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Abstract. 
We aim at characterizing generalized functionals of discrete-time normal martingales. Let  be a discrete-time normal martingale that has the chaotic representation property. We first construct testing and generalized functionals of  with an appropriate orthonormal basis for ’s square integrable functionals. Then we introduce a transform, called the Fock transform, for these functionals and characterize them via the transform. Several characterization theorems are established. Finally we give some applications of these characterization theorems. Our results show that generalized functionals of discrete-time normal martingales can be characterized only by growth condition, which contrasts sharply with the case of some continuous-time processes (e.g., Brownian motion), where both growth condition and analyticity condition are needed to characterize generalized functionals of those continuous-time processes.



1. Introduction
Hida’s white noise analysis is essentially an infinite dimensional calculus on generalized functionals of Brownian motion [1–4]. In 1988, Ito [5] introduced his theory of generalized Poisson functionals, which can be viewed as an infinite dimensional calculus on generalized functionals of Poisson martingale. It is known that both Brownian motion and Poisson martingale are continuous-time normal martingales. There are theories of white noise analysis for some other continuous-time processes (see, e.g., [6–10]).
Discrete-time normal martingales [11] also play an important role in many theoretical and applied fields [12, 13]. It would then be interesting to develop an infinite dimensional calculus on generalized functionals of discrete-time normal martingale. In [14], the authors defined the Wick product for generalized functionals of Bernoulli noise and analyzed its properties. In fact, generalized functionals of Bernoulli noise can be viewed as generalized functionals of a random walk.
In this paper, we consider a class of discrete-time normal martingales, namely, the ones that have the chaotic representation property, which include random walks, especially the classical random walk. Our main work is as follows. Let  be a discrete-time normal martingale that has the chaotic representation property. We first construct testing and generalized functionals of  with an appropriate orthonormal basis for ’s square integrable functionals. Then we introduce a transform, called the Fock transform, for these functionals and characterize them via the transform. Several characterization theorems are established. Finally we give some applications of these characterization theorems.
Our results show that generalized functionals of discrete-time normal martingales can be characterized only by growth condition, which contrasts sharply with the case of some continuous-time processes (e.g., Brownian motion), where both growth condition and analyticity condition are needed to characterize generalized functionals of those continuous-time processes (see, e.g., [1–4, 15, 16]).
2. Discrete-Time Normal Martingale
Throughout this paper,  designates the set of all nonnegative integers and  the finite power set of ; namely, where  means the cardinality of  as a set. It is not hard to check that  is countable as an infinite set. Additionally, we assume that  is a given probability space with  denoting the expectation with respect to . We denote by  the usual Hilbert space of square integrable complex-valued functions on  and use  and  to mean its inner product and norm, respectively. By convention,  is conjugate-linear in its first argument and linear in its second argument.
Definition 1 (see [11]). A (real-valued) stochastic process  on  is called a discrete-time normal martingale if it is square integrable and satisfies(i) and  for ,(ii) and  for ,where  and  for .
Now let  be a discrete-time normal martingale on . We give some necessary notions concerning . First we construct from  a process  as It can be verified that  admits the following properties: Thus, it can be viewed as a discrete-time noise (see [11]).
Definition 2. The process  defined by (2) is called the discrete-time normal noise associated with .
The next lemma shows that, from the discrete-time normal noise , one can get an orthonormal system in , which is indexed by .
Lemma 3 (see [17, 18]).  Let  be the discrete-time normal noise associated with . Define , where  denotes the empty set, and Then  forms a countable orthonormal system in .
Let , the -field over  generated by . In the literature, -measurable functions on  are also known as functionals of . Thus elements of  can be called square integrable functionals of .
Definition 4. The discrete-time normal martingale  is said to have the chaotic representation property if the system  defined by (4) is total in .
So, if the discrete-time normal martingale  has the chaotic representation property, then the system  defined by (4) is actually an orthonormal basis for , which is a closed subspace of  as is known.
Remark 5. Émery [17] called a -indexed process  a novation, provided it satisfies (3), and introduced the notion of the chaotic representation property for such a process.
3. Generalized Functionals of Discrete-Time Normal Martingale
In the present section, we show how to construct generalized functionals of a discrete-time normal martingale.
Let  be a discrete-time normal martingale on  that has the chaotic representation property. We denote by  the discrete-time normal noise associated with  (see (2) for its definition) and use the notation  as defined in (4).
For brevity, we use  to mean the space of square integrable functionals of ; namely, which shares the same inner product and norm with , namely,  and .
Lemma 6 (see [14]).  Let  be the -valued function on  given by Then, for , the positive term series  converges and moreover 
Using the -valued function defined by (6), we can construct a chain of Hilbert spaces of functionals of  as follows. For , we define a norm  on  through and put It is not hard to check that  is a Hilbert norm and  becomes a Hilbert space with . Moreover, the inner product corresponding to  is given by Here  means the complex conjugate of .
Lemma 7.  For , one has  and moreover the system  forms an orthonormal basis for .
Proof. For , a direct calculation gives , which means that . Clearly  is an orthonormal system in . To complete the proof, we need only to show that it is also total in . In fact, we have So, if  satisfies that , for all , then it must satisfy that , for all , which implies that  because the system  is an orthonormal basis for . Thus  is total in .
It is easy to see that  for all . This implies that  and  whenever . Thus we actually get a chain of Hilbert spaces of functionals of : We now put and endow it with the topology generated by the norm sequence . Note that, for each ,  is just the completion of  with respect to . Thus  is a countably-Hilbert space [19, 20]. The next lemma, however, shows that  even has a much better property.
Lemma 8.  The space  is a nuclear space; namely, for any , there exists  such that the inclusion mapping  defined by  is a Hilbert-Schmidt operator.
Proof. Let . Then there exists  such that . By Lemma 7,  is an orthonormal basis for . Thus, it follows from Lemma 6 that where  denotes the Hilbert-Schmidt norm of an operator. Therefore the inclusion mapping  is a Hilbert-Schmidt operator.
For , we denote by  the dual of  and  the norm of . Then  and  whenever . The lemma below is then an immediate consequence of the general theory of countably-Hilbert spaces (see, e.g., [19] or [20]).
Lemma 9.  Let  be the dual of  and endow it with the strong topology. Then and moreover the inductive limit topology on  given by space sequence  coincides with the strong topology.
We mention that, by identifying  with its dual, one comes to a Gel’fand triple which we refer to as the Gel’fand triple associated with .
Theorem 10.  The system  is contained in  and moreover it forms a basis for  in the sense that where  is the inner product of  and the series converges in the topology of .
Proof. It follows from Lemma 7 and the definition of  that the system  is contained in . Let . Then, for each , we have , which together with Lemma 7 gives where the series on the right-hand side converges in norm . On the other hand, we find Thus and the series on the right-hand side converges in  for each , namely, in the topology of .
Definition 11. Elements of  are called generalized functionals of , while elements of  are called testing functionals of .
As mentioned above, by identifying  with its dual, one has the Gel’fand inclusion relation , which justifies this definition.
4. Characterization Theorems
Let  be the same as in Section 3. In this section, we establish some characterization theorems for testing and generalized functionals of , which are our main results.
We continue to use the notions and notation made in previous sections. Additionally, we denote by  the canonical bilinear form on ; namely, Note that  denotes the inner product of , which is different from .
Recall that . This allows us to introduce the following definition.
Definition 12. For , its Fock transform is the function  on  given by where  is the canonical bilinear form.
The theorem below shows that a generalized functional of  is completely determined by its Fock transform.
Theorem 13.  Let , . Then  if and only if .
Proof. Clearly, we need only to prove the “if” part. To do so, we assume . Then, for each , by using Theorem 10 and the continuity of  and  we have Thus .
Theorem 14.  Let . Then there exist constants  and  such that 
Proof. By Lemma 9, there exists some  such that . Now write . Then, for each , we have This completes the proof.
Theorem 15.  Let  be a function on  satisfying for some constants  and . Then there exists a unique  such that  and moreover, for , one has 
Proof. Put where the series converges in  due to the following estimate:which implies that since . Thus . Moreover we easily see that . The uniqueness of  is obvious.
Theorems 14 and 15 characterize generalized functionals of  through their Fock transforms. As an immediate consequence of these two theorems, we come to the next corollary, which offers a criterion for checking whether or not a function on  is the Fock transform of a generalized functional of .
Corollary 16.  Let  be a function on . Then  is the Fock transform of an element of  if and only if it satisfies where  and  are some constants independent of .
Remark 17. The condition described by (31) is actually a type of growth condition. This corollary then shows that growth condition is enough to characterize generalized functionals of . This contrasts sharply with the case of some continuous-time processes (e.g., Brownian motion), where both growth condition and analyticity condition are needed to characterize generalized functionals of those continuous-time processes (see, e.g., [1–4, 15, 16]).
Let . Then there exists a continuous linear functional  on  such that  and where  and  are the inner product and norm of , respectively. As a functional on ,  is obviously continuous with respect to the topology of ; thus . Based on these observations, we come to the next theorem, which actually offers a characterization for testing functionals of .
Theorem 18.  Let  be a function on . If  satisfies that for each  there exists  such that then there exists a unique  such that . Conversely, if   for some , then for each  there exists  such that (33) holds.
Proof. The second part of the theorem can be proved easily. Here we only give a proof to the first part.
To do so, we consider the series  in . Let . Then we can take  such that . By the condition on , there exists a constant  such that which, together with Lemma 6, yieldsOn the other hand,  is an orthogonal series with respect to . This together with (35) implies that it converges in . Thus, by the arbitrariness of the choice of , it converges actually in .
Now we write . A simple calculation gives that , for , which together with (32) leads to . Clearly, such an  is unique.
5. Applications
In the last section, we show some applications of our results obtained in previous sections.
Let  be the same as in Section 3. We continue to use the notions and notation made in previous sections. Recall that elements of  are called generalized functionals of .
Example 19. Consider the counting measure  over . It can be shown that, as a function on ,  satisfies Thus, by Theorem 15,  is the Fock transform of a certain generalized functional  of , and moreover  has a norm estimate like where .
Example 20. Consider the function  on . Clearly, it satisfies condition (26) with  and . Thus, by Theorem 15, there exists a generalized functional of , written as , such that and moreover  has a norm estimate as below where .
To show two more examples of application, we first prove a useful norm formula for elements of .
Theorem 21.  Let , where . Then the norm of  in  satisfies 
Proof. By the Riesz representation theorem [21], there exists a unique  such that  and which, together with Lemma 7, gives This completes the proof.
In general, the usual product of two generalized functionals of  is no longer a generalized functional of . This means that the usual product is not a multiplication in . The following two examples, however, show that by using our characterization theorems one can define other types of multiplication in .
Example 22. Let ,  be generalized functionals of . Then, by Theorem 14, the function  satisfies condition (26). Thus there exists a unique generalized functional of , written as , such that We call  the convolution of  and . It can be shown that, with  as the multiplication,  becomes an algebra.
Remark 23. In [22], the authors defined the convolution for square integrable functionals of . Here our definition of convolution actually extends that in [22].
Example 24. Let ,  be generalized functionals of . Then there exists a unique generalized functional of , written as , such that where  means that the sum is taken over all subsets of . We call  the Wick product of  and .
Proof. In fact, by Lemma 9, there exists  such that , . Now define and take . Then, by using Theorem 21, we have which implies that , , where Thus, by Theorem 15, there exists a unique generalized functional of , written as , satisfying .
Remark 25. In [14], by using the Guichardet representation, the authors defined the Wick product for generalized functionals of Bernoulli noise.
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