Research Article

Operators on Spaces of Bounded Vector-Valued Continuous Functions with Strict Topologies

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Ulica Szafańska 4A, 65-516 Zielona Góra, Poland

Correspondence should be addressed to Marian Nowak; m.nowak@wmie.uz.zgora.pl

Received 30 June 2014; Accepted 26 August 2014

Academic Editor: Józef Banaś

Copyright © 2015 Marian Nowak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let X be a completely regular Hausdorff space, and let \((E, \|\cdot\|_E)\) and \((F, \|\cdot\|_F)\) be Banach spaces. Let \(C_0(X, E)\) be the space of all \(E\)-valued bounded, continuous functions defined on \(X\), equipped with the strict topologies \(\beta_z\), where \(z = \sigma, \infty, p, r, t\). General integral representation theorems of \(\beta_z\)-continuous linear operators \(T : C_0(X, E) \rightarrow F\) with respect to the corresponding operator-valued measures are established. Strongly bounded and \(\beta_z\)-continuous operators \(T : C_0(X, E) \rightarrow F\) are studied.

We extend to "the completely regular setting" some classical results concerning operators on the spaces \(C(X, E)\) and \(C_c(X, E)\), where \(X\) is a compact or a locally compact space.

1. Introduction and Terminology

Throughout the paper let \((E, \|\cdot\|_E)\) and \((F, \|\cdot\|_F)\) be real Banach spaces, and let \(E'\) and \(F'\) denote the Banach duals of \(E\) and \(F\), respectively. By \(B_{E'}\) and \(B_E\) we denote the closed unit ball in \(E'\) and \(E\), respectively. By \(\mathcal{L}(E, F)\) we denote the space of all bounded linear operators \(U : E \rightarrow F\). Given a locally convex space \((L, \mathcal{L})\) by \((L, \mathcal{L})'\) or \(L'_\sigma\) we will denote its topological dual. We denote by \(\sigma(L, K)\) the weak topology on \(L\) with respect to a dual pair \((L, K)\).

Assume that \(X\) is a completely regular Hausdorff space. Let \(C_0(X, E)\) stand for the Banach space of all bounded continuous, \(E\)-valued functions on \(X\) with the uniform norm \(\|\cdot\|\). We write \(C_0(X)\) instead of \(C_0(X, \mathbb{R})\). By \(C_0(X, E)'\) we denote the Banach dual of \(C_0(X, E)\). For \(f \in C_0(X, E)\) let \(\tilde{f}(t) = \|f(t)\|_E\) for \(t \in X\).

Let \(\mathcal{B}(\mathcal{S})\) (resp., \(\mathcal{B}(\mathcal{A})\)) be the algebra (resp., \(\sigma\)-algebra) of Baire sets in \(X\), which is the algebra (resp., \(\sigma\)-algebra) generated by the class \(\mathcal{X}\) of all zero sets of functions of \(C_0(X)\). By \(\mathcal{B}\) we denote the family of all cozero sets in \(X\). Let \(B(\mathcal{S}, E)\) stand for the Banach space of all totally \(\mathcal{S}\)-measurable functions \(f : X \rightarrow E\) (the uniform limits of sequences of \(E\)-valued \(\mathcal{S}\)-simple functions) provided with the uniform norm \(\|\cdot\|\) (see [1, 2]). We will write \(B(\mathcal{S})\) instead of \(B(\mathcal{S}, \mathbb{R})\).

Strict topologies \(\beta_z\) on \(C_0(X, E)\) and \(C_c(X, E)\) (for \(z = \sigma, \infty, p, r, t\)) play an important role in the topological measure theory (see [3–12] for definitions and more details). Recall that a subset \(H\) of \(C_0(X, E)\) is said to be solid if \(f_1 \in C_0(X, E)\) and \(f_2 \in H\) with \(\tilde{f}_1(t) \leq \tilde{f}_2(t)\) for \(t \in X\) imply that \(f_1 \in H\). Then \(\beta_z\) are locally convex-solid topologies on \(C_0(X, E)\); that is, they have a local base at 0 consisting of convex and solid sets (see [6, Theorem 8.1], [10, Theorem 5]). We have \(\beta_1 \subset \beta_\sigma \subset \beta_\infty \subset \beta_p \subset \beta_r\), which is the algebra (resp., \(\sigma\)-algebra) generated by the class \(\mathcal{X}\) of all zero sets of functions of \(C_0(X)\). By \(\mathcal{B}\) we denote the family of all cozero sets in \(X\). Let \(B(\mathcal{S}, E)\) stand for the Banach space of all totally \(\mathcal{S}\)-measurable functions \(f : X \rightarrow E\) (the uniform limits of sequences of \(E\)-valued \(\mathcal{S}\)-simple functions) provided with the uniform norm \(\|\cdot\|\) (see [1, 2]). We will write \(B(\mathcal{S})\) instead of \(B(\mathcal{S}, \mathbb{R})\).

Let \(C_0(X) \otimes E\) stand for the algebraic tensor product of \(C_0(X, E)\) and \(E\); that is, \(C_0(X) \otimes E\) is the space of all functions \(\sum_{i=1}^n (u_i \otimes x_i)\), where \(u_i \in C_0(X)\) and \(x_i \in E\) for \(i = 1, \ldots, n\), and \((u_i \otimes x_i)(t) = u_i(t)x_i\) for \(t \in X\). Then \(C_0(X) \otimes E\) is dense in \((C_0(X, E), \beta_\pi)\) for \(z = \infty, r, t\) (see [6, 8]). Moreover, \(C_0(X) \otimes E\) is dense in \((C_c(X, E), \beta_\pi)\) if \(X\) or \(E\) is a D-space (see [6, Theorem 5.2], [13]) and in \((C_c(X, E), \beta_\pi)\) if \(X\) is real-compact (see [10, Theorem 7]).

Let \(C_0(X, E)\) denote the Banach space of all continuous functions \(h : X \rightarrow E\) such that \(h(X)\) is a relatively compact set in \(E\), provided with the uniform norm \(\|\cdot\|\). Then \(C_0(X) \otimes E \subset C_c(X, E) \subset B(\mathcal{S}, E)\).
Linear operators from the spaces $C_{r^c}(X, E)$ and $C_b(X, E)$, equipped with the strict topologies $\beta_z(z = \sigma, \sigma_0, \tau, t)$ to a locally convex space (F, ξ), were studied by Katsaras and Liu [14], Aguayo-Garrido, Nova-Yanéz and Sanchez [15, 16], and Khurana [17]. In particular, Katsaras and Liu found an integral representation of weakly compact operators $S : C_{r^c}(X, E) \to F$ and characterizations of (β_{r^c}, ξ)-continuous and weakly compact operators $S : C_{r^c}(X, E) \to F$ for $z = \sigma, \tau$ (see [14, Theorems 3, 4, 5]). Aguayo-Arrido and Nova-Yanéz derived a Riesz representation theorem for (β_{r^c}, ξ)-continuous and weakly compact operators $T : C_b(X, E) \to F$ for $z = \sigma, \tau$ in terms of their representing operator measures (see [15, Theorems 5 and 6]). If X is a locally compact space, continuous operators on $C_b(X, E)$ were studied by Dobrakov (see [18]) and Mitter and Young (see [19]).

In this paper we develop the theory of continuous linear operators from $C_b(X, E)$, equipped with the strict topologies $\beta_z(z = \sigma, \sigma_0, \tau, t)$ to a Banach space $(F, \| \cdot \|_F)$. In particular, we extend to "the completely regular setting" some classical results of Brooks and Lewis (see [20, Theorems 5 and 6]). If X is a locally compact space, continuous and strongly bounded operators $S : C_b(X, E) \to F$ for $z = \sigma, \tau$ in terms of their representing operator measures (see [18]) and Mitter and Young (see [19]).

In Section 2 we derive general Riesz representation theorems for $(\beta_{r^c}, \| \cdot \|_F)$-continuous linear operators $T : C_b(X, E) \to F$ for $z = \sigma, \sigma_0, \tau, t$ with respect to the corresponding measures $m : B \to L(E, F''')$ (see Theorems 9 and 14 below). Section 4 is devoted to the study of $(\beta_{r^c}, \| \cdot \|_F)$-continuous and strongly bounded operators $T : C_b(X, E) \to F$.

2. Integral Representation of Bounded Linear Operators on $C_{r^c}(X, E)$

Let $M(X)$ stand for the Banach lattice of all Baire measures on \mathcal{B}, provided with the norm $\| \nu \| = |\nu|(X)$ (the total variation of ν). Due to the Alexandrov representation theorem $C_b(X)^\prime$ can be identified with $M(X)$ through the lattice isomorphism $M(X) \ni \nu \mapsto \varphi_\nu \in C_b(X)^\prime$, where $\varphi_\nu(u) = \int_X u \, dv$ for $u \in C_b(X)$ and $\| \varphi_\nu \| = \| \nu \|$ (see [4, Theorem 5.1]).

By $M(X, E')$ we denote the set of all finitely additive measures $\mu : \mathcal{B} \to E'$ with the following properties:

(i) for each $x \in E$, the function $\mu_x : \mathcal{B} \to \mathbb{R}$ defined by $\mu_x(\mathcal{B}) = \mu(A)(x) \in M(X)$,

(ii) $|\mu|(X) < \infty$, where $|\mu|(A)$ stands for the variation of μ on $A \in \mathcal{B}$.

In view of [23, Theorem 2.5] $C_{r^c}(X, E)^\prime$ can be identified with $M(X, E')$ through the linear mapping $M(X, E') \ni \Phi \mapsto \Phi \in C_{r^c}(X, E)^\prime$, where $\Phi_h(h) = \int_X h \, d\mu$ for $h \in C_{r^c}(X, E)$ and $\| \Phi \| = |\mu|(X)$. Then one can embed $B(\mathcal{B}, E)$ into $C_{r^c}(X, E)^\prime$ by the mapping $\pi : B(\mathcal{B}, E) \to C_{r^c}(X, E)^\prime$, where for $g \in B(\mathcal{B}, E)$,

$$\pi(g)(F) := \int_X g \, d\mu \text{ for } \mu \in M(X, E').$$

(1)

Let $i_F : F \to F''$ denote the canonical embedding: that is, $i_F(y)(y') = y'(y)$ for $y \in F, y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F; that is, $j_F \circ i_F = \text{id}_F$.

Assume that $S : C_{r^c}(X, E) \to F$ is a bounded linear operator. Let

$$\tilde{S} : S'' \circ \pi : B(\mathcal{B}, E) \to F'',$

where $S' : F' \to C_{r^c}(X, E)'$ and $S'' : C_{r^c}(X, E)'' \to F''$ denote the conjugate and biconjugate operators of S, respectively. Then we can define a measure $m : B \to L(E, F'')$ (called a representing measure of S) by

$$m(A)(x) = \tilde{S}(1_A \otimes x) = (S'' \circ \pi)(1_A \otimes x)$$

for $A \in \mathcal{B}, x \in E$.

(2)

Then $m(A) < \infty$, where the semivariation $\tilde{m}(A)$ of m on $A \in \mathcal{B}$ is defined by $\tilde{m}(A) := \sup \| \sum m(A_j)(x_j) \|_{F''}$, where the supremum is taken over all finite \mathcal{B}-partitions (A_j) of A and $x_j \in B_{F'}$ for each j. For $y' \in F'$ let us put

$$m_{y'}(A)(x) := (m(A)(x))(y') \text{ for } A \in \mathcal{B}, x \in E.$$

(4)

Let $|m_{y'}|(A)$ stand for the variation of $m_{y'}$ on A. Then (see [1, Section 4, Proposition 5])

$$\tilde{m}(A) = \sup \| m_{y'}(A)(y') \|_{F''}.$$

(5)

The following general properties of the operator $\tilde{S} : B(\mathcal{B}, E) \to F''$ are well known (see [1, Section 6], [2, Section 1], [13, 24]):

$$\tilde{S}(g) = \int_X g \, d\mu \text{ for } g \in B(\mathcal{B}, E), \| \tilde{S} \| = \tilde{m}(X),$$

(6)

and for each $y' \in F'$,

$$\tilde{S}(g)(y') = \int_X g \, d\mu_{y'} \text{ for } g \in B(\mathcal{B}, E).$$

(7)

For $A \in \mathcal{B}$ let

$$\int_A g \, d\mu := \int_A 1_A \, d\mu \text{ for } g \in B(\mathcal{B}, E).$$

(8)

From the general properties of \tilde{S} it follows that

$$\tilde{S}(C_{r^c}(X, E)) \subset i_F(F),$$

(9)

$$S(h) = j_F \left(\int_X h \, d\mu \right) \text{ for } h \in C_{r^c}(X, E).$$

(10)

Hence for each $y' \in F'$ we get

$$y'(S(h)) = \int_X h \, d\mu_{y'} \text{ for } h \in C_{r^c}(X, E).$$
and hence \(m_{y'} \in M(X, E') \). Moreover, we have
\[
\|S\| = \|S'\| = \sup \{ \|S'(y')\| : y' \in B_{F'} \} = \sup \{ \|y' \circ S\| : y' \in B_{F'} \} = \sup \{ \Phi_{m_{y'}}(y') : y' \in B_{F'} \} = \sup \{ [m_{y'}](X) : y' \in B_{F'} \},
\]
and using (5) we get
\[
\|S\| = \tilde{m}(X). \tag{12}
\]

By \(M(X, \mathcal{L}(E, F'')) \) we will denote the space of all measures \(m : \mathcal{B} \to \mathcal{L}(E, F'') \) such that \(\tilde{m}(X) < \infty \) and \(m_{y'} \in M(X, E') \) for each \(y' \in F' \). Thus the representing measure \(m \) of \(S \) belongs to \(M(X, \mathcal{L}(E, F'')) \).

For any \(x \in E \) define
\[
S_x(u) := S(u \otimes x) \text{ for } u \in C_b(X), \tag{13}
\]
\[
m_x(A) := m(A)(x) \text{ for } A \in \mathcal{B}. \tag{14}
\]

Then \(S_x : C_b(X) \to F \) is a bounded linear operator. Let \(\chi : B(\mathcal{B}) \to C_b(X)'' \) stand for the canonical embedding; that is, \(u \in B(\mathcal{B}) \),
\[
\chi(u)(\varphi) = \int_X ud\nu \text{ for } \nu \in M(X). \tag{15}
\]

Let \(\hat{S}_x := (S_x)'' \circ \chi : B(\mathcal{B}) \to F'' \).

Then
\[
\hat{S}_x(C_b(X)) \subset i_F(F), \tag{16}
\]
\[
S_x(u) = f_F(\hat{S}_x(u)) \text{ for } u \in C_b(X). \tag{17}
\]

The following lemma will be useful.

Lemma 1. Let \(S : C_b(X, E) \to F \) be a bounded linear operator. Then \(S''(\pi(1_A \otimes x)) = (S_x)''(\chi(1_A)) \) for each \(x \in E \) and every \(A \in \mathcal{B} \).

Proof. Let \(y' \in F' \). Then for each \(u \in C_b(X) \),
\[
(y' \circ S_x)(u) = y'(S(u \otimes x)) = \int_X (u \otimes x) dm_{y';} = \int_X ud_{m_{y'}} = \varphi_{m_{y'}}(u). \tag{18}
\]

Hence we have
\[
(S_x)''(\chi(1_A))(y') = \chi(1_A)(S'_x(y')) = \chi(1_A)(y' \circ S_x) = \chi(1_A)(\varphi_{m_{y'}}) = \int_X 1_A dm_{y'} = m_x(1_A)(y'). \tag{19}
\]

On the other hand, for each \(h \in C_{rc}(X, E) \), \((y' \circ S)(h) = \int_X h dm_{y'} = \Phi_{m_{y'}}(h) \), and hence
\[
S''(\pi(1_A \otimes x)) \quad (\pi(1_A \otimes x))(S_x)''(\chi(1_A)) = (S_x)''(\chi(1_A)) = (S_x)''(\chi(1_A)). \tag{20}
\]

It follows that \(S''''(\pi(1_A \otimes x)) = (S_x)''''(\chi(1_A)) \), as desired. \(\square \)

From Lemma 1 for \(A \in \mathcal{B} \) and \(x \in E \) we get
\[
m_x(A) := \hat{S}(1_A \otimes x) = S''(\pi(1_A \otimes x)) = (S_x)''(\chi(1_A)) = m_x(1_A)(y'). \tag{21}
\]

Now we are ready to prove the following Bartle-Dunford-Schwartz type theorem (see [25, Theorem 5, pages 153-154]).

Theorem 2. Let \(S : C_{rc}(X, E) \to F \) be a bounded linear operator and let \(M(X, \mathcal{L}(E, F'')) \) be its representing measure. Then for each \(x \in E \) the following statements are equivalent.

(i) \(S_x : C_b(X) \to F \) is weakly compact.

(ii) \(m(A)(x) \in i_F(F) \) for each \(A \in \mathcal{B} \) and \(x \in E \).

(iii) \(m_x : \mathcal{B} \to F'' \) is strongly bounded.

Proof. (i)⇒(ii) Assume that \(S_x \) is weakly compact. Then by the Gantmacher theorem \((S_x)^{''''}(C_b(X)''') \subset i_F(F) \) and \((S_x)^{''''} : C_b(X)'''' \to F'''' \) is weakly compact (see [26, Theorem 17.2]). Hence \(\hat{S}_x(B(\mathcal{B})) \subset i_F(F) \) and \(\hat{S}_x : B(\mathcal{B}) \to F'''' \) is weakly compact. In view of (21) for each \(x \in E \), \(m_x(A) \in i_F(F) \) for \(A \in \mathcal{B} \) and \(m_x : \mathcal{B} \to F'''' \) is weakly compact (see [25, Theorem 1, page 148]). It follows that \(\{ f_F(m(A)(x)) : A \in \mathcal{B} \} \) is a relatively weakly compact set in \(F \) (see [24, Theorem 7]).

(ii)⇒(iii) It follows from [24, Theorem 7].

(iii)⇒(i) Assume that \(m_x \) is strongly bounded. Then by (21) \(\hat{S}_x : B(\mathcal{B}) \to F'''' \) is weakly compact and in view of (16) we derive that \(S_x \) is weakly compact. \(\square \)
3. Integral Representation of Continuous Linear Operators on $C_b(X,E)$

The spaces of all σ-additive, u-additive, perfect, τ-additive, and tight members of $M(X)$ will be denoted by $M_\sigma(X)$, $M_\omega(X)$, $M_u(X)$, $M_\mu(X)$, and $M_\tau(X)$, respectively (see [3, 4]).

Then $(C_b(X), \beta_z^r) = (\{\eta : \eta \in M_\tau(X)\})$ for $z = \sigma, \omega, u, \mu, \tau$.

For the integration theory of functions $f \in C_b(X,E)$ with respect to $\mu \in M_\tau(X,E')$ we refer the reader to [6, page 197], [5, Definition 3.10], [4, page 375]. For $z = \sigma, \omega, u, \mu, \tau$, let

$$ M_z \left(X, E' \right) := \{ \mu \in M \left(X, E' \right) : \mu_x \in M_z \left(X \right) \text{ for each } x \in E \}. $$

(22)

Then $|\mu|$ is a member of $M_\tau(X)$ if μ is a member of $M_\tau(X,E')$ (see [5, Proposition 3.9], [6, Theorem 3.1], [10, Theorem 1]). For $\Phi \in C_b(X,E)^\tau$ let us put, for $u \in C_b(X)^\tau$,

$$ |\Phi| (u) := sup \left\{ |\Phi (f)| : f \in C_b(X,E), \int f \leq u \right\}. $$

(23)

It is known that $|\Phi| : C_b(X)^\tau \rightarrow \mathbb{R}^+$ is additive and positively homogeneous and can be extended to a linear functional on $C_b(X)$ (denoted by $|\Phi|$ again) by $|\Phi|(u) = |\Phi|(u^*) - |\Phi|(u^*)$ for $u \in C_b(X)$.

Theorem 3. Assume that $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X,E), \beta_z^p)$ (resp., $z = \omega$; $z = \mu$ and $C_b(X) \otimes E$ is dense in $(C_b(X,E), \beta_p \mu)$; $z = \tau$; $z = t$). Then the following statements hold.

(i) For a linear functional Φ on $C_b(X,E)$ the following conditions are equivalent.

(a) Φ is β_z-continuous.

(b) There exists a unique $\mu \in M_z(X,E')$ such that

$$ \Phi (f) = \Phi_{\mu} \left(f \right) = \int_X f d\mu \quad \text{for } f \in C_b(X,E). $$

(24)

(ii) For $\mu \in M_z(X,E')$, $|\Phi_{\mu}|(u) = \int_X u d|\mu| = \phi_{\mu}(u)$ for $u \in C_b(X)$.

Proof. (i) See [6, Theorems 5.3 and 4.2, Corollary 3.9], [5, Theorem 3.13], and [10, Theorem 8].

(ii) See [6, Theorem 2.1].

Assume that \mathcal{M} is a subset of $M_z(X,E')$ and $sup_{\mu \in \mathcal{M}} |\mu|(X) < \infty$, where $z = \sigma, \omega, \mu, \tau, t$. Then we say that \mathcal{M} satisfies the condition (C) if we have the following:

1. For $z = \sigma$: $sup_{\mu \in \mathcal{M}} |\mu|(Z_a) : \mu \in \mathcal{M} \rightarrow 0$ whenever $Z_a \downarrow 0, (Z_a) \in \mathcal{M}$.

2. For $z = \omega$: for every partition of unity $(u_\alpha)_{\alpha \in A}$ for X and every $\varepsilon > 0$ there exists a finite set A' such that

$$ \sum_{\alpha \in A} (1 - \sum_{\beta \in A'} u_\alpha) |\mu| < \varepsilon; $$

3. For $z = p$: for every continuous function f from X onto a separable metric space Y and every $\varepsilon > 0$, there is a compact subset K of Y such that $sup_{\mu \in \mathcal{M}} |\mu|(X \setminus \overline{f}^{-1}(K)) \leq \varepsilon$;

4. For $z = t$: $sup_{\mu \in \mathcal{M}} |\mu|(Z_a) : \mu \in \mathcal{M} \rightarrow 0$ whenever $Z_a \downarrow 0, (Z_a) \in \mathcal{M}$.

5. For $z = t$: for every $\varepsilon > 0$ there exists a compact subset K of X such that $sup_{\mu \in \mathcal{M}} |\mu|(Z) : Z \in \mathcal{Z}, Z \subset X \setminus K \leq \varepsilon$ for each $\mu \in \mathcal{M}$.

The following lemmas will be useful.

Lemma 4. Assume that \mathcal{M} is a subset of $M_z(X,E')$ and $sup_{\mu \in \mathcal{M}} |\mu|(X) < \infty$, where $z = \sigma$ and $C_b(X) \otimes E$ is β_z-dense in $(C_b(X,E), \beta_z^p)$; $z = \omega$; $z = \mu$ and $C_b(X) \otimes E$ is $\beta_p \mu$-dense in $(C_b(X,E), \beta_p \mu)$; $z = \tau$; $z = t$). Then the following statements are equivalent.

(i) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}$ is β_z-equicontinuous.

(ii) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}$ is β_z-equicontinuous.

(iii) $\{\phi_{\mu} : \mu \in \mathcal{M}\}$ is β_z-equicontinuous.

(iv) The condition (C) holds.

Proof. (i)⇒(ii) See [9, Lemma 2].

(ii)⇒(iii) It follows from Theorem 3.

(iii)⇒(iv) See [4, Theorem 11.14] for $z = \sigma$; [28, Proposition 3.6] for $z = \omega$; [28, Proposition 2.6] for $z = p$; [4, Theorem 11.24] for $z = \tau$; and [28, Proposition 1.1] for $z = t$.

Lemma 5. Assume that $z = \sigma$ and $C_b(X) \otimes E$ is $\beta_p \mu$-dense in $(C_b(X,E), \beta_p \mu)$; $z = \tau$; $z = t$). Then for $A \in \mathcal{B}$ the following statements hold.

(i) A functional $\Phi_A : C_r(X,E) \rightarrow \mathbb{R}$ defined by $\Phi_A (h) = \int_A h d\mu$ is β_z-continuous and can be uniquely extended to a β_z-continuous linear functional $\overline{\Phi}_A : C_b(X,E) \rightarrow \mathbb{R}$, and one will write the following:

$$ \int_A f d\mu := \overline{\Phi}_A (f) \quad \text{for } f \in C_b(X,E). $$

(25)

(ii) $\int_A f d\mu \leq \int_A \overline{\Phi}_A (f)$ for $f \in C_b(X,E)$.

Proof. (i) Assume that (h_α) is a net in $C_r(X,E)$ such that $h_\alpha \rightarrow 0$ for β_z. Then

$$ |\Phi_A (h_\alpha)| = \left| \int_A h_\alpha d\mu \right| \leq \int_A \overline{\Phi}_A (f) \leq \int_X \overline{\Phi}_A (f) \leq \varepsilon. $$

(26)

Since $\overline{\Phi}_A \rightarrow 0$ for β_z in $C_b(X)$ and $|\mu| \in M_z(E)$, we obtain that $\Phi_A (h_\alpha) \rightarrow 0$; that is, Φ_A is β_z-continuous. Since $C_r(X,E)$ is dense in $(C_b(X,E), \beta_p \mu)$, Φ_A can be uniquely extended to a β_z-continuous linear functional $\overline{\Phi}_A : C_b(X,E) \rightarrow \mathbb{R}$ (see [29, Theorem 2.6]).
(ii) Assume that \(f \in C_b(X, E) \). Choose a net \((h_\alpha)\) in \(C_r^c(X, E) \) such that \(h_\alpha \to f \) for \(\beta_z \). Then \(h_\alpha \to \tilde{f} \) for \(\beta_\sigma \) in \(C_b(X) \). Then
\[
\left| \int_X \tilde{h}_\alpha \, d\mu - \int_X \tilde{f} \, d\mu \right| \leq \int_X |\tilde{h}_\alpha - \tilde{f}| \, d\mu,
\]
and hence \(\int_A \tilde{f} \, d\mu = \lim_\alpha \int_A \tilde{h}_\alpha \, d\mu \). Since \(\int_A f \, d\mu = \Phi(f) = \lim_\alpha \int_A h_\alpha \, d\mu \), we get
\[
\left| \int_A f \, d\mu \right| = \lim_\alpha \left| \int_A h_\alpha \, d\mu \right| \leq \lim_\alpha \int_A \tilde{h}_\alpha \, d\mu = \int_A \tilde{f} \, d\mu.
\]

For \(z = \sigma, \infty, p, r, t \) let us put
\[
M_z \left(X, \mathscr{D}(E, F''') \right) := \left\{ m : M(X, \mathscr{D}(E, F''')) : m_{y'} \in M_z \left(X, E' \right) \right\}
\]
(29) for each \(y' \in F' \).

Lemma 6. Assume that \(z = \sigma \) and \(C_b(X) \otimes E \) is \(\beta_\sigma \)-dense in \(C_r(X, E) \) (resp., \(z = \infty \); \(z = p \), and \(C_b(X) \otimes E \) is \(\beta_\sigma \)-dense in \(C_b(X, E) ; z = \tau ; \beta_\tau \)). Assume that \(m \in M_z(X, \mathscr{D}(E, F''')) \) and the set \(\{ m_{y'} : y' \in F' \} \) satisfies the condition \((C_z) \). Then for \(A \in \mathcal{B} \) the following statements hold.

(i) An operator \(S_A : C_b(X, E) \to F''' \) defined by \(S_A(h) = \int_X \tilde{h} \, dm \) is \(\beta_\beta \)-continuous and can be uniquely extended to a \(\beta_\beta \)-continuous linear operator \(\tilde{S}_A : C_b(X, E) \to F''' \), and one will write the following.
\[
\int_A \tilde{f} \, dm = \tilde{S}_A(f) \quad \text{for } f \in C_b(X, E). \quad (30)
\]

(ii) For each \(y' \in F' \), \(\left(\int_A f \, dm \right)(y') = \int_A f \, dm_{y'}, \quad \text{for } f \in C_b(X, E). \)

Proof. (i) In view of Lemma 5 the set \(\{ \varphi_{m_{y'}} : y' \in B_{F'} \} \) is \(\beta_\beta \)-equicontinuous in \(C_b(X) \). Assume that \((h_\alpha)\) is a net in \(C_r(X, E) \) such that \(h_\alpha \to 0 \) for \(\beta_\sigma \). Let \(\varepsilon > 0 \) be given. Then there exists a neighborhood \(V_\varepsilon \) of 0 for \(\beta_\sigma \) in \(C_b(X) \) such that \(\sup_{y' \in B_{F'}} \int_X |m_{y'}(u)| \leq \varepsilon \) for \(u \in V_\varepsilon \). Since \(h_\alpha \to 0 \) for \(\beta_\sigma \) in \(C_b(X) \), choose \(\alpha_\varepsilon \) such that \(h_\alpha \in V_\varepsilon \) for \(\alpha \geq \alpha_\varepsilon \). Hence \(\sup_{y' \in B_{F'}} \int_X |h_\alpha \, d|m_{y'}| \leq \varepsilon \) for \(\alpha \geq \alpha_\varepsilon \). It follows that, for \(\alpha \geq \alpha_\varepsilon \) and each \(y' \in B_{F'} \),
\[
\left| \int_A h_\alpha \, dm_{y'} \right| \leq \int_X |h_\alpha \, d|m_{y'}| \leq \varepsilon,
\]
and hence,
\[
\left\| S_A(h_\alpha) \right\|_{F'''} = \sup \left\{ \left| S_A(h_\alpha) \right|(y') : y' \in B_{F'} \right\} \leq \varepsilon. \quad (32)
\]

This means that \(S_A : C_r(X, E) \to F''' \) is \(\beta_\beta \)-continuous. Since \(C_r(X, E) \) is \(\beta_\sigma \)-dense in \(C_b(X, E) \), \(\beta_\beta \), \(S_A \) possesses a unique \(\beta_\beta \)-continuous extension \(\tilde{S}_A : C_b(X, E) \to F''' \) (see [29, Theorem 2.6]). Let
\[
\int_A f \, dm = \tilde{S}_A(f) \quad \text{for } f \in C_b(X, E). \quad (33)
\]

(ii) Let \(f \in C_b(X, E) \). Choose a net \((h_\alpha)\) in \(C_r(X, E) \) such that \(h_\alpha \to f \) for \(\beta_\sigma \). By Lemma 5 and (7) for \(y' \in F' \) we have
\[
\left(\int_A f \, dm \right)(y') = \left(\lim_\alpha \left(\int_A h_\alpha \, dm \right) \right)(y') = \lim_\alpha \int_A h_\alpha \, dm_{y'} = \int_A f \, dm_{y'}. \quad (34)
\]

Corollary 7. Assume that \(z = \sigma \) and \(C_b(X) \otimes E \) is \(\beta_\sigma \)-dense in \(C_r(X, E) \) (resp., \(z = \infty \); \(z = p \) and \(C_b(X) \otimes E \) is \(\beta_\sigma \)-dense in \(C_b(X, E) ; z = \tau ; \beta_\tau \)). Assume that \(m \in M_z(X, \mathscr{D}(E, F''')) \) and the set \(\{ m_{y'} : y' \in B_{F'} \} \) satisfies the condition \((C_z) \). Then for \(A \in \mathcal{B} \) the following statements hold:

Proof. (a) \(\left| m_{y'} \right| \quad (A) \)
\[
= \sup \left\{ \left| \int_A h \, dm \right| : h \in C_b(X) \otimes E, \left| h \right| \leq 1 \right\}
\]
\[
= \sup \left\{ \left| \int_A f \, dm \right| : f \in C_b(X, E), \left| f \right| \leq 1 \right\}. \quad (35)
\]

(b) \(\overline{m} \quad (A) \)
\[
= \sup \left\{ \left| \int_A h \, dm \right| : h \in C_b(X) \otimes E, \left| h \right| \leq 1 \right\}
\]
\[
= \sup \left\{ \left| \int_A f \, dm \right| : f \in C_b(X, E), \left| f \right| \leq 1 \right\}. \quad (35)
\]

In particular, if \(U \in \mathcal{D} \), then
\[
\left| m_{y'} \right| \quad (U) = \sup \left\{ \left| \int_U h \, dm \right| : h \in C_b(X) \otimes E, \left| h \right| \leq 1, \text{ supp } h \subset U \right\} \quad (36)
\]
\[
= \sup \left\{ \sum_{i=1}^{n} \left| \int_U u_i \, dm_{y',y''} \right| : y', y'' \right\}.
\]
where the supremum is taken over all finite disjoint supported collections \(\{u_1, \ldots, u_n\} \subset C_b(X) \) with \(\|u_i\| \leq 1 \) and \(\text{supp} u_i \subset U \) and \(\{x_1, \ldots, x_n\} \subset B_E \). One has

\[
(\text{d}) \quad \bar{m}(U) = \sup \left\{ \left\| \int_U h d\mu \right\|_{L^p} : h \in C_b(X) \otimes E, \right.
\]

\[
\|h\| \leq 1, \text{supp} h \subset U \bigg\}
\]

\[
= \sup \left\{ \left\| \int_U f d\mu \right\|_{L^p} : f \in C_b(X, E), \right. \n\]

\[
\|f\| \leq 1, \text{supp} f \subset U \bigg\}.
\]

Proof. Let \(A \in \mathcal{B} \) and \(y' \in F^* \). Then by Lemma 5 for \(f \in C_b(X, E) \) with \(\|f\| \leq 1 \) we have

\[
\left| \int_A f dm_{y'} \right| \leq \int_A f dm \left| m_{y'} \right|(A).
\]

(37)

On the other hand, let \(\epsilon > 0 \) be given. Then there exist a finite \(\mathcal{B} \)-partition \((A_i)_{i=1}^n \) of \(A \) and \(x_i \in B_E \), \(i = 1, \ldots, n \), such that

\[
\left| m_{y'} (A) - \frac{\epsilon}{3} \right| \leq \left| \sum_{i=1}^n \left(m_{y'} (A_i) (x_i) \right) (y') \right| = \left| \sum_{i=1}^n m_{x_i y'} (A_i) \right|.
\]

(39)

By the regularity of \(m_{x_i y'}, m_{y'} \in M_1(X) \) for \(i = 1, \ldots, n \), we can choose \(Z_i \subset Z \) such that \(m_{x_i y'} (A_i \setminus Z_i) \leq \epsilon/3n \) for \(i = 1, \ldots, n \). Choose pairwise disjoint \(V_i \subset Z \) for \(i = 1, \ldots, n \) such that \(m_{x_i y'} (V_i \setminus Z) \leq \epsilon/3n \). Then \(\{ V_i \}_{i=1}^n \) is a partition of \(X \). Choose \(x_i \in V_i \) for \(i = 1, \ldots, n \) such that \(\|m_{x_i y'} (V_i \setminus Z) \|_{L^p} \leq \epsilon/3n \). Hence we get

\[
\left| m_{y'} (A) - \frac{\epsilon}{3} \right| \leq \left| \sum_{i=1}^n m_{x_i y'} (A_i \setminus Z_i) \right|
\]

\[
+ \left| \sum_{i=1}^n \left(\int_{Z_i} v_i d m_{x_i y'} \right) - \sum_{i=1}^n \left(\int_{V_i \setminus A_i} v_i d m_{x_i y'} \right) \right|
\]

\[
+ \left| \int_A h d m_{y'} \right|
\]

\[
\leq \sum_{i=1}^n \left| m_{x_i y'} (A_i \setminus Z_i) \right| + \sum_{i=1}^n \left| m_{x_i y'} (V_i \setminus Z_i) \right|
\]

\[
+ \left| \int_A h d m_{y'} \right|
\]

\[
\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \left| \int_A h d m_{y'} \right|
\]

(40)

and hence \(|m_{y'}(A)| \leq \int_A h d m_{y'} + \epsilon \). Thus the proof of (a) is complete.

In view of (5), (a), and Lemma 6 we get

\[
\bar{m}(A) = \sup \left\{ \left| m_{y'} (A) : y' \in B_E \right| \right. \n\]

\[
= \sup \left\{ \left| \int_A h d\mu \right| (y') : h \in C_b(X) \otimes E, \right. \n\]

\[
\|h\| \leq 1, y' \in B_E \bigg\}
\]

\[
= \sup \left\{ \left| \int_A f d\mu \right| (y') : f \in C_b(X, E), \right. \n\]

\[\|f\| \leq 1, y' \in B_E \bigg\}
\]

\[
= \sup \left\{ \left| \int_A h d\mu \right|_{L^p} : h \in C_b(X) \otimes E, \|h\| \leq 1 \right\}
\]

\[
= \sup \left\{ \left| \int_A f d\mu \right|_{L^p} : f \in C_b(X, E), \|f\| \leq 1 \right\};
\]

(41)

that is, (b) holds.

Assume now that \(U \in \mathcal{D} \). Let \(U_i = V_i \cap U \in \mathcal{D} \) for \(i = 1, \ldots, n \). Then \(|m_{x_i y'} (U_i \setminus Z_i)| \leq |m_{x_i y'} (V_i \setminus Z_i)| \leq \epsilon/3n \) for \(i = 1, \ldots, n \). For \(i = 1, \ldots, n \), choose \(u_i \in C_b(X) \) with \(0 \leq u_i \leq 1_X \), \(u_i|_{Z_i} \equiv 1 \), and \(u_i|_{X \setminus U_i} \equiv 0 \). Let \(h_i = \sum_{J=0}^n u_i \otimes x_i \). Then \(\|h_i\| \leq 1 \) and \(\text{supp} h \subset U \); and hence by (a), \(|m_{y'} (U)| \leq \left| \int_U h_i d m_{y'} \right| + \epsilon \). Note that \(\int_U h_i d m_{y'} = \sum_{i=1}^n \int_U u_i d m_{x_i y'} \), where \(\text{supp} u_i \) are pairwise disjoint and \(u_i \subset U \) for \(i = 1, \ldots, n \). Thus (c) holds.

Using (c) we easily show that (d) holds. Thus the proof is complete.

Definition 8. Let \(T : C_b(X, E) \rightarrow F \) be a bounded linear operator. Then the measure \(m \in M(X, \mathcal{L}(E, F^*)) \) defined by

\[
m(A) (x) := \left(\left(T|_{C_b(X, E)} \right)^* \circ x \right) (1_A \otimes x)
\]

(42)

for \(A \in \mathcal{B}, x \in E \)

will be called a representing measure of \(T \).

Now we state general Riesz representation theorems for continuous linear operators on \(C_b(X, E) \), provided with the strict topologies \(\beta_z \), where \(z = \sigma, \alpha, p, r, t \).

Theorem 9. Assume that \(z = \sigma \) and \(C_b(X, E) \) is \(\beta_z \)-dense in \(C_b(X, E) \) (resp., \(z = \alpha \); \(z = p \), and \(C_b(X, E) \) is \(\beta_z \)-dense in \(C_b(X, E) ; z = r, z = t \).

(i) Let \(T : C_b(X, E) \rightarrow F \) be a \(\beta_z \)-continuous linear operator and let \(m \in M(X, \mathcal{L}(E, F^*)) \) be its representing measure. Then the following statements hold.

(i) \(m \in M(X, \mathcal{L}(E, F^*)) \) and \(m_{y'} : y' \in B_E \) satisfies the condition (Cz).

(ii) For each \(y' \in F^* \), \(y'(T(f)) = \int_X f dm_{y'} \) for \(f \in C_b(X, E) \).
(iii) For each \(f \in C_b(X,E) \) and \(A \in B \) there exists a unique vector in \(F'' \), denoted by \(\int_A fdm \), such that \((\int_A fdm)(y') = \int_A f dm_{y'} \) for each \(y' \in F' \).

(iv) For each \(A \in B \), the mapping \(C_b(X,E) \ni f \mapsto \int_A f dm \in F'' \) is a \((\beta_{\Sigma}, \| \cdot \|_{F''})\)-continuous linear operator.

(v) For \(f \in C_b(X,E) \), \(\int_X f dm \in i_F(F) \) and \(T(f) = j_F(\int_X f dm) \).

(vi) \(\| T \| = \tilde{m}(X) \).

Let \(m_\circ \in M(X, \mathcal{L}(E,F'')) \) stand for the representing measure of \(T \). Note that, for \(A \in B \), \(x \in E \), and \(y' \in F' \) we have

\[
(m_\circ(A)(x))(y') = \left(\left(\left(T|_{C_b(X,E)} \right)' \circ \pi \right)(1_A \otimes x) \right)(y')
\]

\[
= \pi(1_A \otimes x) \left(\left(T|_{C_b(X,E)} \right)'(y') \right)
\]

\[
= \pi(1_A \otimes x) \left(y' \circ \left(T|_{C_b(X,E)} \right) \right)
\]

\[
= \int_X (1_A \otimes x) dm_{y'},
\]

\[
= (m(A)(x))(y');
\]

that is, \(m_\circ = m \). By the first part of the proof (ii) and (vi) hold. Thus the proof is complete. \(\square \)

Following [14, 27] by \(M_a(\mathcal{B}a) \) we denote the space of all bounded countably additive, real-valued, regular (with respect to zero sets) measures on \(\mathcal{B}a \).

We define \(M_a(\mathcal{B}a, E') \) to be the set of all measures \(\mu : \mathcal{B}a \to E' \) such that the following two conditions are satisfied.

(i) For each \(x \in E \), the function \(\mu_x : \mathcal{B}a \to \mathbb{R} \), defined by \(\mu_x(A) = \mu(A)(x) \) for \(A \in \mathcal{B}a \), belongs to \(M_a(\mathcal{B}a) \).

(ii) \(|\mu| < \infty \), where for each \(A \in \mathcal{B}a \), we define \(|\mu| = \sup \sum \mu(A_i) \chi_i \), where the supremum is taken over all finite \(\mathcal{B}a \)-partitions \((A_i) \) of \(A \) and all finite collections \(\chi_i \in B_E \).

It is known that if \(\mu \in M_a(\mathcal{B}a, E') \), then \(|\mu| \in M_a(\mathcal{B}a) \) (see [27, Lemma 2.1]).

The following result will be of importance (see [27, Theorem 2.5]).

Theorem 10. Let \(\mu \in M_a(\mathcal{B}a, E') \). Then \(\mu \) possesses a unique extension \(\overline{\mu} \in M_a(\mathcal{B}a, E') \) and \(|\overline{\mu}|(X) = |\mu|(X) \).

Arguing as in the proof of Lemma 6 we can obtain the following lemma.

Lemma 11. Assume that \(C_b(X) \otimes E = \beta_{\Sigma} \)-dense in \(C_b(X,E) \) and \(\mu \in M_a(\mathcal{B}a, E') \). Then for \(A \in \mathcal{B}a \) the following statements hold.

(i) A functional \(\Phi_A : C_{rc}(X,E) \to \mathbb{R} \) defined by \(\Phi_A(h) = \int_A h dm = \beta_{\Sigma}dm_{\overline{\mu}} \) is a \(\beta_{\Sigma} \)-continuous linear functional on \(C_b(X,E) \) and it is uniquely extended to a \(\beta_{\Sigma} \)-continuous linear functional \(\overline{\Phi_A} : C_b(X,E) \to \mathbb{R} \), and one will write the following:

\[
\int_A f dm := \overline{\Phi_A}(f) \quad \text{for } f \in C_b(X,E).
\]

(ii) For \(f \in C_b(X,E) \), \(|\int_A f dm| \leq \int_A f|d|\overline{\mu} |.

By \(M_a(X, \mathcal{L}(E,F)) \) we will denote the space of all operator measures \(m : \mathcal{B} \to \mathcal{L}(E,F) \) such that \(\tilde{m}(X) < \infty \) and
$m_y \in M_\sigma(X, E')$ for each $y' \in F'$. By $M_\sigma(\mathcal{B}a, L(E, F))$ we will denote the space of all operator measures $m : \mathcal{B}a \to L(E, F)$ with $\bar{m}(X) < \infty$ such that $m_y \in M_\sigma(\mathcal{B}a, E')$ for each $y' \in F'$.

Remark 12. Note that in view of the Orlicz-Pettis theorem every $m \in M_\sigma(\mathcal{B}a, L(E, F))$ is countably additive in the strong operator topology; that is, for each $x \in E$, the measure $m_x : \mathcal{B}a \to F$ defined by $m_x(A) := m(A)(x)$ for $A \in \mathcal{B}a$ is countably additive. Moreover, in view of [30, Theorem 2] for each $x \in E$, m_x is inner regular by zero sets and outer regular by cozero sets; that is, for each $A \in \mathcal{B}a$ and $\varepsilon > 0$ there exist $Z \in \mathcal{L}$ with $Z \subset A$ and $P \in \mathcal{P}$ with $A \subset P$ such that $\|m_x\|(A \setminus Z) \leq \varepsilon$ and $\|m_x\|(P \setminus A) \leq \varepsilon,$ (where $\|m_x\|(A)$ denotes the semivariation of m_x on $A \in \mathcal{B}a$).

According to [14, Theorem 7] we have the following theorem.

Theorem 13. Assume that $m \in M_\sigma(X, L(E, F))$ and $\{m(A)(x) : A \in \mathcal{B}\}$ is a relatively weakly compact subset of F for each $x \in E$. Then m possesses a unique extension $\bar{m} \in M_\sigma(\mathcal{B}a, L(E, F))$ such that $\bar{m}(X) = \bar{m}(X)$.

For a linear operator $T : C_b(X, E) \to F$ and $x \in E$ let $T_x(u) := T(u \otimes x)$ for $u \in C_b(X)$. For $m \in M_\sigma(\mathcal{B}a, L(E, F')$) and $x \in E$ let $m_x(A) := m(A)(x)$ for $A \in \mathcal{B}a$.

Theorem 14. Assume that $C_b(X) \otimes E$ is β_σ-dense in $C_b(X, E)$.

(i) Let $T : C_b(X, E) \to F$ be a $(\beta_\sigma, \|\cdot\|_p)$-continuous linear operator such that $T_x : C_b(X) \to F$ is weakly compact for each $x \in E$, and let $m \in M_\sigma(X, L(E, F'))$ be the representing measure of T. Then the following statements hold.

(i) $m \in M_\sigma(X, L(E, F'))$ and $\bar{m}(Z_n) \to 0$ whenever $Z_n \uparrow 0, (Z_n) \subset \mathcal{L}$.

(ii) $m(A)(x) \in i_p(F)$, for each $A \in \mathcal{B}, x \in E$, and the measure $m_x : \mathcal{B} \to L(E, F)$, defined by $m_x(A) := j_p(m(A)(x))$ for $A \in \mathcal{B}, x \in E$, belongs to $M_\sigma(\mathcal{B}a, L(E, F))$ and possesses a unique extension $\bar{m} \in M_\sigma(\mathcal{B}a, L(E, F))$ with $\bar{m}(X) = \bar{m}(X)$ which is countably additive both in the strong operator topology and in the weak star operator topology. Moreover, $\bar{m}_x = \bar{m}_x$ for $y' \in F'$.

(iii) For every $x \in C_b(X, E)$ and $A \in \mathcal{B}a$ there exists a unique vector in F, denoted by $\int_A f \, d\bar{m}$, such that, for each $y' \in F'$, $y'\left(\int_A f \, d\bar{m}\right) = \lim_{\alpha} \int_A h_{\alpha} \, d\bar{m}$.

(iv) For each $A \in \mathcal{B}a$, the mapping $T_A : C_b(X) \to F$ defined by $T_A(f) = \int_A f \, d\bar{m}$ is a $(\beta_\sigma, \|\cdot\|_p)$-continuous linear operator.

(v) $T(f) = T_X(f) = \int_X f \, d\bar{m}$ for $f \in C_b(X, E)$.

(ii) Let $m \in M_\sigma(X, L(E, F'))$ be such that $\bar{m}(Z_n) \to 0$ whenever $Z_n \downarrow 0, (Z_n) \subset \mathcal{L}$ and for each $x \in E,$ let $m_x : \mathcal{B} \to F'$ be strongly bounded. Then the operator $T : C_b(X, E) \to F$ defined by $T(f) = j_p(\int_X f \, d\bar{m})$ is $(\beta_\sigma, \|\cdot\|_p)$-continuous and $T_x : C_b(X) \to F$ is weakly compact for each $x \in E$, and the statements (ii)–(v) hold.

Proof. (i) It follows from Theorem 9.

(ii) In view of Theorem 2 $m(A)(x) \in i_p(F)$ for $A \in \mathcal{B}, x \in E$, and $\{m_x(A)(x) : A \in \mathcal{B}\}$ is a relatively weakly compact in F for each $x \in E$. Since $m_x \in M_\sigma(X, L(E, F))$, by Theorem 10 m_x possesses a unique extension $\bar{m} \in M_\sigma(\mathcal{B}a, L(E, F))$ with $\bar{m}(X) = \bar{m}(X)$ by the Orlicz-Pettis theorem \bar{m} is countably additive in the strong operator topology. Moreover, since, for each $y' \in F'$, $\|\bar{m}_x\|_p \in M_\sigma(\mathcal{B}a) = ca(\mathcal{B}a, E')$. This means that $m : \mathcal{B}a \to L(E, F)$ is countably additive in the weak star operator topology.

Let $y' \in F'$. Then for $A \in \mathcal{B}a$ and $x \in E$ we have $\|\bar{m}_x\|_p = m_x(A)(x)$, and by Theorem 10, $\|\bar{m}_x\|_p = m_x$.

(iii) For $A \in \mathcal{B}a$, let $S_A(h) := \int_A f \, d\bar{m}$ for $h \in C_b(X, E)$. Proceeding as in the proof of Lemma 6 we can show that $S_A : C_b(X, E) \to F$ is a $(\beta_\sigma, \|\cdot\|_p)$-continuous linear operator, and hence S_A possesses a unique $(\beta_\sigma, \|\cdot\|_p)$-continuous linear extension $T_A : C_b(X, E) \to F$ (see [29, Theorem 2.6]). Let us write the following:

$$\int_A f \, d\bar{m} := T_A(f) \quad \text{for } f \in C_b(X, E).$$

Let $f \in C_b(X, E)$ and $x \in E$. Choose a net (h_{α}) in $C_b(X, E)$ such that $h_{\alpha} \to f$ for β_σ. For each $y' \in F'$, $\bar{m}_y = \bar{m}_y$ (see (i)) and by Lemma 11 we have

\[
y'(\int_A f \, d\bar{m}) = y'(\lim_{\alpha} \int_A h_{\alpha} \, d\bar{m}) = \lim_{\alpha} y'(\int_A h_{\alpha} \, d\bar{m}) = \lim_{\alpha} \int_A h_{\alpha} \, d\bar{m}_y = \int_A f \, d\bar{m}_y.
\]

(iv) It follows from the proof of (ii).

(v) Let $f \in C_b(X, E)$. In view of Theorem 9, for each $y' \in F'$, $y'(T(f)) = \int_X f \, d\bar{m}_y$. On the other hand by (ii) for $y' \in F'$ we have $y'(\int_X f \, d\bar{m}) = \int_X f \, d\bar{m}_y$. It follows that $T(f) = \int_X f \, d\bar{m}$.

(II) Since $\|\bar{m}_y\|_p \in B_{p'}$ satisfies the condition (C_σ), by Theorem 9 for $f \in C_b(X, E)$, $\int_X f \, d\bar{m}$ is $i_p(F)$ and the mapping $T : C_b(X, E) \to F$ defined by $T(f) := j_p(\int_X f \, d\bar{m})$ is $(\beta_\sigma, \|\cdot\|_p)$-continuous linear operator, and \bar{m} coincides with the representing measure T. Hence in view of Theorem 2 $T_x : C_b(X) \to F$ is a weakly compact operator. Thus by the first part of the proof the statements (ii)–(v) are satisfied.

\[\square\]

4. Strongly Bounded Operators on $C_b(X, E)$

Definition 15. A bounded linear operator $T : C_b(X, E) \to F$ is said to be strongly bounded if its representing measure...
\(m \in M(X, \mathcal{L}(E, F^\prime)) \) is strongly bounded; that is, \(\bar{m}(A_n) \to 0 \) whenever \((A_n) \) is a pairwise disjoint sequence in \(\mathcal{B}a \).

Note that \(m \in M(X, \mathcal{L}(E, F^\prime)) \) is strongly bounded if and only if the family \(\{m_{\gamma} : \gamma \in B_P\} \) is uniformly strongly additive.

Now we are ready to state our main results that extend some classical results of Lewis ([20, Theorem 5], [31, Lemma 1]) and Brooks and Lewis (see [22, Theorem 2.1], [21, Theorem 5.2]) concerning operators on the spaces \(C_\infty(X, E) \) and \(C_0(X, E) \), where \(X \) is a compact or a locally compact space, respectively.

Theorem 16. Assume that \(C_0(X) \otimes E \) is \(\beta_a\)-dense in \(C_\infty(X, E) \). Let \(T : C_\infty(X, E) \to F \) be a \((\beta_a, \|\cdot\|_E)\)-continuous linear operator and let \(m \in M(X, \mathcal{L}(E, F^\prime)) \) be its representing measure. Then \(m \in M_\sigma(X, \mathcal{L}(E, F^\prime)) \) and the following statements are equivalent.

(i) \(T \) is strongly bounded.

(ii) \(\sup \{ |m_{\gamma}|(A_n) : y^\prime \in B_P \} \to 0 \) whenever \((A_n) \downarrow 0 \), \((A_n) \subset \mathcal{B}a \) (here \(m_{\gamma} \in M_\sigma(\mathcal{B}a, E) \) denotes the unique extension of \(m_{\gamma} \in M_\sigma(X, E) \)).

(iii) If \((A_n) \) is a sequence in \(\mathcal{B}a \) such that \(A_n \downarrow 0 \), then there exists a nested sequence \((U_n) \) in \(\mathcal{P} \) such that \(A_n \subset U_n \) for \(n \in \mathbb{N} \) and \(\sup \|T(f)\|_F : f \in C_\infty(X, E), \|f\| \leq 1 \) and \(\sup f \subset U_n \).

Proof. In view of Theorem 9 \(m \in M_\sigma(X, \mathcal{L}(E, F^\prime)) \).

(i)\(\Rightarrow\)(ii) Assume that \(T \) is strongly bounded. Since the family \(\{m_{\gamma} : y^\prime \in B_P \} \) is uniformly strongly additive, according to [25, Lemma 1, page 26] the family \(\{m_{\gamma} \} : y^\prime \in B_P \) is uniformly countably additive (see Theorem 16).

(ii)\(\Rightarrow\)(i) It follows from [25, Lemma 1, page 26].

(ii)\(\Rightarrow\)(iii) Assume that (ii) holds and \((A_n) \) is a sequence in \(\mathcal{B}a \) such that \(A_n \downarrow 0 \). Then there exists \(\lambda \in \mathcal{C}a(\mathcal{B}a) \) such that \(|(m_{\gamma})(A_n) : y^\prime \in B_P| \leq \epsilon/2 \) whenever \(\lambda(A) \leq \delta \) and \(A \in \mathcal{B}a \). Since \(\lambda \) is zero-set regular, there exists a nested sequence \((U_n) \) in \(\mathcal{P} \) so that \(A_n \subset U_n \) and \(\lambda(U_n \setminus A_n) \leq \delta \) for \(n \in \mathbb{N} \). Hence \(\sup \{m_{\gamma}(U_n \setminus A_n) : y^\prime \in B_P\} \leq \epsilon/2 \) for \(n \in \mathbb{N} \). In view of (ii) there exists \(n_\epsilon \in \mathbb{N} \) such that \(\sup \{m_{\gamma}(U_n \setminus A_n) : y^\prime \in B_P\} \leq \epsilon/2 \) for \(n \geq n_\epsilon \). Hence \(\sup \{m_{\gamma}(U_n) : y^\prime \in B_P\} \leq \epsilon \) for \(n \geq n_\epsilon \); that is, \(\sup \{m_{\gamma}(U_n) : y^\prime \in B_P\} \to 0 \).

Let \(f \in C_\infty(X, E), \|f\| \leq 1 \), and \(sup f \subset U_n \). Then by Theorem 9 we have

\[
\|T(f)\|_F = \sup \left\{ \left\| \int_X f dm_{\gamma} y^\prime : y^\prime \in B_P \right\| \right. \\
\leq \sup \left\{ \left\| \int_X f dm_{\gamma} y^\prime : y^\prime \in B_P \right\| \right. \\
\leq \sup \left\{ \left| m_{\gamma}(U_n) : y^\prime \in B_P \right| \right. \\
\leq \sup \left\{ \left| m_{\gamma}(U_n) : y^\prime \in B_P \right| \right. \\
\leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \left\| \int_{U_n} h_\epsilon dm_{\gamma} y^\prime \right| \\
\leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \left\| \int_{U_n} h_\epsilon dm_{\gamma} y^\prime \right| \\
\leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \left\| \int_{U_n} h_\epsilon dm_{\gamma} y^\prime \right|.
\]

(iii)\(\Rightarrow\)(i) Assume that (iii) holds and \(A_n \downarrow 0 \), \((A_n) \subset \mathcal{B}a \). Then there exists a nested sequence \((U_n) \) in \(\mathcal{P} \) such that \(A_n \subset U_n \) for \(n \in \mathbb{N} \) and

\[
\sup \{\|T(f)\|_F : f \in C_\infty(X, E), \|f\| \leq 1, sup f \subset U_n \} \to 0.
\]
Hence
\[
\left| \int_{U_n} h_d d m_{y'} \right| \geq |\overline{m}_{y'}| \left(A_{n_\varepsilon} \right) - \frac{3}{4} \varepsilon \geq \frac{1}{4} \varepsilon.
\]
\[
\|T(h_\varepsilon)\|_F \geq \left| y'_{\omega} \left(T(h_\varepsilon) \right) \right| = \left| \int_X h_d d m_{y'} \right| \geq \frac{1}{4} \varepsilon.
\]
(54)

Thus we get a contradiction to \(\|T(h_\varepsilon)\|_F \leq (1/8)\varepsilon\).

Thus the proof is complete.

Theorem 17. Assume that \(C_{0}(X) \otimes E\) is \(\beta_{0}\)-dense in \(C_{0}(X,E)\). Let \(T : C_{0}(X,E) \rightarrow F\) be a \((\beta_{0}, \|\cdot\|_E)\)-continuous and strongly bounded operator and let \(m \in M(X, L(E,F))\) be its representing measure. Then the following statements hold.

(i) \(m \in M_{\sigma}(X, L(E,F))\) and \(m(A)(x) = \omega_{F}(A)(x)\) for \(A \in \mathcal{B}, x \in E\), and the measure \(m_{F} : \mathcal{B} \rightarrow L(E,F)\), defined by \(m_{F}(A)(x) := \omega_{F}(m(A)(x))\) for \(A \in \mathcal{B}, x \in E\), belongs to \(M_{\sigma}(X, L(E,F))\) and possesses a unique extension \(\overline{m} \in M_{\sigma}(\mathcal{B}_{a}, L(E,F))\) with \(\overline{m}(X) = \overline{m}(X) = \overline{m}(X)\) which is variationally semiregular; that is, \(\overline{m}(A_{n}) \rightarrow 0\) whenever \(A_{n} \downarrow 0, (A_{n}) \subset \mathcal{B}_{a}\).

(ii) For every \(f \in C_{0}(X,E)\) and \(A \in \mathcal{B}_{a}\) there exists a unique vector in \(F\), denoted by \(\int f \overline{d m}\), such that, for each \(y' \in F'\), \(y'(\int f \overline{d m}) = \int f \overline{d m}_{y'}\).

(iii) For each \(A \subset \mathcal{B}_{a}\), \(\int f_{n} \overline{d m} \rightarrow 0\) whenever \((f_{n})_{n} \subset C_{0}(X,E)\) is a uniformly bounded sequence in \(C_{0}(X,E)\) such that \(f_{n}(t) \rightarrow 0\) for \(t \in X\).

(iv) \(T(f) = \int f \overline{d m}\) for \(f \in C_{0}(X,E)\).

(v) \(T(f_{n}) \rightarrow 0\) whenever \((f_{n})_{n} \subset C_{0}(X,E)\) is a uniformly bounded sequence in \(C_{0}(X,E)\) such that \(f_{n}(t) \rightarrow 0\) for \(t \in X\).

Proof. (i) Note that, for \(x \in E\), \(\|m_{x}(A)\|_{F'} \leq \overline{m}(A)\|x\|_{E}\) for \(A \in \mathcal{B}\). Hence \(m_{x} : \mathcal{B} \rightarrow F'\) is strongly bounded, and by Theorems 2 and 14 \(m(A)(x) = \omega_{F}(m(A)(x))\) for \(A \in \mathcal{B}, x \in E\), belongs to \(M_{\sigma}(X, L(E,F))\) and possesses a unique extension \(\overline{m} \in M_{\sigma}(\mathcal{B}_{a}, L(E,F))\) with \(\overline{m}(X) = \overline{m}(X) = \overline{m}(X)\). Since \(\overline{m}_{y'} = \overline{m}_{y'}\) for \(y' \in F'\), by Theorem 16 we have \(\overline{m}(A_{n}) = \sup \{\|\overline{m}_{y'}| (A_{n}): y' \in F'\} \rightarrow 0\) whenever \(A_{n} \downarrow 0, (A_{n}) \subset \mathcal{B}_{a}\).

(ii) It follows from Theorem 14 because for each \(x \in E\), \(T_{X} : C_{0}(X,E) \rightarrow F\) is weakly compact (see Theorem 2).

(iii) In view of (i) there exists \(\lambda \in ca(\mathcal{B}_{a})\) such that \(\{\|\overline{m}_{y'}|: y' \in F'\}\) is \(\lambda\)-continuous (see [25, Theorem 4, pages 11-12]). Let \((f_{n})_{n}\) be a sequence in \(C_{0}(X,E)\) such that \(\sup \|f_{n}\|_{F'} = M < \infty\) and \(f_{n}(t) \rightarrow 0\) for every \(t \in X\). Let \(\varepsilon > 0\) be given. Then there exists \(\delta > 0\) such that \(\sup \|\overline{m}_{y'}| (A_{n})(x): a \in A_{n}\} \leq \delta \) whenever \(\|A_{n}\|_{\sigma} < \delta\) \(E\in \mathcal{B}_{a}\). Since \(\overline{f}_{n} \in B(\mathcal{B}_{a})\) for \(n \in \mathbb{N}\), by the Egoroff theorem there exists \(A_{\delta} \subset \mathcal{B}_{a}\) with \(\lambda(X \setminus A_{\delta}) \leq \delta\) and \(\sup_{E \in A_{\delta}} \overline{f}_{n}(t) \rightarrow 0\) whenever \(\lambda(X \setminus A_{\delta}) \leq \delta\) and \(\sup_{E \in A_{\delta}} \overline{f}_{n}(t) \leq \varepsilon/2 \overline{m}(X)\) for \(n \geq n_{\varepsilon}\).

\[\int T_{X}(f_{n}) \overline{d m} = \int f_{n} \overline{d m}_{y'} \rightarrow 0\] whenever \((f_{n})_{n} \subset C_{0}(X,E)\) is a uniformly bounded sequence in \(C_{0}(X,E)\) such that \(f_{n}(t) \rightarrow 0\) for \(t \in X\).

\[
\|T(f_{n})\|_{F} \leq \frac{\varepsilon}{2} \overline{m}(X) + M \cdot \frac{\varepsilon}{2} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

Hence \(\|T(f_{n})\|_{F} \rightarrow 0\) as \(n \rightarrow \infty\).

\[\int T_{X}(f_{n}) \overline{d m} = \int f_{n} \overline{d m}_{y'} \rightarrow 0\] whenever \((f_{n})_{n} \subset C_{0}(X,E)\) is a uniformly bounded sequence in \(C_{0}(X,E)\) such that \(f_{n}(t) \rightarrow 0\) for \(t \in X\).

\[\int T_{X}(f_{n}) \overline{d m} = \int f_{n} \overline{d m}_{y'} \rightarrow 0\] whenever \((f_{n})_{n} \subset C_{0}(X,E)\) is a uniformly bounded sequence in \(C_{0}(X,E)\) such that \(f_{n}(t) \rightarrow 0\) for \(t \in X\).

\[\int T_{X}(f_{n}) \overline{d m} = \int f_{n} \overline{d m}_{y'} \rightarrow 0\] whenever \((f_{n})_{n} \subset C_{0}(X,E)\) is a uniformly bounded sequence in \(C_{0}(X,E)\) such that \(f_{n}(t) \rightarrow 0\) for \(t \in X\).
variationally semiregular, in view of [33, Proposition 2.2] we have
\[
\lim_{n \to \infty} \sum_{i=1}^{n} T(f_i) = \lim_{n \to \infty} \int_X S_n \, d\mathbb{M} = \int_X g \, d\mathbb{M} \in E.
\] (56)

Hence \(\sum_{i=1}^{\infty} T(f_i) = \int_X g \, d\mathbb{M} \). Finally, if \((n_i)\) is any permutation of \(\mathbb{N}\), then \(\lim_{n \to \infty} \sum_{j=1}^{n_i} f_{n_i}(t) = g(t)\) for \(t \in X\). Then
\[
\sum_{i=1}^{\infty} T(f_{n_i}) = \int_X g \, d\mathbb{M},
\]
as desired. \(\square\)

Remark 19. A related result to Corollary 18 for strongly bounded operators on the space \(C_b(X,E)\) of \(E\)-valued continuous functions vanishing at infinity defined on a locally compact space \(X\) was obtained by Brooks and Lewis (see [21, Theorem 5.2]).

Recall that a Banach space \(E\) is said to be a Schur space if every weakly convergent sequence in \(E\) is norm convergent.

As a consequence of Theorem 17 we derive the following Dunford-Pettis type theorem for operators on \(C_b(X,E)\).

Theorem 20. Assume that \(C_b(X) \otimes E\) is \(\beta_{\sigma}\)-dense in \(C_b(X,E)\), where \(E\) is a Schur space. Let \(T : C_b(X,E) \to F\) be a \((\beta_{\sigma}, \|\cdot\|_E)\)-continuous and strongly bounded operator. Then \(T(f_n) \to 0\) in \(F\) whenever \((f_n)\) is a \(\sigma(C_b(X,E),M_E(X,E'))\) convergent to \(0\) sequence in \(C_b(X,E)\).

Proof. Assume that \(f_n \to 0\) for \(\sigma(C_b(X,E),M_E(X,E'))\). Then according to [11, Corollary 5], we obtain that \(\sup_n \|f_n\| < \infty\) and \(f_n(t) \to 0\) in \(\sigma(E,E')\) for each \(t \in X\). It follows that \(\|f_n(t)\|_E \to 0\) for \(t \in X\) because \(E\) is supposed to be a Schur space. Using Theorem 17 we derive that \(T(f_n) \to 0\) in \(F\), as desired. \(\square\)

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The author wishes to thank the referee for useful remarks and suggestions that have improved the paper.

References

