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Abstract. 
We consider the approximate controllability of the degenerate system with the first-order term. The first-order term in the equation
 cannot be controlled by the diffusion term. The system is shown to be
approximately controllable by constructing a control by means of its conjugate problem.



1. Introduction
In this paper, we investigate the approximate controllability of the equationwhere  is a bounded domain of ,  is an open and nonempty subset of ,  and is positive in , , ,  is the control function, and  is the characteristic function of . We note that  may be allowed to vanish at some points on the later boundary , and thus (1) may be degenerate on the set , a portion of the lateral boundary.
In recent years, various controllability problems for linear and nonlinear differential equations have been considered. There are a great number of results on constrained controllability (see [1–3] and the references therein) and unconstrained controllability (see [4–6] and the references therein). Among these, some authors have investigated the null controllability of one-dimensional linear and semilinear equations with boundary degeneracy. In particular, the null controllability of the following degenerate equation is considered:where , . Equation (2) may be used to describe some physical models (see [7, 8] and the references therein). In [7–14], the degeneracy of (2) is divided into weak one and strong one according to the value of , and different boundary conditions are proposed for the two cases. More precise, the boundary value condition isin the weakly degenerate case with , while it isin the strongly degenerate case with . On the other hand, the following initial value condition is proposed for both cases:Then, system (2), (3) or (4), (5) is null controllable if  [7–9, 12, 14], while it is not if  [13]. However, the first-order term in (2) is controlled by the diffusion term. Further, the equationhas been investigated. Different from (2), the convection term in (6) cannot be controlled by the diffusion term. In [15], the authors studied the null controllability for system (6), (3), and (5) only in the case .
Since the above one-dimensional degenerate systems may be not null controllable, a natural question is whether the systems are approximately controllable. More generally, the multidimensional degenerate systems have been investigated. In [16], the authors considered the equation Similar to [16], the lateral boundary  is decomposed into three parts: the nondegenerate boundary , the weakly degenerate boundary , and the strongly degenerate boundary . The boundary value condition is prescribed on ; namely,Then the authors proved the approximate controllability of system (7), (8) and the initial value conditionwhere .
In the present paper, we assumewhich means that the strongly degenerate boundary  is empty. For example, if , , , then (10) implies  (the nondegenerate case) or  (the weakly degenerate case). In this case, we consider (1) subject to where . In the present paper, our method is similar to [5, 16–18]. The control is constructed via the conjugate problem.
The paper is organized as follows. In Section 2, we establish the well-posedness of system (1), (11), and (12) under condition (10). The approximate controllability of the system is proved in Section 3 subsequently.
2. The Well-Posedness of the Problem
In this section, we establish the well-posedness of problem (1), (11), and (12) in case (10). More generally, let us consider the problemwhere .
The weak solution of problem (13) is defined as follows.
Definition 1. A function  is called a weak solution of problem (13), if  and for any function  with  and , the following integral equality holds: Here, we use  to denote the closure of the set  with respect to the norm
As to the set , we give the following remark whose proof can be found in [19] Corollary  and Remark .
Lemma 2.  If , then in the trace sense.
Next, we establish the well-posedness for problem (13).
Theorem 3.  For any  and , problem (13) admits a unique weak solution  satisfying where  is a constant depending only on , , and . Moreover, if  and , then  and .
Proof. First, we prove the existence. For any , we take  such that Consider the problemAccording to the classical theory on parabolic equations, problem (19)–(21) admits a unique weak solution .
Multiply (19) by  and then integrate over  to get Using the Hölder inequality and the Grönwall inequality, we can getwhere  is a constant depending only on , , and . From estimate (23), there exist a subsequence of , denoted by itself, and a function , such thatSince  is the weak solution of problem (19)–(21), the following integral equality holds for any function  with  and :Note that  due to (10). Let  in (25) to get which means that  is the weak solution of problem (13).
Moreover, if  and , the maximum principle yieldswhere  is independent of . Denote . Then  satisfiesFrom (23), we havewhere  is independent of . It follows from (27) and (29) that there exists a subsequence of , denoted by itself, such that Thus,  and .
Finally, we prove the uniqueness by the Holmgren method. Let  and  be two weak solutions of problem (13) and denote Then  and for any function  with  and , the following integral equality holds:For any , the above existence result shows that the problem admits a weak solution  with . Taking  in (32), we get This leads to owing to the arbitrariness of . Therefore, namely, the weak solution of problem (13) is unique. The proof is complete.
3. Approximate Controllability of the Control System
In this section, we investigate the approximate controllability of control system (1), (11), and (12).
First, we consider control system (1), (11) with null initial data; namely,
The study on the approximate controllability of the control system is related to its conjugate problemDefine a mapping where  is the weak solution of conjugate problem (38). Then the mapping  satisfies the following:(a) is a continuous linear operator from  to ;(b)if , then it holds 
Property (a) follows from Theorem 3, and property (b) can be deduced from the unique continuation of the nondegenerate parabolic equation [20, 21].
Fix  and . For , we introduce a functional For this functional, we have the following proposition.
Proposition 4.   is a strictly convex and continuous functional defined on  and satisfies Furthermore, the functional  achieves its minimum at a unique point  in  and 
Proof. One can easily prove that  is strictly convex by the linearity of  and the convexity of  norm. Moreover, the continuity of  can be derived from Theorem 3 and the continuity of .
Now we prove (41) by contradiction. Otherwise, there exists a sequence  satisfyingFor , we denote  There exist a subsequence of , denoted by , and , such that  and Then, it follows from Theorem 3 that where  and  are the weak solution of conjugate problem (38) with  and , respectively. Additionally, (43) yields Hence This and (b) lead to  in  and thus  in . Therefore, which contradicts (43) and completes the proof of (41).
From (41), we get that This, together with the strict convexity and the continuity of , implies that the functional  achieves its minimum at a unique point in .
Finally, we prove (42). On the one hand, if , it follows from the Hölder inequality that and thus . On the other hand, if , then that is, Letting  yields . The proof is complete.
For the functional , we have the following lemma (Proposition  [16]).
Lemma 5.  For any  with , Here we say , if  when , while  when .
Now we can get the approximate controllability of control system (1), (11), and (12) with null initial data by Proposition 4 and Lemma 5.
Theorem 6.  Problem (1), (11), and (37) is approximate controllability. That is to say, for any given number  and function , there exists a control , such that 
Proof. Since we can take  to get (54) when , we only consider the case .
From Proposition 4, there exists  with  realizing the minimum of . Note that  is subdifferentiable at . Therefore, . By Lemma 5, for any , there exists  such thatwhere  and  are the weak solutions of conjugate problem (38) with  and , respectively. Here,  satisfying From the definition of the weak solution  to problem (1), (11), and (37) with , we haveOn the other hand, since  is the weak solution to problem (38) with , we obtainCombining (57), (58), and (55) yields Let  to get which implies (54) owing to the arbitrariness of . The proof is complete.
Finally, we prove the approximate controllability of control system (1), (11), and (12).
Theorem 7.  Control system (1), (11), and (12) is approximately controllable. That is to say, for any given initial datum , the desired datum , and the admissible error value , there exists a control  such that the weak solution  of problem (1), (11), and (12) satisfies 
Proof. It follows from Theorem 6 that there exists a control  such that the weak solution  to the problem satisfieswhere  is the weak solution to the problemThen we can get (61) from (63) and the uniqueness result in Theorem 3. The proof is complete.
From the proof of Theorems 6 and 7, it is worthy to note the following.
Remark 8. The controls obtained in Theorems 6 and 7 are both quasi bang-bang controls.
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