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Abstract. 
Let  be a family of continuous functions defined on a compact interval. We give a sufficient condition so that  contains a dense -generated free algebra; in other words,  is densely -strongly algebrable. As an application we obtain dense -strong algebrability of families of nowhere Hölder functions, Bruckner-Garg functions, functions with a dense set of local maxima and local minima, and nowhere monotonous functions differentiable at all but finitely many points. We also study the problem of the existence of large closed algebras within  where  or . We prove that the set of perfectly everywhere surjective functions together with the zero function contains a -generated algebra closed in the topology of uniform convergence while it does not contain a nontrivial algebra closed in the pointwise convergence topology. We prove that an infinitely generated algebra which is closed in the pointwise convergence topology needs to contain two valued functions and infinitely valued functions. We give an example of such an algebra; namely, it was shown that there is a subalgebra of  with  generators which is closed in the pointwise topology and, for any function  in this algebra, there is an open set  such that  is a Bernstein set.



1. Introduction
The algebraic properties of sets of functions have been considered in analysis for many years. One direction of such research is finding the so-called maximal (additive, multiplicative, and so on) classes for certain families of functions. For example, it was proved in [1] that the maximal additive class for Darboux real functions is the set of all constant functions. Recently, a new point of looking on the largeness of sets of functions has appeared. One can call a set , contained in some algebraic structure of functions, a big one if  (or ) contains a large, nice substructure inside. The first papers written in this direction were [2–4] and then [5–7]. In these papers, the notions contained in the following definition can be found.
Definition 1. Let  be a cardinal number.(1)Let  be a vector space and let . We say that  is -lineable if  contains a -dimensional vector space.(2)Let  be a Banach space and . We say that  is spaceable if  contains an infinite dimensional closed vector space.(3)Let  be a commutative algebra and let . We say that  is -algebrable if  contains a -generated algebra  (i.e., the minimal cardinality of the set generating  equals ).
Bartoszewicz and Głąb in [8] introduced the notion of strong algebrability.
Definition 2. Let  be a cardinal number, let  be a commutative algebra, and let . One says that  is strongly -algebrable if  contains a -generated free algebra.
Let us observe that the notion of spaceability is not a fully algebraic property but it has a topological ingredient (we ask about the existence of closed subspace of given Banach space). Ciesielski et al. in [9] asked about the existence of large linear subspaces, closed in the pointwise or uniform convergence topology in  or . So, following this way, one can define spaceability in linear topological spaces.
Some authors were interested in searching for a large substructure with some other topological property, namely, dense lineability (or algebrability) of some classes of functions. For example, Bayart and Quarta in [10] proved that the set  of all nowhere Hölder functions is densely -algebrable in . In [11], Bastin et al. proved that the set of all nowhere Gevrey functions is densely -algebrable in .
The aim of our paper is to formulate, prove, and apply some techniques of constructing dense -generated free algebras in the space of continuous functions on a compact interval and to consider the possibility of the existence of closed algebras in some sets of real or complex functions.
2. Dense Strong -Algebrability in 
It is a simple observation that the set  is linearly independent in . Moreover, if  is linearly independent over , then  is the set of free generators. In [12] the authors, using the composition of a function with some needed properties with such an exponential function, proved the -algebrability of the set  of continuous functions with dense sets of local extrema. Recently, this idea has been further developed in [13, 14].
Let us call, after [13], a function  exponential-like of rank  whenever  is given by the formula  for some pairwise distinct nonzero numbers  and some nonzero numbers . We have the following.
Theorem 3 (see [13]).  Let  and assume that there exists a function  such that  for every exponential-like function . Then  is strongly -algebrable. More exactly, if  is a set of cardinality  and linearly independent over the rationals , then , , are free generators of an algebra contained in .
Using Stone-Weierstrass theorem, it is not difficult to observe that the algebra described in Theorem 3 is dense in  if and only if the function  is continuous and strictly monotonic. This argument is described in the last section of [14]. To illustrate this, consider the following two examples. Let  stand for the set of all continuous functions which are differentiable  times but not differentiable  times at any point of their domains. Let  be the th antiderivative of a strictly positive nowhere differentiable function. Then by [14, Theorem 4.5], the family  is densely -strongly algebrable. In turn, using [14, Theorem 4.9] and a similar argument, one can prove that the set of all functions from , whose derivative is not -Hölder (for any ) at all but finitely many points, is densely -strongly algebrable.
However, for many classes of functions, the monotonic representative does not exist. Here we propose some method of construction of a dense algebra even if  does not contain any monotonic function.
2.1. Nowhere Constant Continuous Functions
Let  be a continuous function. Then  is called left nondecreasing at  if there is  such that  for any . Analogously we define a left nonincreasing function at  and right nondecreasing (nonincreasing) function at . We say that  is a point of local monotonicity, provided that  is left nondecreasing or left nonincreasing and  is right nondecreasing or right nonincreasing; see [15, 16]. Note that if  is a point of local minimum (local minimizer) or a point of local maximum (local maximizer) of , then  is a point of local monotonicity. We say that  is nowhere constant, provided that its restriction to any open interval is not constant.
Fix a function  which is nowhere constant and such that  and  are points of (one-sided) monotonicity of . For , denote by  the largest possible  such that  is between  and  for every  (here by  we mean the singleton ). Such a number  always exists by the continuity of . Let  and inductively  for .
Lemma 4.  Let . If , then (i);(ii) is a point of local extremum of ;(iii) is a local minimizer of  if and only if  is a local maximizer of .
Proof. Since  is a point of right local monotonicity of , say  is right nondecreasing at , then there is  such that  for every . Let  such that . Since  is nowhere constant, then . Hence, .
Now, we will show that  is a point of right local monotonicity of . Suppose not, then by the definition of ,  for . Moreover . Let  such that  for . Then  attains its maximum at some . Since  is not right nonincreasing at , then . Moreover  for any . This contradicts the definition of .
Proceeding inductively we obtain that  or . Note that ,  are local extrema of . Moreover if  is a local minimizer of , then  is a local maximizer of  and vice versa.
Lemma 5.  There is  such that .
Proof. Suppose that  for every . By Lemma 4, the sequence  is strictly increasing. Let . If  is left nondecreasing at , then there is  such that  for every . Let  be such that  is a local minimizer of  with . Then for any  we have  which contradicts the definition of . In the same manner, we show that  is not left nonincreasing. Therefore , since  is left monotonous at .
Suppose now that  is not right nondecreasing at . Let  be a minimizer of  on . Then  and . Let  be such that  for every . Then fix  such that  is a local maximizer of  and  for . This is possible since  and  is continuous. Therefore,  for , which contradicts the definition of . Similarly one can prove that the assumption that  is not right nonincreasing at  also leads to contradiction. Hence,  is both right nondecreasing and right nonincreasing at . This means that  is constant on  for some positive , which contradicts the fact that  is nowhere constant. This shows that  for some .
Lemma 6.  Let  be nowhere constant and  for any . Let . Then there is a partition  such that (i) is between  and  for  and ;(ii)the mesh  of the partition is smaller than .
Proof. Let  be any partition of  with the mesh smaller than . We will find a new partition  of  such that each interval  contains at most one  and each  is a point of local monotonicity of . This new partition will also have a mesh smaller than . We construct it in the following way.
If  is a point of local monotonicity of , then  remains in the new partition. Otherwise, by the fact that  is nowhere constant the restriction  attains its minimum at some  and maximum at some . If one of the points  is in , then it is a point of local monotonicity and we put it to the new partition. However, it may happen that ; that is,  and  are the endpoints of the interval . We may assume that  and . Take any . If  is a point of local monotonicity of , then we are done. Assume now that  is not a point of local monotonicity of . This means that either  is not a point of left monotonicity of  or it is not a point of right monotonicity of . We may assume that  is not a point of left monotonicity of . Then,  attains its maximum on  on some  and  is a both-sided monotonicity point of ;  is between  and , and we put it to the new partition. Similarly one can find an appropriate both-sided monotonicity point in  which we put into the new partition.
In the next step we will find a refinement  of  for which (i) holds true. To find such a refinement, for every , we use Lemma 5 for the restriction , , and .
The assumption that  is nowhere constant in Lemma 6 is essential. To see it, consider a function  given by 
								
							Note that . For every partition  with the mesh smaller than 1, there is the largest  with . Then,  and we may assume that . But there is  with , which means that the assertion of Lemma 6 does not hold for . The problem is that  is constant on .
Lemma 7.  Let  be a finite set which is linearly independent over . Let  be a nowhere constant continuous function with  for any . Then, for any , there are  and  such that (i);(ii) for , ;(iii)the set  is linearly independent over .
Proof. By the previous lemma there are  such that(i) is between  and  for  and ;(ii).
We can find real numbers  such that the set  is linearly independent over , , and . Let . Since  is between  and ,  is between  and . We have 
									
								In the second step, we can find real numbers  such that the set  is linearly independent over , , and . Let . Since  is between  and , then  is between  and . We have
									
								After  steps, the construction is complete.
2.2. Main Theorem
Let  be a continuous function. We consider the following operation on . Let  be a partition of . Let  be such that  for ,  is exponential-like and  is continuous. We say that  is a continuous piecewise exponential-like transformation of .
We say that a family  of continuous functions defined on compact intervals is flexible, provided(1) consists of nowhere constant functions;(2)there is  with  and  for ;(3) for every  and for any of its continuous piecewise exponential-like transformation .
From now on we assume that  is flexible.
Theorem 8.   is densely -strongly algebrable in .
Proof. Let  be such that  and  for any . Using Lemma 7 for  and , we find a partition  of the unit interval and a continuous function  such that(i);(ii) for , ;(iii)the set  is linearly independent over .In the next step we use Lemma 7 for  and , and we find a refinement  of the partition  and a continuous function  such that(i);(ii) for , ;(iii)the set  is linearly independent over  and so forth.Inductively we define . Let . By the construction,  is linearly independent over . We extend  to a linearly independent set  over  of cardinality . We may assume that there is  with . By the assumption, . Let  be a polynomial in  variables without a constant term. Consider a function . Then,  restricted to  is of the form
									
								where ,  are pairwise distinct and the vectors of integers  are pairwise distinct. Therefore, the numbers , , are distinct as well. Thus, the mapping
									
								is a continuous exponential-like transformation of  on . Since  is closed under continuous piecewise exponential-like transformations, .
This shows that the algebra  generated by  is a free algebra of  generators. To see that  is dense in , note that the sequence  tends to , and therefore  separates the points of . Moreover, note that , which means that the closure of  contains all constant functions. Using Stone-Weierstrass theorem, we obtain the assertion.
2.3. Applications
(1) We say that a continuous function  is nowhere Hölder, provided that for any  and any 
							Let us denote the set of all nowhere Hölder functions by . It was proved in [14] that  for any nonconstant analytic function  and any . It can be easily seen that if  and  are nowhere Hölder with , then  is also nowhere Hölder. Therefore,  is closed under taking continuous piecewise exponential-like transformations. Clearly  does not contain a function which is constant on some open interval.
Now, we prove that condition (2) in definition of flexibility is fulfilled. Let . We may assume that  (otherwise, consider  which is also nowhere Hölder). If  for , then we are done. Otherwise, find a maximizer  of . Then,  for . If  for , then an affine transformation  of  fulfills condition (2) in the definition of a flexible family. Otherwise, find a minimizer  of . Then,  for . Then, an affine transformation  of  fulfills condition (2) in the definition of a flexible family. This argument will hold also for the next families.
Finally, by Theorem 8, the set of all nowhere Hölder functions in  is densely -strongly algebrable.
(2) We say that a continuous function  is Bruckner-Garg of rank  (shortly ), provided that there exists a countable set  with the property that for all  the preimage  is a union of a Cantor set with at most  many isolated points and for all  the preimage  is a Cantor set. A function  is Bruckner-Garg (shortly ), provided it is Bruckner-Garg of rank  for some . Bruckner-Garg functions of rank  were investigated in [17], where it was shown that  is residual in . By [14, Theorem 4.13] we can easily conclude that  is flexible and hence it is densely -strongly algebrable.
(3) Let  be the set of all continuous functions such that both sets of their proper local minima and maxima are dense in . Using a similar argument to that in [12], one can prove that the set of all functions from  is flexible and thereby it is densely -strongly algebrable.
(4) Denote by  the set of all functions in  which are nowhere monotonic and differentiable in all but finitely many points; see [18]. It can be shown in a standard way that  is flexible; thus, it is densely -strongly algebrable.
3. Closed Algebrability
Aron et al. posed the following problem [19, Problem 4.1]: Characterize when there exists a closed infinite dimensional algebra of functions with a particular “strange” property. Among the classes considered by the authors, there was the family of everywhere surjective functions . In the space  or , , we consider two natural topologies, namely, the topology  of pointwise convergence—the weakest topology in which each projection is continuous—and the topology  of uniform convergence. We will show that the -closure of any nontrivial algebra contains a two-valued function (some characteristic function). Moreover, we will give a sufficient condition for the existence of a closed algebra inside  of  generators.
The following proposition shows that if  is a -closed nontrivial algebra, then  contains a two-valued function.
Proposition 9.  Let  be a subalgebra of  or . Then for any  the characteristic function  of  is in .
Proof. Let . Let  be the characteristic function of . Take any  and . Let  for . We need to show that . Let . Put 
							
						Then,  is a polynomial without a constant term such that  for any . If , then . Since , . If , then  for some  and . This shows that .
By , we denote the family of all everywhere surjective functions , that is, functions which map any nonempty open subset of  onto . This family appeared at first in terms of algebrability in [7]. By , we denote the family of all perfectly everywhere surjective functions , that is, functions which map any perfect subset of  onto . It was proved in [20] that  is -strongly algebrable. Since ,  is -strongly algebrable too. Let  stand for the family of all nonconstant Darboux functions. Since any nonconstant Darboux function attains  many values, we obtain the following.
Corollary 10.   does not contain a nontrivial closed algebra. In particular, the set  of all everywhere surjective functions is not 1--closed-algebrable.
Proposition 9 says that any -closed algebra contains two-valued functions. The next step is searching for large -closed algebras in those consisting of functions with a finite range. Note that  has a finite range} is an algebra of cardinality . However, the following shows that it does not contain a large -closed (even -closed) algebra.
Theorem 11.  Let  be an algebra consisting of functions with finite ranges. Then (i)if  is finitely generated, then  is -closed;(ii)if  is not finitely generated, then  is not -closed (in particular, it is not -closed).
Proof. (i) Assume that  is generated by . Since each  has a finite range, we can write
							
						where  are distinct and  is a partition of . Let  stand for all finite Boolean combinations of . Clearly, any member of  is -measurable. Let  be a nonempty atom of the algebra . Then, there are  such that . For any , there is a polynomial  such that  and  for . Then,
							
						Since  is constant on  and has finitely many values, there is a polynomial  such that  is a characteristic function of . Therefore, any -measurable function is in . Since  is a -algebra of sets, the family of all -measurable functions is -closed (a pointwise limit of -measurable functions is -measurable).
(ii) Assume now that  is not finitely generated. There are  which are algebraically independent. As before,  and let  stand for the set of all finite Boolean combinations of . Suppose that  is finite. Again, any characteristic function of an atom in  is an algebraic combination of finitely many ’s. Therefore, there is  such that any -measurable function  is an algebraic combination of . This yields a contradiction. Therefore,  is infinite. Hence, we can find pairwise disjoint sets . Define . Since , each  is in . Clearly,  tends uniformly to .
By , denote the family of all functions  which are everywhere discontinuous and  is finite. It was proved in [21] that  is -algebrable. Immediately we obtain the following.
Corollary 12.   does not contain an infinitely generated -closed algebra.
By Proposition 9 and Theorem 11, any infinitely generated -closed algebra contains finite valued and countably valued functions. It turns out that there are large -closed algebras of countably valued functions. Such construction, using the existence of large -independent family, will be used in the next theorem.
A family  of subsets of  is called -independent, if for every countable set  and every 
					where  and . By the Tarski theorem [22] there exists a -independent family on  of cardinality .
Theorem 13.  There is a linear algebra  of  generators such that for any function  there is open set  such that  is a Bernstein set. In particular, if  is the family of all nonmeasurable functions (having no Baire property, nonmeasurable in the sense of Marczewski), then  contains a -closed algebra of  generators.
Proof. We use the method of independent Bernstein sets which was introduced in [21]. Let  be a partition of  into  many pairwise disjoint Bernstein sets. Let  be a -independent family on . For any , put . Let  be the -algebra generated by .
Let  be the linear algebra generated by . Then each function in  is a simple function of the form , where  are Boolean combinations of  for some distinct . If , then there are  which tend pointwisely to . Let  be the smallest set such that each  is measurable with respect to -algebra  generated by . Clearly  is countable. There is  which does not belong to any , . Consequently, . Therefore,  and . Since  is not the zero function,  for some . There is  such that  is disjoint with . Since  is -measurable,  contains a Bernstein set of the form  for some . Finally, a set which contains a Bernstein set and is disjoint with some other Bernstein sets is also a Bernstein set.
Let  (or ). Fix the partition  of  (or ). By  we define the set 
						
					Let  and let  be a polynomial in  variables. Let  be such that . Then,
						
					where . Therefore, the algebra  generated by  is of form
						
					where  is a subalgebra of  generated by .
Theorem 14.  Assume that  is unbounded for every . Then,  is -closed.
Proof. Note that  is metrizable by the metric . To prove that  is -closed, take a sequence  in  tending with respect to  to some function . Fix . If  is zero on , then obviously . Otherwise,  is nonzero. Then, the sequence  eventually consists of nonzero functions. Note that  for some nonzero polynomials  in one variable. By the assumption  is unbounded. Note that the sequence  is a Cauchy sequence with respect to  for . Since  is unbounded, then, for distinct polynomials in one variable  without constant term, we have . Therefore, the sequence  is eventually constant and equal to some polynomial . Thus, .
Corollary 15.  There exists a -closed algebra  of cardinality  and hence -generated, such that  consists of perfectly everywhere surjective functions.
Proof. Let  be a decomposition of  into  many Bernstein sets. For any , let  be a free generator such that algebra generated by  consists of perfectly everywhere surjective functions; the existence of such a function was proved in [20]. Put . Then,  is the desired algebra.
For a sequence , put  for some increasing . It was proved in [8] that the set of  for which  is homeomorphic to the Cantor set is strongly -algebrable and comeager. We complete this result with the following.
Theorem 16.  The set of those , for which  is homeomorphic to the Cantor set, does not contain any nontrivial closed algebra.
Proof. Let  be an algebra such that for any  the set of limit points  is homeomorphic to the Cantor set. Fix nonzero  and let . There is a continuous function  such that . Let  be a sequence of polynomials, tending uniformly to . It is evident that  tends in  to some  with . Since  is not homeomorphic to , the algebra  cannot be closed.
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