Research Article

Weak Precompactness in the Space of Vector-Valued Measures of Bounded Variation

Ioana Ghenciu

Mathematics Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA

Correspondence should be addressed to Ioana Ghenciu; ioana.ghenciu@uwrf.edu

Received 16 October 2014; Revised 15 December 2014; Accepted 18 December 2014

Copyright © 2015 Ioana Ghenciu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper we use results of Talagrand [5], Ulger [1] and Diestele et al. [2] to characterize the weakly precompact subsets of $\mathcal{M}(\Omega, X)$.

1. Introduction

Let X be a Banach space, (Ω, Σ) a measure space, and $\mathcal{M}(\Omega, X)$ the space of all X-valued countably additive measures on (Ω, Σ) of bounded variation (with the total variation norm). For $m \in \mathcal{M}(\Omega, X)$ we denote by $|m|$ its variation. For a probability measure on (Ω, Σ, μ), we denote $W(\lambda, X) = \{m \in M(\Omega, X) : |m| \leq \lambda\}$.

Ulger [1] and Diestele et al. [2] gave a characterization of weakly compact subsets of $L^1(\mu, X)$, the Banach space of all X-valued Bochner integrable functions on a probability space (Ω, Σ, μ). In [3] we gave a characterization of weakly precompact subsets of $L^1(\mu, X)$. Randrianantoanina and Saab [4] gave a characterization of relatively weakly compact subsets of $M(\Omega, X)$.

In this paper we use results of Talagrand [5], Ulger [6], and techniques of Randrianantoanina and Saab [4] to characterize weakly precompact subsets of $\mathcal{M}(\Omega, X)$. The characterization is obtained in two steps. In the first step we characterize the weakly precompact subsets of $W(\lambda, X)$. We show that a subset A of $W(\lambda, X)$ is weakly precompact if and only if for any sequence $(m_n)_{n \geq 1}$ in A and for any lifting ρ of $L^\infty(\lambda)$ there exists a sequence $(m'_n)_{n \geq 1}$ in $\text{co}(\{m_i : i \geq 1\})$ for each n such that, for a.e. ω, the sequence $(\rho(m'_n)(\omega))$ is weakly Cauchy. In the second step we show that a subset A of $\mathcal{M}(\Omega, X)$ is weakly precompact if and only if there is a probability measure λ on (Ω, Σ) such that, for any sequence (m_n) in A, there is a sequence (m'_n) with $m'_n \in \text{co}(\{m_i : i \geq n\})$ for each n such that, for any $e > 0$, there is a positive integer N and a weakly precompact subset H_e of $\text{NW}(\lambda, X)$ so that $\{m_n : n \geq 1\} \subseteq H_e + eB(0)$, where $B(0)$ denotes the unit ball of $\mathcal{M}(\Omega, X)$.

This paper also contains several corollaries of these results. We show that if $\epsilon_i \xrightarrow{\ast} X^\ast$, then a subset A of $\mathcal{M}(\Omega, X^\ast)$ is weakly precompact if and only if A is bounded and $V(A) = \{m : m \in A\}$ is uniformly countably additive.

2. Definitions and Notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball of X will be denoted by B_X. The unit basis of X will be denoted by (e_n^X), and a continuous linear transformation $T : X \to Y$ will be referred to as an operator. The set of all compact operators from X to Y will be denoted by $K(X, Y)$. The set of all $w^\ast - w$ continuous compact operators from X^\ast to Y will be denoted by $K_{w^\ast}(X^\ast, Y)$.

A bounded subset S of X is said to be weakly precompact provided that every sequence from S has a weakly Cauchy subsequence [5]. For a subset A of X, let $\text{co}(A)$ denote the convex hull of A. A series $\sum x_n$ in X is said to be weakly unconditionally convergent (wuc) if for every $x^\ast \in X^\ast$ the series $\sum \langle x^\ast(x_n) \rangle$ is convergent. An operator $T : X \to Y$ is weakly precompact if $T(B_X)$ is weakly precompact and unconditionally converging if it maps weakly unconditionally convergent series to unconditionally convergent ones.
A bounded subset A of X (resp., A of X^*) is called a V^*-subset of X (resp., a V-subset of X^*) provided that
\[
\lim_n \left(\sup \left(\left| x_n(x) \right| : x \in A \right) \right) = 0
\]
for each wuc series $\sum x_n$ in X^* (resp., wuc series $\sum x_n$ in X).

In his fundamental paper [7], Pelczynski introduced property (V) and property (V*). The Banach space X has property (V) (resp., (V*)) if every V-subset of X^* (resp., V^*-subset of X) is relatively weakly compact. The following results were also established in [7]: $C(K)$ spaces have property (V); L^1-spaces have property (V*); the Banach space X has property (V) if and only if every unconditionally converging operator T from X to any Banach space Y is weakly compact; if X has property (V), then X^* has property (V*); every weakly Cauchy sequence in X^* (resp., in X) is a V-set (resp., a V^*-set); consequently, every bounded weakly precompact set in X^* (resp., in X) is a V-set (resp., a V^*-set). A Banach space X has property weak (V) (wuc) if any V-subset of X^* is weakly precompact [8]. A Banach space X has property weak (V*) (wuc*) if every V^*-subset of X is weakly precompact [9].

The Banach-Mazur distance $d(E, F)$ between two isomorphic Banach spaces E and F is defined by $\inf\{\|T\|\|T^{-1}\| : T \in \mathcal{L}(E, F)\}$, where the infimum is taken over all isomorphisms T from E onto F. A Banach space E is called an \mathcal{L}_∞-space (resp., \mathcal{L}_1-space) [10] if there is a $\lambda \geq 1$ so that every finite dimensional subspace of E is contained in another subspace N with $d(N, \mathcal{L}_\infty) \leq \lambda$ (resp., $d(N, \mathcal{L}_1) \leq \lambda$) for some integer n. Complemented subspaces of $C(K)$ spaces (resp., $L_1(\mu)$ spaces) are \mathcal{L}_∞-spaces (resp., \mathcal{L}_1-spaces) (see [10, Proposition 1.26]). The dual of an \mathcal{L}_1-space (resp., \mathcal{L}_∞-space) is an \mathcal{L}_∞-space (resp., \mathcal{L}_1-space) (see [10, Proposition 1.27]).

Suppose Ω is a compact Hausdorff space, X and Y are Banach spaces, $C(\Omega, X)$ is the Banach space of all continuous X-valued functions (with the supremum norm), and Σ is the σ-algebra of Borel subsets of Ω. It is known from [11] that $C(\Omega, X)^* = M(\Omega, X^*)$.

If $m : \Sigma \to L(X, Y^*)$ is a finitely additive vector measure and $y^* \in Y^*$, then $m_\sigma(A) = y^*m(A)(x)$, $A \in \Sigma$, $x \in A$. For each $y^* \in Y^*$, $m_{y^*} : \Sigma \to X^*$ is a finitely additive vector measure.

Every continuous linear function $T : C(\Omega, X) \to Y$ may be represented by a vector measure $m : \Sigma \to L(X, Y^*)$ of finite semivariation (see [11, 12], and [13, page 182]) such that
\[
T(f) = \int_\Omega f dm, \quad f \in C(\Omega, X), \quad \|T\| = \bar{m}(\Omega),
\]
and $T^*(y^*) = m_{y^*}$, $y^* \in Y^*$, where \bar{m} denotes the semivariation of m. We denote this correspondence $m \leftrightarrow T$. We note that, for $f \in C(\Omega, X)$, $\int_\Omega f dm \in Y$ even if m is not $L(X, Y)$-valued. A representing measure m is called strongly bounded if $(\bar{m}(A_i)) \to 0$ for every decreasing sequence $(A_i) \to 0$ in Σ, and an operator $m \leftrightarrow T : C(\Omega, X) \to Y$ is called strongly bounded if m is strongly bounded [11].

By Theorem 4.4 of [11], a strongly bounded representing measure takes its values in $L(X, Y)$. It is well known that if T is unconditionally converging, then m is strongly bounded [14].

Let λ be a probability measure on Σ, $m \in M(\Omega, X)$ with $|m| \leq \lambda$, and let ρ be a lifting of $L^\infty(\lambda)$ (see [12, 15]). For each $x^* \in X^*$, the scalar measure $x^* \circ m$ has a density $(d/d\lambda)(x^* \circ m) \in L^1(\lambda)$ (see [4, 5]). We define $\rho(m)(\omega)$ to be the element of X^* defined by
\[
\langle \rho(m)(\omega), x^* \rangle = \rho\left(\frac{d}{d\lambda}(x^* \circ m)\right)(\omega), \quad \omega \in \Omega, \quad x^* \in X^*.
\]

It is well known (see [12, sect. 13, Theorem 5, page 269]) that,

(i) for every $x^* \in X^*$, the map $\omega \to \langle \rho(m)(\omega), x^* \rangle$ is λ-integrable;

(ii) for every $A \in \Sigma$ and all $x^* \in X^*$,
\[
\langle m(A), x^* \rangle = \int_A \langle \rho(m)(\omega), x^* \rangle d\lambda;
\]

(iii) the map $\omega \to \|\rho(m)(\omega)\|$ is λ-integrable and for every $A \in \Sigma$,
\[
|m|_A = \int_A \|\rho(m)(\omega)\| d\lambda.
\]

If $X = E^*$ is a dual space, then we define $\rho(m)(\omega)$ to be the element of $X = E^*$ defined by
\[
\langle \rho(m)(\omega), x \rangle = \rho\left(\frac{d}{d\lambda}(x \circ m)\right)(\omega), \quad \omega \in \Omega, \quad x \in E.
\]

3. Weak Precompactness in $M(\Omega, X)$

Let X be a Banach space, (Ω, Σ) a measure space, and $M(\Omega, X)$ the space of all X-valued countably additive measures on (Ω, Σ) of bounded variation (with the total variation norm). Following [4], for λ, a probability measure on (Ω, Σ), we denote
\[
W(\lambda, X) = \{m \in M(\Omega, X) : |m| \leq \lambda\}.
\]

Let ρ be a lifting of $L^\infty(\lambda)$ [12, 15]. For a subset A of $W(\lambda, X)$ and $\omega \in \Omega$, let $A(\omega) = \{\rho(m)(\omega) : m \in A\}$.

The following results will be useful in our study.

Lemma 1 (see [1, 6]). Let A be a bounded subset of X. Then A is weakly precompact (resp., relatively weakly compact) if and only if for each sequence $(x_n)_{n \geq 0}$ in A there is a sequence (y_n) so that $y_n \in \text{co}\{x_i : i \geq n\}$ for each n and (y_n) is weakly Cauchy (resp., weakly convergent).

Lemma 2 (see [5, Theorem 14]). Let $(m_n)_{n \geq 0}$ be a sequence in $M(\Omega, X)$. Suppose there is a probability measure λ with $|m_n| \leq \lambda$ for each n. Let ρ be a lifting of $L^\infty(\lambda)$. Then there is a sequence
(\(m_n^\star\)) with \(m_n^\star \in \text{co}(m_i : i \geq n)\) for each \(n\) and two measurable sets \(C\) and \(L\) such that \(\lambda(C \cup L) = 1\) and,

(a) for \(\omega \in C\), \((\rho(m_n^\star)(\omega))\) is weakly Cauchy;

(b) for \(\omega \in L\), there exists \(k \in \mathbb{N}\) such that \((\rho(m_n^\star)(\omega))_{n \geq k}\) is equivalent to \((e_n^\star)\).

The most general result of this paper is the following theorem.

Theorem 3. Let \(A\) be a subset of \(W(\lambda, X)\). Then \(A\) is weakly precompact if and only if for any sequence \((m_n)\) in \(A\) and for any some lifting \(\rho\) of \(L^\infty(\lambda)\) there exists a sequence \((m_n^\star)\) with \(m_n^\star \in \text{co}(m_i : i \geq n)\) for each \(n\) and two measurable sets \(C\) and \(L\) such that \(\lambda(C \cup L) = 1\) and,

(a) for \(\omega \in C\), \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\);

(b) for \(\omega \in L\), there exists \(k \in \mathbb{N}\) such that \((\rho(m_n^\star)(\omega))_{n \geq k}\) is equivalent to \((e_n^\star)\).

If \(\lambda(L) > 0\), then, by [5, Theorem 15], there exists \(k \in \mathbb{N}\) such that \((m_n^\star)_{n \geq k}\) is equivalent to \((e_n^\star)\). Since \((m_n^\star)\) lies in the set \(\text{co}(A)\), which is weakly precompact (see [16, page 377], [17, page 27]), one obtains a contradiction. Hence \(\lambda(L) = 0\), and for a.e. \(\omega\), \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\).

Conversely, let \((m_n)\) be a sequence in \(A\), and let \(\rho\) be a lifting of \(L^\infty(\lambda)\). Let \((m_n^\star)\) be a sequence with \(m_n^\star \in \text{co}(m_i : i \geq n)\) for each \(n\) such that, for a.e. \(\omega\), the sequence \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\). By [5, Theorem 15], \((m_n^\star)\) is weakly Cauchy. By Lemma 1, \(A\) is weakly precompact.

Corollary 6. Suppose that \(A\) is a subset of \(W(\lambda, X)\). Then \(A\) is weakly precompact if and only if for any sequence \((m_n)\) in \(A\) and for any some lifting \(\rho\) of \(L^\infty(\lambda)\) there exists a sequence \((m_n^\star)\) with \(m_n^\star \in \text{co}(m_i : i \geq n)\) for each \(n\) and two measurable sets \(C\) and \(L\) such that \((\rho(m_n^\star)(\omega))_{n \geq k}\) is equivalent to \((e_n^\star)\).

Proof. The proof is similar to that of Theorem 3.

Corollary 5. Let \(A\) be a subset of \(W(\lambda, X)\).

(i) Suppose that, for a.e. \(\omega\), the set \(A(\omega)\) is weakly precompact. Then \(A\) is weakly precompact.

(ii) Suppose that, for a.e. \(\omega\), the set \(A(\omega)\) is relatively weakly compact. Then \(A\) is relatively weakly compact.

Proof. The proof is similar to that of Theorem 3.

Theorem 4. Let \(A\) be a subset of \(W(\lambda, X^*)\). Then \(A\) is weakly precompact if and only if for any sequence \((m_n)\) in \(A\) and for any some lifting \(\rho\) of \(L^\infty(\lambda)\) there exists a sequence \((m_n^\star)\) with \(m_n^\star \in \text{co}(m_i : i \geq n)\) for each \(n\) such that, for a.e. \(\omega\), the sequence \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\).

Proof. The proof is similar to that of Theorem 3.

Corollary 7. Let \(A\) be a subset of \(W(\lambda, X^*)\). If the set \(A(\omega)\) is weakly precompact for a.e. \(\omega\), then \(A\) is weakly precompact.

Proof. The proof is similar to that of Corollary 5.

Corollary 8. Suppose that \(A\) is a subset of \(W(\lambda, X^*)\). Then \(A\) is weakly precompact if and only if for any sequence \((m_n)\) in \(A\) and two measurable sets \(C\) and \(L\) such that \(\lambda(C \cup L) = 1\) and

(a) for \(\omega \in C\), \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\);

(b) for \(\omega \in L\), there exists \(k \in \mathbb{N}\) such that \((\rho(m_n^\star)(\omega))_{n \geq k}\) is equivalent to \((e_n^\star)\).

If \(\lambda(L) > 0\), then, by [5, Theorem 15], there exists \(k \in \mathbb{N}\) such that \((m_n^\star)_{n \geq k}\) is equivalent to \((e_n^\star)\). Since \((m_n^\star)\) lies in the set \(\text{co}(A)\), which is weakly precompact (see [16, page 377], [17, page 27]), one obtains a contradiction. Hence \(\lambda(L) = 0\), and for a.e. \(\omega\), \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\).

Conversely, let \((m_n)\) be a sequence in \(A\), and let \(\rho\) be a lifting of \(L^\infty(\lambda)\). Let \((m_n^\star)\) be a sequence with \(m_n^\star \in \text{co}(m_i : i \geq n)\) for each \(n\) such that, for a.e. \(\omega\), the sequence \((\rho(m_n^\star)(\omega))\) is weakly Cauchy in \(X^{**}\). By [5, Theorem 15], \((m_n^\star)\) is weakly Cauchy. By Lemma 1, \(A\) is weakly precompact.

Lemma 9. Suppose that for a.e. \(\omega\), the set \(A(\omega)\) is weakly precompact. Then \(A\) is weakly precompact.

Proof. The proof is similar to that of Theorem 3.

Lemma 10. Let \(A\) be a subset of \(W(\lambda, X^*)\). Then \(A\) is a \(V^*\)-set if and only if for any \(\epsilon > 0\) there exists a weakly precompact \((\rho(m_n^\star)(\omega))\) such that \(A \subseteq A_\epsilon + eB_X^\star\), then \(A\) is a \(V^*\)-set.

Proof. The proof is similar to that of Theorem 3.

Lemma 11. Let \(A\) be a subset of \(X^*\). If for any \(\epsilon > 0\) there exists a weakly precompact \((\rho(m_n^\star)(\omega))\) such that \(A \subseteq A_\epsilon + eB_X^\star\), then \(A\) is a \(V^*\)-set.

Proof. The proof is similar to that of Theorem 3.
Proof. (i) Suppose K is a V^*-set in $M(Ω, X)$. Since each member of K is a countably additive measure on the $σ$-algebra $Σ$, the set $V(K) = \{ |m| : m ∈ K \}$ is uniformly countably additive if and only if $\lim_{n} |m|(A_n) = 0$ uniformly for $m ∈ K$ whenever (A_n) is a pairwise disjoint sequence in $Σ$.

Let (m_n) be a sequence in K. Without loss of generality suppose that $|m_n| ≤ 1$ for all n. Let (A_n) be a pairwise disjoint sequence in $Σ$ and $ε > 0$ such that $|m_n|(A_n) > ε$ for all n. For each $n ∈ N$, let $(A_n)^k_{i=1}$ be a partition of A_n and let $(x_n^k)_{i=1}^{k}$ be points in B_{X^*} such that

$$\sum_{i=1}^{k} \langle x_n^k, m_n(A_n) \rangle > ε. \tag{8}$$

Define the X^*-valued simple functions s_n by $s_n = \sum_{i=1}^{k} x_i^{k} 1_{A_n^i}$. Note that $\int s_n dm_n > ε$ for all $n ∈ N$. Define $T : M(Ω, X) → L_1$ by

$$T(m) = \sum_{j} \left(\int s_n dm \right) e_n. \tag{9}$$

Note that T is a well-defined operator, $\sum T^*(e_n)$ is wuc, and $\langle s_n, T^*(e_n) \rangle = \int s_n dm > ε$ for each n. Then $\{m_n : n ≥ 1\}$ is not a V^*-set. This contradiction concludes the proof.

(ii) If K is a weakly precompact set in $M(Ω, X)$, then K is a V^*-set in $M(Ω, X)$ [7]. Apply (i).

Let $B(0)$ denote the unit ball of $M(Ω, X)$.

Theorem 13. (i) Suppose A is a bounded subset of $M(Ω, X)$ such that $V(A) = \{ |m| : m ∈ A \}$ is uniformly countably additive in $M(Ω)$. Then there is a probability measure $λ$ on $(Ω, Σ)$ such that, for any sequence (m_n) in A, there is a sequence (m'_n) with $m'_n ∈ \text{co}\{m_i : i ≥ n\}$ for each n such that, for any $ε > 0$, there is a positive integer N and a subset H_N of $NW(λ, X)$ so that $|m'_n| : n ≥ 1 \subseteq H_N + εB(0)$.

(ii) Suppose A is a bounded subset of $M(Ω, X)$. Then A is weakly precompact (resp., a V^*-set) if and only if there is a probability measure $λ$ on $(Ω, Σ)$ such that, for any sequence (m_n) in A, there is a sequence (m'_n) with $m'_n ∈ \text{co}\{m_i : i ≥ n\}$ for each n such that, for any $ε > 0$, there is a positive integer N and a weakly precompact (resp., a V^*-set) subset H_N of $NW(λ, X)$ so that $|m'_n| : n ≥ 1 \subseteq H_N + εB(0)$.

Proof. (i) Let A be a bounded subset of $M(Ω, X)$ such that $V(A) = \{ |m| : m ∈ A \}$ is uniformly countably additive in $M(Ω)$. Then $V(A)$ is relatively weakly compact in $M(Ω)$ [18]. Hence there is a probability measure $λ$ on $(Ω, Σ)$ so that $V(A)$ is uniformly $λ$-continuous [18]; that is, for any $ε > 0$, there is $δ > 0$ such that if $B ∈ Σ, λ(B) < δ$, then

$$|m|(B) ≤ ε, \tag{10}$$

for all $m ∈ A$.

Let (m_n) be a sequence in A. For each n, let f_n be the $λ$-density of m_n. Since $|m_n| : n ≥ 1$ is relatively weakly compact in $M(Ω)$, $|f_n| : n ≥ 1$ is relatively weakly compact in $L^1(λ)$. Choose a subsequence (f_{n_j}) of (f_j) so that (f_{n_j}) converges weakly to some function $f ∈ L^1(λ)$. By Mazur’s theorem, there is a sequence (g_n) with $g_n ∈ \text{co}\{f_j : i ≥ n\}$ for each n so that $\|g_n - f\| → 0$. By taking a subsequence, if necessary, $\|g_n(ω) - f(ω)\| → 0$, $λ$-a.e. Therefore $sup g_n(ω) < ∞$, $λ$-a.e., and thus $Ω = \cup_{N} \{ ω : sup g_n(ω) < N \} ∪ Z$, where Z is a set of measure zero.

Let $ε > 0$. Choose $δ > 0$ from the definition of uniform $λ$-continuity. Choose a positive integer N so that

$$λ \left(\left\{ ω : sup g_j(ω) > N \right\} \right) < δ, \tag{11}$$

and let $E = \{ ω : sup g_j(ω) ≤ N \}$.

For each n, $g_n(ω) ∈ \text{co}\{f_j : i ≥ n\}$. Suppose $g_n = \sum_{k≥n} a_k^nf_{j_k}$, with $a_k^n ≥ 0$ and $\sum_{k≥n} a_k^n = 1$, where the sums are finite. Let $m_n^i = \sum_{k≥n} a_k^nm_{j_k}$. Note that $m_n^i ∈ \text{co}\{m_i : i ≥ n\}$ for each n. Define

$$m_n^iX_E : Σ → X$$

by $m_n^iX_E(B) = m_n^i(E ∩ B)$, $B ∈ Σ$.

and let $H_n = \{ m_n^iX_E : n ≥ 1 \}$.

For each n,

$$m_n^i = m_n^iX_E + m_n^iX_{¬E}. \tag{13}$$

For $B ∈ Σ$,

$$\left| m_n^iX_E(B) \right| ≤ \left| m_n^i(E ∩ B) \right| ≤ \int_{E∩B} g_n(ω) dλ ≤ Nλ(B). \tag{14}$$

Then $H_n ⊆ NW(λ, X)$. For each n,

$$\left| m_n^iX_E \right| ≤ \left| m_n^i(E^c) \right| ≤ \sum_{k≥n} a_k^n \left| m_{j_k} \right| (E^c) ≤ ε, \tag{15}$$

and thus $m_n^iX_{¬E} ∈ εB(0)$ for each n. Therefore $\{ m_n^i : n ≥ 1 \} ⊆ H_n + εB(0)$.

(ii) Suppose A is a weakly precompact subset (resp., a V^*-subset) of $M(Ω, X)$. By Lemma 12, $V(A) = \{ |m| : m ∈ A \}$ is uniformly countably additive in $M(Ω)$. By (i), there is a probability measure $λ$ on $(Ω, Σ)$ such that, for any sequence (m_n) in A, there is a sequence (m'_n) with $m'_n ∈ \text{co}\{m_i : i ≥ n\}$ for each n such that, for any $ε > 0$, there is a positive integer N and a weakly precompact (resp., a V^*-set) subset H_N of $NW(λ, X)$ so that $\{ m'_n : n ≥ 1 \} ⊆ H_N + εB(0)$.

Conversely, let A be a bounded subset of $M(Ω, X)$. Choose $λ$ a probability measure as in the statement. Let (m_n) be a sequence in A. Let (m_n') be a sequence with $m'_n ∈ \text{co}\{m_i : i ≥ n\}$ for each n such that, for any $ε > 0$, there is a positive integer N and a weakly precompact subset (resp., a V^*-subset) H_N of $NW(λ, X)$ so that $\{ m'_n : n ≥ 1 \} ⊆ H_N + εB(0)$.

By Lemma 9, $\{ m'_n : n ≥ 1 \}$ is weakly precompact (resp., a V^*-set). By Lemma 1 (resp., 10), A is weakly precompact (resp., a V^*-subset).

Let B denote the unit ball of $M(Ω, X^*)$.

Theorem 14. (i) Suppose A is a bounded subset of $M(\Omega, X^*)$ such that $V(A) = \{ |m| : m \in A \}$ is uniformly countably additive in $M(\Omega)$. Then there is a probability measure λ on (Ω, Σ) such that, for any sequence $(m_n)_{n \geq 1}$ in A, there is a sequence (m'_n) with $m'_n \in \text{co}|m_i| : i \geq n \}$ for each n such that, for any $\epsilon > 0$, there is a positive integer N and a subset H_ϵ of $NW(\lambda, X^*)$ so that $|m'_n| : n \geq 1 \subseteq H_\epsilon + \epsilon B$.

(ii) Suppose A is a bounded subset of $M(\Omega, X^*)$. Then A is weakly precompact (resp., a V-subset) if and only if there is a probability measure λ on (Ω, Σ) such that, for any sequence $(m_n)_{n \geq 1}$ in A, there is a sequence (m'_n) with $m'_n \in \text{co}|m_i| : i \geq n \}$ for each n such that, for any $\epsilon > 0$, there is a positive integer N and a weakly precompact subset (resp., a V-subset) H_ϵ of $NW(\lambda, X^*)$ so that $|m'_n| : n \geq 1 \subseteq H_\epsilon + \epsilon B$.

Corollary 15. (i) Assume $\ell_1 \hookrightarrow X^{**}$. Then a subset A of $M(\Omega, X)$ is weakly precompact if and only if A is bounded and $V(A)$ is uniformly countably additive.

(ii) Assume X is reflexive. Then a subset A of $M(\Omega, X)$ is relatively weakly compact if and only if A is bounded and $V(A)$ is uniformly countably additive.

Proof. If A is a weakly precompact subset of $M(\Omega, X)$, then $V(A)$ is uniformly countably additive, by Lemma 12.

Now suppose A is a bounded subset of $M(\Omega, X)$, then $V(A)$ is uniformly countably additive. By Theorem 13(i), there is a probability measure λ on (Ω, Σ) such that, for any sequence $(m_n)_{n \geq 1}$ in A, there is a sequence (m'_n) with $m'_n \in \text{co}|m_i| : i \geq n \}$ for each n such that, for any $\epsilon > 0$, there is a positive integer N and a subset H_ϵ of $NW(\lambda, X^*)$ so that $|m'_n| : n \geq 1 \subseteq H_\epsilon + \epsilon B$.

(i) By Corollary 6, H_ϵ is weakly precompact, since $\ell_1 \hookrightarrow X^{**}$.

(ii) By Corollary 6, H_ϵ is relatively weakly compact, since X is reflexive. By Lemma 9, $|m'_n| : n \geq 1 \}$ is relatively weakly compact. By Lemma 1, A is relatively weakly compact.

Corollary 16. (i) If $\ell_1 \hookrightarrow X^{**}$, then $M(\Omega, X)$ has property $(w\text{V}^*)$.

(ii) If X is reflexive, then $M(\Omega, X)$ has property (V^*).

Proof. Let A be a V^*-subset of $M(\Omega, X)$. By Lemma 12, $V(A)$ is uniformly countably additive.

(i) By Corollary 15(i), A is weakly precompact.

(ii) By Corollary 15(ii), A is relatively weakly compact.

Corollary 17. Suppose $\ell_1 \hookrightarrow X^*$. Then a subset A of $M(\Omega, X^*)$ is weakly precompact if and only if A is bounded and $V(A)$ is uniformly countably additive.

Proof. The proof is similar to that of Corollary 15, using Theorem 14 and Corollary 8.

Corollary 18 (see [21, Theorem 3.12, [8]). Suppose Ω is a compact Hausdorff space and $\ell_1 \hookrightarrow X^*$ and $m \mapsto T : C(\Omega, Y) \to Y$ is a strongly bounded operator, then $T^* : Y^* \to C(\Omega, X^*)$ is weakly precompact.

Proof. Suppose that $\ell_1 \hookrightarrow X^*$ and $m \mapsto T : C(\Omega, Y) \to Y$ is a strongly bounded operator. We claim that T^* is weakly precompact. Recall that T^* takes values in $M(\Omega, X^*)$ and that $T^*(y^*) = m_{y^*} \in \Sigma \to X^*$. Let (y^*_n) be a sequence in B_{Y^*} and let $m_n = m_{y^*_n} = T^*(y^*_n)$ for each $n \in \mathbb{N}$. Without loss of generality suppose that $|m_n| \leq 1$ for each n. Since m is strongly bounded, $|m_n| : n \geq 1 \}$ is uniformly countably additive (see [11, Lemma 3.1]). By Corollary 17, $|m_n| : n \geq 1 \}$ is weakly precompact. Hence T^* is weakly precompact.

Corollary 19. If Ω is a compact Hausdorff space and $\ell_1 \hookrightarrow X^*$, then $C(\Omega, X)$ has property $(w\text{V})$.

Proof. Let $m \mapsto T : C(\Omega, X) \to Y$ be an unconditionally converging operator. Then T is strongly bounded [14]. By Corollary 18, T^* is weakly precompact. Then $C(\Omega, X)$ has property $(w\text{V})$ [8].

Corollary 20. Suppose $\ell_1 \hookrightarrow X$. Then the following are equivalent:

(i) c_0 is not a quotient of X;

(ii) for any compact Hausdorff space Ω and any Banach space Y, an operator $m \mapsto T : C(\Omega, X) \to Y$ has weakly precompact adjoint whenever m is strongly bounded and $m(A) : Y^* \to X^*$ is weakly precompact for every $A \in \Sigma$.

Proof. (i) \Rightarrow (ii) Suppose $L : X \to c_0$ is a surjection. By [21, Theorem 2.4], there is a compact space Δ and a continuous linear surjection $m \to T : C(\Delta, X) \to c_0$ so that m is strongly bounded and $m(A) : X \to c_0$ is compact for all $A \in \Sigma$. Since T is a surjection onto c_0, T^* is an isomorphism on ℓ_1, and thus T^* is not weakly precompact.

(ii) \Rightarrow (i) Suppose $L : X \to c_0$ is a surjection. By [21, Proposition 3.8]. Apply Corollary 18.

Corollary 21. (i) [6, II] If X is reflexive, then every strongly bounded operator $T : C(\Omega, X) \to Y$ is weakly compact.

(ii) [7] If X is reflexive, then $C(\Omega, X)$ has property (V).

Proof. (i) Let $m \mapsto T : C(\Omega, X) \to Y$ be a strongly bounded operator. Let (y^*_n) be a sequence in B_{Y^*} and $m_n = T^*(y^*_n)$, $n \in \mathbb{N}$. By Corollary 18, $|m_n| : n \geq 1 \}$ is weakly precompact in $M(\Omega, X^*)$. Since X^* is weakly sequentially complete, $M(\Omega, X^*)$ is weakly sequentially complete [5]. Hence $|m_n| : n \geq 1 \}$ is relatively weakly compact. Then T^* is weakly compact. Hence T is weakly compact.

(ii) Every unconditionally converging operator on $C(\Omega, X)$ is strongly bounded [14] and thus weakly compact (by (i)). Then $C(\Omega, X)$ has property (V) [7].
A Banach space is injective if it is complemented in any superspace. We recall that property (wV) (resp., property (V)) is stable under quotients.

Corollary 22. (i) Suppose that X is injective and $\ell_1 \rightarrow Y^*$. Then $K_w(X^*, Y)$ has property (wV).

(ii) Suppose that X is injective and Y is reflexive. Then $K_w(X^*, Y)$ has property (V).

Proof. The space $K_w(X^*, Y)$ is isomorphic to $K_w(Y^*, X)$. Since X is injective, $K_w(Y^*, X)$ is complemented in $K_w(Y^*, C(B_{X^*}))$. Now, $K_w(Y^*, C(B_{X^*}))$ is isomorphic to $C(B_{X^*}, Y)$ [22].

(i) By Corollary 19, $C(B_{X^*}, Y)$ has property (wV). Hence $K_w(Y^*, X)$ has property (wV).

(ii) By Corollary 21, $C(B_{X^*}, Y)$ has property (V). Hence $K_w(Y^*, X)$ has property (V). \Box

Corollary 23. (i) Suppose that Z is an L_∞-space and $\ell_1 \rightarrow Y^*$. Then $K(Z^*, Y)$ has property (wV).

(ii) Suppose that Z is an L_∞-space and Y is reflexive. Then $K(Z^*, Y)$ has property (V).

Proof. The space $K(Z^*, Y)$ is isomorphic to $K_w(Z^**, Y)$ [22]. Since Z is an L_∞-space, Z^* is an L_1-space [10], and thus Z^** is injective [23]. Apply Corollary 22. \Box

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

Submit your manuscripts at
http://www.hindawi.com