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Abstract. 
Under some regularity conditions on , inner functions in -spaces are characterized in the following way: an inner function belongs to  if and only if it is a Blaschke product associated with  satisfying , where . The result generalizes earlier theorems in (Essén et al., 2006) and (Pérez-González and Rättyä, 2009). 



1. Introduction
Inner functions are bounded analytic functions in the unit disc  such that their moduli are one almost everywhere on the boundary . Each inner function can be represented as a product of a Blaschke product and a singular inner function [1]. Singular inner functions are of the form where  is a positive measure on  which is singular with respect to the Lebesgue measure, and, for  and , is a Blaschke product associated with  if  [2]. Information about inner functions can be found in [3]; see also [4–6], for example.
An analytic function  in  belongs to  for  and  if Here  is such that ,  is Green’s function, and  is the Lebesgue area measure. Information about -spaces can be found in [7, 8]; see also the beginning of the next section.
Our purpose is to study the behaviour of inner functions in -spaces. In particular, we are interested in the Möbius invariant -spaces. Related to , it is proved that only inner functions there are Blaschke products if  satisfies certain regularity conditions; see Proposition 7. Under corresponding assumptions, our main result, Theorem 1, gives a complete characterization of inner functions in the spaces. The results generalize [9, Theorems  1.3 and  1.4] and the essential content of [10, Theorem  5.1].
Theorem 1.  Let , and assume that there exists  such that a nondecreasing  satisfies  and  for . Then an inner function belongs to  if and only if it is a Blaschke product associated with a sequence  satisfying where .
Note that an assertion similar to Theorem 1 can be found in [11]. The proof there, however, contains some inaccuracies and does not seem to yield the claimed result. It is also worth noticing that the weight function  is essentially so-called normal one in Theorem 1 [12].
The notation  means that  is essentially increasing; that is,  for . The term essentially decreasing, shortly , is understood in an analogous manner. Here  if  and . The notation  is used if there exists a constant  such that , and  is understood in a similar manner. Note that the constant  may depend on fixed parameters or functions.
The remainder of the paper is organized as follows. In the next section, some auxiliary results are presented. Section 3 contains necessary conditions for singular inner functions to be in -spaces and the main purpose of the last section is to prove Theorem 1. Also Proposition 7 and an alternative version of Theorem 1 are stated and proved in the last section.
2. Auxiliary Results
In this section, we present auxiliary results related to -spaces and inner functions. The weight function  plays a crucial role in these results.
For simplicity, we denote the following conditions:(a) is continuous and nondecreasing.(b).(c) for .If (b) does not hold, then  contains constant functions only [7]. Hence it is natural to assume (b), even though it would not be necessary. Nevertheless, it will always be mentioned if an assumption is made.
In the next lemma, we recall some basic properties of -spaces. It follows by combining results of [7]. For the lemma, we denote that  belongs to  for  if . If , then we use the notation . Here  means that  is analytic in . Moreover, write  if .
Lemma A.  Let  and , and assume that  satisfies (a) and (b). Then the following statements are valid: (i). Moreover,  if and only if (ii)If  for  and  for , then .(iii) if and only if  and (iv). Moreover,  if and only if .
It is worth noticing that the statements (i)–(iii) of Lemma A are valid even if  is discontinuous. This can be seen by looking the proofs of [7, Theorems  2.1 and  3.1].
Denote that , where  is a subarc of  such that . Then a positive measure  on  is a -Carleson measure if 
Now we can characterize -spaces by using -Carleson measures. This result has been earlier presented in [11, Theorem  1], but practically, it follows by modifying the proof of [10, Theorem  3.1].
Lemma B.  Let  and , and assume that  satisfies (a)–(c) and Then  if and only if  and  is a -Carleson measure.
The next lemma shows that under certain conditions one may apply the Schwarz-Pick theorem without any essential loss of information. Before the lemma, we underline that the assumptions (a)–(c) are not necessary therein. In fact, it suffices to assume that  but, of course, if (b) does not hold, then the statements of the lemma are trivial.
Lemma 2.  Let  and , and let  be an inner function. If (i) and (ii) and then is satisfied for all  and almost all .
Proof. Assume first that (i) holds, and denote . Since  for almost all , by Fubini’s theorem and (i), we obtain for almost all . If (ii) holds, then an application of [13, Theorem  2] yields for almost all . This completes the proof.
Corollary 3.  Let , , and  such that , and let  be an inner function. If  satisfies  for , then (11) holds for all  and almost all .
Proof. By the assumption, we have Similarly, for , we obtain Now the assertion follows from Lemma 2 applying the formulas above.
It is worth noticing that [9, Lemma  2.1] is a special case of Lemma 2. This is easy to see by choosing  and  in Corollary 3.
Denote that  satisfies (A), if (8) and (a)–(c) are satisfied, and (B) if (9) holds for  and (10) holds for . Related to (A) and (B), we end this section by proving the following consequence of Lemma 2.
Corollary 4.  Let  and , and assume that  satisfies (A) and (B). Let , where  is an inner function for all . Then  if and only if  for all .
Proof. Hölder’s inequality yields . Hence  if  for all . The other implication follows by applying Lemmas B and 2 together with the fact that  for all .
3. Singular Inner Functions and -Spaces
This section contains necessary conditions for singular inner functions to be in -spaces.
Write , where  and .
Lemma 5.  Let  and , and assume that  satisfies (A) and (B). If  is the singular inner function associated with a measure  and there exists  such that  and either or then .
Proof. Since , we may assume that . Then, for , Lemma 2 yields Since  for all  with fixed , we obtain Hence the assertion follows by Lemma B.
If  for all , then  by [14, Theorem  7.15]. In particular, there exists always  such that . Hence the following result is a direct consequence of Lemma 5.
Corollary 6.  Let  and , and assume that  satisfies (A) and (B). If  is the singular inner function associated with a measure  and then .
4. Blaschke Products and -Spaces
The main purpose of this section is to prove Theorem 1. We begin by showing that all inner functions in  are Blaschke products if  satisfies certain regularity conditions. After that an alternative version of Theorem 1 is stated and proved; and finally, Theorem 1 follows by applying this result.
Proposition 7.  Let  and , and assume that a nondecreasing  satisfies (b). Then the following statements are valid: (i)If , then only inner functions in  are finite Blaschke products.(ii)If  and , then only inner functions in  are Blaschke products.
Proof. Since only inner functions in VMOA are finite Blaschke products [15], the statement (i) follows from the inclusions  for .
By using [16, Lemma  2] twice together with [16, Corollary  3], [10, Lemma  2.3], and Lemma A(ii), we can assume that  is second differentiable,  for ,  as , and  for . Hence it is clear that (A) holds. Moreover, the condition  follows from [11, Lemma  3] and (B) with  follows from the proof of Corollary 3 using [10, Lemma  2.2].
We may assume that  because the inclusion  yields  for . Hence Corollary 6 implies that  does not contain any singular inner functions. Now, since each inner function can be presented as a product of a Blaschke product and a singular inner function, the statement (ii) follows by Corollary 4.
Remark 8. In many cases,  contains also nontrivial Blaschke products unlike  for . The contrast between these spaces is strong also in the general case. More precisely, using the inclusion  and [1, Theorem  5.1], we find that if , then ; that is, the boundary function satisfies the Lipschitz condition of order  [1]. In particular,  belongs to the disc algebra . On the other hand, by [10, Corollary  3.1], it is easy to find  such that  belongs to .
Next we prove an alternative version of Theorem 1. The proof uses some ideas from [17, 18]. For the result, denote .
Theorem 9.  Let , and assume that  satisfies the following conditions: (i) is nondecreasing.(ii).(iii).(iv).Then an inner function belongs to  if and only if it is a Blaschke product associated with a sequence  satisfying (4).
Proof. By a similar manner as in the proof of Proposition 7, we may assume that  satisfies the basic assumption of [11], which means that, in addition to (i) and (ii),  is continuous,  for  and  for .
Assume first that an inner function  belongs to  for some . Then Proposition 7 implies that  is a Blaschke product. Hence, using [11, Theorem  10], we obtain that the zero sequence of  satisfies (4).
If  is a Blaschke product associated with a sequence  satisfying (4), then [11, Lemma  5] with parameters  and  yields Therefore  by [11, Proposition  8], and hence the assertion follows.
We proceed to prove Theorem 1. First, it is known that  satisfies (i) of Theorem 9. On the other hand, since  for , Lemma A(ii) together with the assumption yields Therefore the condition (ii) holds. Moreover, we obtain and consequently (iii) is satisfied. Regarding (iv), we may assume, by Lemma A(ii), that there exists  such that  for all . Thus and hence, the assertion finally follows by Theorem 9.
We end this paper with the following remark.
Remark 10. We make the following observations about Theorem 1 and Proposition 7: (i)If  with , then  [19, 20]. Related to , Theorem 1 and Proposition 7 generalize [9, Theorems  1.3 and  1.4]. Moreover, by [10, Lemmas  2.1,  2.2 and Corollary  3.1], it is easy to see that Theorem 1 generalizes the essential content of [10, Theorem  5.1].(ii)The Möbius invariance of  plays an important role in the proof of [11, Theorem  10]. Hence, if one want to characterize Blaschke products in -spaces where , using a similar technique as in this paper, it is necessary to assume that  is Möbius invariant.
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