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Abstract. 
We present the best possible parameters  and  such that the double inequality  holds for all  and  with , where    and  and  are the power and one-parameter harmonic means of  and , respectively.



1. Introduction
For  and , the th power mean  of  and  is defined by 
It is well known that  is strictly increasing with respect to  for fixed  with , symmetric and homogeneous of degree 1. Many classical means are special cases of the power mean: for example,  is the harmonic mean,  is the geometric mean,  is the arithmetic mean, and  is the quadratic mean. The main properties of the power mean are given in [1]. Recently, the power mean has attracted the attention of many researchers. In particular, many remarkable inequalities for the power mean can be found in the literature [2–10].
Let , , , , and  be the logarithmic, first Seiffert, identric, second Seiffert, and contraharmonic means of two distinct positive real numbers  and , respectively. Then it is well known that the inequalities hold for all  with .
Lin [11] proved that the double inequality holds for all  with  if and only if  and .
In [12], Pittenger presented the best possible parameters  and  such that the double inequality holds for all  with , where , , and  is the generalized logarithmic mean of  and .
Jagers [13] and Seiffert [14] proved that the double inequalities hold for all  with .
In [15, 16], the authors proved that the double inequalities 
hold for all  with .
Costin and Toader [17] proved that the double inequality holds for all  with .
In [18–20], the authors proved that the double inequalities hold for all  with  if and only if , , , and .
Čizmesija [21] proved that  and  are the best possible parameters such that the double inequality  holds for all  and  with .
In [22, 23], the authors proved that the inequalitieshold for all  if and only if , , and , where  and  are, respectively, the complete elliptic integrals of the first and second kinds.
Let  and  be the bivariate symmetric mean. Then, the one-parameter mean  was defined by Neuman [24] as follows: 
Let  and . Then, the authors in [25–28] proved that the inequalities hold for all  with  if and only if , , , , , , , , , , and , where  is the unique solution of the equation .
The main purpose of this paper is to present the best possible parameters  and  such that the double inequality  holds for all  and  with .
2. Lemmas
In order to prove our main result we need three lemmas, which we present in this section.
Lemma 1.  The inequality holds for all .
Proof. It is not difficult to verify that  for all . Therefore, we only need to prove that  for , where . Simple computations lead to where for all .
Inequality (15) implies that  for all . Then, from (13) we clearly see that  for all .
Lemma 2.  The inequality holds for all .
Proof. Let  and . Then, it is not difficult to verify that for all .
It follows from Lemma 1 thatfor all .
Inequalities (17) and (18) lead to for all .
Lemma 3.  The inequality holds for all .
Proof. Let  and . Then, it follows from (17) and (18) that for all .
3. Main Results
Theorem 4.  The double inequality holds for all  and  with  if and only if  and .
Proof. Without loss of generality, we assume that  and . Let , where Then, simple computations lead towhere whereWe divide the proof into two cases.
Case 1 ( ). We divide the discussion into two subcases.
Subcase 1.1 (  and ). Then, we clearly see that , and (28), (29), (32), and (33) lead to for .
It follows easily from (24), (25), (27), (30), and (34)–(36) that for all .
Subcase 1.2 (  and ). Then, , and (37) follows from Case 2 ( ). Then, we clearly see that , and Lemmas 1–3 and (23), (26), (28), (29), and (32) lead to and (36) again holds.
It follows from (30), (36), and (45) that  is strictly increasing on . Then, (43) and (44) lead to the conclusion that there exists  such that  is strictly decreasing on  and strictly increasing on .
From (41) and (42) together with the piecewise monotonicity of  we clearly see that there exists  such that  is strictly decreasing on  and strictly increasing on . Then, (25), (27), and (40) lead to the conclusion that there exists  such that  is strictly decreasing on  and strictly increasing on . Therefore, for all  follows from (24) and (39) together with the piecewise monotonicity of .
Next, we prove that  and  are the best possible parameters such that the double inequality holds for all  and  with .
Let , , , , and . Then, we have Let  and make use of the Taylor expansion; then, (48) leads to Inequality (49) and equation (50) imply that for any  and  there exist  and  such that  for  and  for .
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