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Abstract. 
We approach the generalized Ulam-Hyers-Rassias (briefly, UHR) stability of quadratic functional equations via the extensive studies of fixed point theory. Our results are obtained in the framework of modular spaces whose modulars are lower semicontinuous (briefly, lsc) but do not satisfy any relatives of -conditions.



1. Introduction
The question of stability for a generic functional equation was originated in 1940 by Ulam [1]. Concerning a group homomorphism, Ulam posted the question asking how likely to an automorphism a function should behave in order to guarantee the existence of an automorphism near such functions.
Under the setting of Banach spaces, Hyers [2] was the first to give an affirmative answer to Ulam’s question the following year. It was extended to the cases of additive mappings by Aoki [3] and linear mappings by Rassias [4], the latter of which has influenced many developments in the stability theory. This area is then referred to as the Ulam-Hyers-Rassias stability or, briefly, the UHR stability.
The UHR stability and its relaxations play an important role in the studies of functional equations. Many functional equations are known for their complication in finding solutions. Knowing that a particular equation is stable makes it easier to find the solution. We can obviously see that to find an approximate solution is far less difficult than finding the exact solution. The stability then says that we can actually restrict ourselves to a neighborhood of the approximate solution.
In most cases, a functional equation is algebraic in nature whereas the stability is rather metrical. Hence, a normed linear space is a suitable choice to work with. However, several results in the literature have revealed that there are a great number of linear topological spaces whose appropriate topologies fail to be normable, especially in case of function spaces. Nakano [5] and Musielak and Orlicz [6] successfully considered replacing a norm with a so-called modular. A modular yields less properties than a norm does, but it makes more sense in many special situations. It is still rational to assume some additional properties like some relaxed continuities or some -related conditions on a modular. Thus, it is reasonable to extend the framework of stability of functional equations into a more general setting of modular spaces, as considered by Sadeghi [7] in case of Cauchy and Jensen functional equations. Note that the stability results in [7] are obtained only in the cases where the induced modulars are convex and lsc and satisfy a typical class of -conditions.
Let  and  be two groups; a mapping  is said to be quadratic if it satisfies the following functional equation: 
						
					The UHR and generalized UHR stabilities have always been questioned in various settings, but none takes place in modular spaces. Skof [8] has proved that quadratic mappings are generalized UHR stable provided that  and  are normed and Banach spaces, respectively. It was later realized [9] that even when  is an Abelian group, the same behavior is still guaranteed.
In the present paper, we consider the case where  is a linear space and  is a -complete modular space, where the scalar fields are arbitrary. Our main results are obtained by using the fixed point method under the assumptions that the modular is lsc and convex but not necessarily satisfies any -conditions.
2. Preliminaries
In this section, we recollect some basic definitions and properties of a modular space. Conventionally, we write throughout the paper , , and  to denote, respectively, the set of all reals, complexes, and nonnegative integers.
Definition 1. Let  be a vector space over a field  ( or ). A generalized functional  is called a modular if for arbitrary  if and only if , for every scalar  with , whenever  is a convex combination of  and .The corresponding modular space, denoted by , is then defined by 
							
Remark 2. Note that, for a fixed , the valuation  is increasing.
Unlike a norm, a modular needs not be continuous or convex in general. However, it often occurs that some weaker forms of them are assumed.
Remark 3. In case a modular  is convex, one has  for all , provided that .
Definition 4. Let  be a modular space and let  be a sequence in . Then,(i) is -convergent to a point  and write  if  as .(ii) is called -Cauchy if for any  one has  for sufficiently large .(iii)A subset  is called -complete if any -Cauchy sequence is -convergent.
Another unnatural behavior one usually encounter is that the convergence of a sequence  to  does not imply that  converges to , where  is chosen from the corresponding scalar field. Thus, many mathematicians imposed some additional conditions for a modular to meet in order to make the multiples of  converge naturally. Such preferences are referred to mostly under the term related to the -conditions.
A modular  is said to satisfy the -condition if there exists  such that  for all . Some authors varied the notion so that only  is required and called it the -type condition. In fact, one may see that these two notions coincide. There are still a number of equivalent notions related to the -conditions.
Remark 5. We have to be very careful about the convergence behaviors on multiples and sums of -convergent sequences. In general, we suppose that , for some , are sequences in  in which they -converge to the points , respectively. Then, the averaged sequence -converges to .
In [10], Khamsi proved a series of fixed point theorems in modular spaces where the modulars do not satisfy -conditions. His results exploit one unifying hypothesis in which the boundedness of an orbit is assumed.
Definition 6. Given a modular space , a nonempty subset , and a mapping . The orbit of  around a point  is the set 
							
						The quantity  is then associated and is called the orbital diameter of  at . In particular, if , one says that  has a bounded orbit at .
Lemma 7 (see [10]).  Let  be a modular space whose induced modular is lsc and let  be a -complete subset. If  is a -contraction, that is, there is a constant  such that 
							
						and  has a bounded orbit at a point , then the sequence  is -convergent to a point .
3. Generalized UHR Stability of Quadratic Mappings
This section is contributed to the stability behavior of quadratic mappings in modular spaces. Unlike in the original UHR stability where the likeliness of being a solution is guaranteed by the difference being bounded with a sufficiently small positive constant, we rather prefer using a weaker setting where the difference is being dominated by a particular real-valued function of class  defined below.
Definition 8. For a constant  and a linear space , one defines  to be the collection of all nonnegative real-valued functions  defined on  with the following properties for all :
							
Theorem 9.  Let  be linear space,  be a -complete modular space where  is lsc and convex, and  be a mapping with . Suppose that, for each , the following dominating condition holds: 
							
						where  with . Then, there exists the quadratic mapping  such that 
							
						for all . Equivalently, the quadratic mapping is generalized UHR stable.
To prove this stability result, we will need the following lemma.
Lemma 10.  Suppose that every assumption of Theorem 9 holds. Then, the following statements hold. The set  is a linear space.A generalized function  defined for each  by 
										 is a convex modular on .The corresponding modular space  is the whole space  and is -complete. is lsc
Proof.  is trivial.
 It is also easy to verify that  satisfies the axioms (m1) and (m2) of a modular. We will next show that  is convex, and hence (m3) is satisfied. Let  be given. Then there exist  and  such that 
							
						Consecutively, we have 
							
						Thus, if  and , we get 
							
						so that 
							
						Hence, we have 
							
						This concludes that  is a convex modular on .
 The fact that the corresponding modular space  is the whole space  is trivial, so we only show that  is -complete. Let  be a -Cauchy sequence in  and let  be given. There exists a positive integer  such that  for all . By the definition, we may see that 
							
						for all  and . Thus, at each fixed , the sequence  is a -Cauchy sequence. Since  is -complete,  is -convergent in  for each . Hence, we can define a function  by 
							
						for any . Since  is lsc, it follows from 14 that 
							
						provided that . Thus, -converges, so that  is -complete.
 Suppose that  is a sequence in  which is -convergent to an element . Let  be given. For each , let  be a constant such that 
							
						Again, we have 
							
						Now, observe from the lower semicontinuity of  that 
							
						Thus, we have 
							
						Since  is arbitrary, we can finally conclude that  is lsc
Next, we show that a self-mapping  defined by 
						
					has some fixed point accordingly to Lemma 7.
Lemma 11.  Suppose that every assumption of Theorem 9 holds and  is defined as in 21. Then,  has some fixed point.
Proof. We first show that  is a -contraction. Let , , and  be an arbitrary constant with . Observe that we have 
							
						so that 
							
						Therefore, we have . Since  are arbitrary,  is a -contraction.
Next, we show that  has a bounded orbit at , where  is taken from the assumption. Let  be arbitrary and set  in 6; we get 
							
						Since , the above inequality yields 
							
						Since  is convex, we obtain 
							
						Inductively, we may deduce for all  that 
							
						Moreover, we may see that 
							
						Now, for each , we have 
							
						By the definition of , we conclude that 
							
						which implies the boundedness of an orbit of  at . According to Lemma 7, the sequence -converges to some element, say .
Now, by the -contractivity of , one has 
							
						Passing  towards  and applying the lower semicontinuity of , we obtain that 
							
						Therefore,  is a fixed point of .
Now, with the two lemmas above, we can finally give a simple proof to our main stability result, namely, Theorem 9.
Proof of Theorem 9. Since  and  are in  provided that , we deduce from 6 that 
							
						Furthermore, we have 
							
						As from Lemma 11 and Remark 5, letting  and applying the lower semicontinuity of , we deduce that 
							
						That is,  is a quadratic mapping, since every quadratic map is a fixed point of . On the other hand, it follows from inequality 28 that 
							
If domination 6 is put to slightly stronger condition of a boundedness, we conclude the following classical UHR stability statement in modular spaces.
Corollary 12.  Let  be a linear space,  be a -complete modular space where  is lsc and convex, and  be a mapping with . If there exist a constant  such that 
							
						then there exists the quadratic mapping  such that 
							
For the next two corollaries, we will consider the case where  is actually a norm. Before stating the results, we have to note that if , then we also have  for all constant . Thus, there is no loss of generality asserting the upcoming corollaries in the following form(s).
Corollary 13.  Let  be a linear space,  be a Banach space, and  be a mapping with . Suppose that, for each , there holds the inequality 
							
						where  with . Then, there exists a unique quadratic mapping  such that 
							
Corollary 14.  Let  be a linear space,  be a Banach space, and  be a mapping with . It there exists a constant  such that 
							
						then there exists a unique quadratic mapping  such that 
							
4. Concluding Remarks
Our results guarantee the stability of quadratic mappings, whose codomain is equipped with a convex and lsc modular, in both generalized and original senses. In contrast to the existing study of Sadeghi [7], our proofs contain different techniques to avoid the usage of -conditions.
Technically, comparing the results in modular and normed spaces, we may see that the coefficient in the case of modular is significantly smaller ( to ). However, the  appeared in modular space cases are apparently larger.
We are also curious whether the multiple of  on the left of the inequality 6 can be dropped. This leaves a considerable interesting question for future research.
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