𝑥, ℎ
∞

(𝑥)) ≤ 𝑐𝜌 (𝑓 (𝑥) , 𝑔 (𝑥)) , 𝑥 ∈ 𝑋.

(164)

Theorem 50 ([79], Remark 6.1). Let (𝑋, 𝑑), (𝑌, 𝜌) be metric
spaces, 𝑓, 𝑔 : 𝑋 → 𝑌 and 𝑐 > 0. If (𝑓, 𝑔) is a 𝑐-weakly Picard
pair, then (162) is Ulam-Hyers stable.

More results on these as well as related problems can be
found in [81–95].

5. Final Remarks

Applications of different fixed point theorems to the Ulam
type stability have been presented in this survey. On the other
hand, some fixed point theorems can be derived from such
stability results; we refer to [96–98] for suitable examples.
Below we show how to get another such an example.

Let (𝑌, 𝑑) be a metric space. We denote by 𝑛(𝑌) the family
of all nonempty subsets of 𝑌. The convergence of subsets of
𝑌 is with respect to the Hausdorff metric derived from the
metric 𝑑. The number 𝛿(𝐴) := sup {𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐴} is
said to be the diameter of 𝐴 ⊂ 𝑌. The next theorem has been
obtained in [99,Theorem 2] (cf. [100,Theorem 1]; we refer the
reader to [99–102] for further similar results and to [103] for
a survey on the subject).

Theorem 51 ([99], Theorem 2). Let 𝐾 be a nonempty set, 𝑎 :

𝐾 → 𝐾, Ψ : 𝑌 → 𝑌, 𝜆 ∈ (0,∞) and 𝐹 : 𝐾 → 𝑛(𝑌) satisfy

𝑑 (Ψ (𝑥) , Ψ (𝑦)) ≤ 𝜆𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑌,

lim
𝑛→∞

𝜆
𝑛
𝛿 (𝐹 (𝑎

𝑛
(𝑥))) = 0, 𝑥 ∈ 𝐾.

(165)

Then one of the following two statements is valid.
(i) If 𝑌 is complete and

Ψ (𝐹 (𝑎 (𝑥))) ⊂ 𝐹 (𝑥) , 𝑥 ∈ 𝐾, (166)

then, for each 𝑥 ∈ 𝐾, the limit

lim
𝑛→∞

𝑐𝑙 (Ψ
𝑛
(𝐹 (𝑎

𝑛
(𝑥)))) =:

̂
𝑓 (𝑥) (167)

exists, the function ̂
𝑓 : 𝐾 → 𝑛(𝑌) is single-valued and

it is the unique function (whichmaps𝐾 into 𝑛(𝑌)) such
that Ψ(

̂
𝑓(𝑎(𝑥))) =

̂
𝑓(𝑥) and ̂

𝑓(𝑥) ⊂ 𝑐𝑙𝐹(𝑥) for 𝑥 ∈ 𝐾.
(ii) If

𝐹 (𝑥) ⊂ Ψ (𝐹 (𝑎 (𝑥))) , 𝑥 ∈ 𝐾, (168)

then F is single-valued and Ψ(𝐹(𝑎(𝑥))) = 𝐹(𝑥) for 𝑥 ∈

𝐾.

It is easily seen thatTheorem 51 yields the following fixed
point result.

Corollary 52. Let 𝐾 be a nonempty set, 𝑎 : 𝐾 → 𝐾, Ψ :

𝑌 → 𝑌, 𝜆 ∈ (0,∞), and 𝐹 : 𝐾 → 𝑛(𝑌) satisfy (165). Write
Φ𝐺(𝑥) := Ψ(𝐺(𝑎(𝑥))) for 𝐺 : 𝐾 → 𝑛(𝑌) and 𝑥 ∈ 𝐾. Then
one of the following two statements is valid.

(a) If 𝑌 is complete and

Φ𝐹 (𝑥) ⊂ 𝐹 (𝑥) , 𝑥 ∈ 𝐾, (169)

then, for each 𝑥 ∈ 𝐾, the limit

lim
𝑛→∞

cl (Φ𝑛
𝐹 (𝑥)) =:

̂
𝑓 (𝑥) (170)

exists, ̂
𝑓 is single-valued and it is the unique fixed point

of Φ such that ̂
𝑓(𝑥) ⊂ 𝑐𝑙𝐹(𝑥) for 𝑥 ∈ 𝐾.

(b) If

𝐹 (𝑥) ⊂ Φ𝐹 (𝑥) , 𝑥 ∈ 𝐾, (171)

then F is a single-valued fixed point of Φ.

Analogously, a fixed point result can be deduced from the
main outcome in [104], concerning stability of a generaliza-
tion of the Volterra integral equation.

We end the paper with an example of stability result
for the Cauchy additive equation, proved in [26, Corollary
1] through a modified fixed point approach (somewhat
analogous to that in [105]); it corresponds to Theorem 29.

Theorem 53 ([26], Corollary 1). Let 𝑋 be a normed space,
𝑐
1
, 𝑐
2
, 𝑝, 𝑞, 𝑟 ∈ R

+
with

(𝑝 − 1) (𝑞 + 𝑟 − 1) > 0, (172)

a nonempty 𝑆 ⊂ 𝑋 such that 2𝑆 = 𝑆, and ℎ : 𝑆 → R satisfy
the inequality

− 𝑐
1‖

𝑥‖
𝑞󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑟
≤ ℎ (𝑥 + 𝑦) − ℎ (𝑥) − ℎ (𝑦)

≤ 𝑐
2
(‖𝑥‖

𝑝
+

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑝
) , 𝑥, 𝑦 ∈ 𝑆, 𝑥 + 𝑦 ∈ 𝑆.

(173)

Then there exists a unique function 𝐹 : 𝑆 → R such that

𝐹 (𝑥 + 𝑦) = 𝐹 (𝑥) + 𝐹 (𝑦) , 𝑥, 𝑦 ∈ 𝑆, 𝑥 + 𝑦 ∈ 𝑆,

−

𝑐
1‖

𝑥‖
𝑞+𝑟

󵄨
󵄨
󵄨
󵄨
1 − 2

𝑞+𝑟−1󵄨󵄨
󵄨
󵄨

≤ 𝐹 (𝑥) − ℎ (𝑥) ≤

𝑐
2‖

𝑥‖
𝑝

󵄨
󵄨
󵄨
󵄨
1 − 2

𝑝−1󵄨󵄨
󵄨
󵄨

, 𝑥 ∈ 𝑆.

(174)
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1998.

[4] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equa-
tions in Mathematical Analysis, Hadronic Press, Palm Harbor,
Fla, USA, 2001.

[5] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equa-
tions in Nonlinear Analysis, Springer, New York, NY, USA, 2011.

[6] R. P. Agarwal, B. Xu, and W. Zhang, “Stability of functional
equations in single variable,” Journal of Mathematical Analysis
and Applications, vol. 288, no. 2, pp. 852–869, 2003.
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[15] Z. Kaiser and Z. Páles, “An example of a stable functional
equation when the Hyers method does not work,” JIPAM.
Journal of Inequalities in Pure and Applied Mathematics, vol. 6,
no. 1, article 14, 11 pages, 2005.
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[27] A. Gilányi, Z. Kaiser, and Z. Páles, “Estimates to the stability of
functional equations,” Aequationes Mathematicae, vol. 73, no. 1-
2, pp. 125–143, 2007.

[28] G. H. Kim, “On the stability of functional equations with
square-symmetric operation,” Mathematical Inequalities and
Applications, vol. 4, no. 2, pp. 257–266, 2001.

[29] G. H. Kim, “Addendum to ‘On the stability of functional
equations on square-symmetric groupoid’,” Nonlinear Analysis:
Theory,Methods&Applications, vol. 62, no. 2, pp. 365–381, 2005.
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[92] A. Petruşel, G. Petruşel, and C. Urs, “Vector-valued metrics,
fixed points and coupled fixed points for nonlinear operators,”
Fixed Point Theory and Applications, vol. 2013, article 218, 2013.

[93] I. A. Rus, “Ulam stability of the operatorial equations,” in
Functional Equations in Mathematical Analysis, T. M. Rassias
and J. Brzdęk, Eds., pp. 287–305, Springer, New York, NY, USA,
2012.

[94] W. Sintunavarat, “Generalized Ulam-Hyers stability, well-
posedness, and limit shadowing of fixed point problems for 𝛼-
𝛽-contraction mapping in metric spaces,” The Scientific World
Journal, vol. 2014, Article ID 569174, 7 pages, 2014.

[95] C. Urs, “Ulam-Hyers stability for coupled fixed points of
contractive type operators,” Journal of Nonlinear Science and Its
Applications, vol. 6, no. 2, pp. 124–136, 2013.

[96] J. Brzdęk and S.-M. Jung, “A note on stability of an operator
linear equation of the second order,” Abstract and Applied
Analysis, vol. 2011, Article ID 602713, 15 pages, 2011.

[97] J. Brzdęk, D. Popa, and B. Xu, “A note on stability of the linear
functional equations of higher order and fixed points of an
operator,” Fixed Point Theory, vol. 13, no. 2, pp. 347–355, 2012.

[98] G. Isac and T. M. Rassias, “Stability of 𝜓-additive mappings:
applications to nonlinear analysis,” International Journal of
Mathematics and Mathematical Sciences, vol. 19, no. 2, pp. 219–
228, 1996.

[99] M. Piszczek, “On selections of set-valued inclusions in a
single variable with applications to several variables,” Results in
Mathematics, vol. 64, no. 1-2, pp. 1–12, 2013.

[100] M. Piszczek, “The properties of functional inclusions and
Hyers-Ulam stability,” Aequationes Mathematicae, vol. 85, no. 1-
2, pp. 111–118, 2013.

[101] M. Piszczek, “Inclusions in a single variable in ultrametric
spaces and Hyers-Ulam stability,” The Scientific World Journal,
vol. 2013, Article ID 129637, 5 pages, 2013.

[102] M. Piszczek, “On selections of set-valued maps satisfying some
inclusions in a single variable,”Mathematica Slovaca. In press.

[103] J. Brzdęk and M. Piszczek, “Selections of set-valued maps
satisfying some inclusions and the Hyers-Ulam stability,” in
Handbook of Functional Equations: Stability Theory, T. M.
Rassias, Ed., Springer, 2014.

[104] A. Bahyrycz, J. Brzdęk, and Z. Leśniak, “On approximate
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