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Abstract. 
Let  be a completely regular Hausdorff space and let  and  be Banach spaces. Let  be the space of all -valued bounded, continuous functions on , equipped with the strict topology . We study the relationship between important classes of -continuous linear operators  (strongly bounded, unconditionally converging, weakly completely continuous, completely continuous, weakly compact, nuclear, and strictly singular) and the corresponding operator measures given by Riesz representing theorems. Some applications concerning the coincidence among these classes of operators are derived.



1. Introduction and Terminology
Throughout the paper let  and  be real Banach spaces and let  and  denote the Banach duals of  and , respectively. By  and  we denote the closed unit ball in  and , respectively. By  we denote the space of all bounded linear operators from  to . Given a locally convex space  by  or  we will denote its topological dual. We denote by  the weak topology on  with respect to a dual pair . Let  stand for the collection of all finite subsets of the set  of all natural numbers.
Assume that  is a completely regular Hausdorff space. By  (resp., ) we will denote the family of all zero sets (resp., of cozero sets) in , respectively. Let  stand for the Banach space of all bounded continuous functions , equipped with the uniform norm . We write  instead of . By  we denote the Banach dual of . For  let  for .
Let  (resp., ) stand for the algebra (resp., -algebra) of Baire sets in , respectively. Let  (resp., ) stand for the Banach space of all totally -measurable (resp., totally -measurable) functions  (see [1, 2]).
The strict topology  (called also a superstrict topology and denoted by ) on  and  is of importance in the topological measure theory (see [3–9] for definitions and more details).  is a closed subspace of the Banach space  and -bounded sets in  are -bounded. It is known that  is -dense in  if one of the following conditions holds (see [6, Theorems 5.1 and 5.2]):(i)has a -compact dense subset (e.g.,  separable).(ii) is a -space (see [10]).(iii) is a -space.
Remark 1. Throughout the paper we will assume that  is -dense in .
For  being a locally compact Hausdorff space, by  we denote the Banach space of all continuous functions  tending to zero at infinity, equipped with the uniform norm. If  is a compact Hausdorff space, then  coincides with the uniform norm topology on . In this case we write simply  instead of .
Let  stand for the Banach lattice of all Baire measures on , provided with the norm  (= the total variation of ). Due to the Alexandrov representation theorem  can be identified with  through the lattice isomorphism , where  for , and  (see [4, Theorem 5.1]).
By  we denote the set of all finitely additive measures  with the following properties:(i)for each , the function  defined by  belongs to ;(ii), where  stands for the variation of  on .
Let  denote the Banach space of all continuous functions  such that  is a relatively compact set in , equipped with the uniform norm . Then . In view of [11, Theorem 2.5]  can be identified with  through the linear mapping , where  for  and . Then one can embed  into  by the mapping , where, for , 
						
Assume that  is a bounded linear operator. Then we can define the corresponding operator measure  (called the representing measure of ) by setting 
						
					Here  stand for the biconjugate of . Then , where the semivariation  of  on  is defined by , where the supremum is taken over all finite -partitions  of  and  for each . For  let us put 
						
					Let  stand for the variation of  on . Then (see [1, §4, Proposition 5]) 
						
					By  we denote the set of all operator measures  such that  and  for each .
Let  denote the canonical embedding; that is,  for , . Moreover, let  stand for the left inverse of ; that is, .
For  define 
						
The following Bartle-Dunfor-Schwartz type theorem will be useful (see [12, Theorem 2], [13, Theorem 5, pages 153-154]).
Theorem 2.  Let  be a bounded linear operator and  be its representing measure. Then for each  the following statements are equivalent: (i) is weakly compact.(ii) for each  and  is a relatively weakly compact set in .(iii) is strongly bounded.
Following [14–16] we have the following definition.
Definition 3. A bounded linear operator  is said to be strongly bounded if its representing measure  is strongly bounded; that is,  whenever  is a pairwise disjoint sequence in .
Note that  is strongly bounded if and only if the family  is uniformly strongly additive.
For each ,  for . It follows that if  is strongly bounded, then  is weakly compact, and hence  for  (see Theorem 2).
For  being a compact Hausdorff space (resp., a locally compact Hausdorff space) different classes of bounded linera operators  (resp., ) have been studied intensively; see [14–33]. The study of the relationship between operators  (resp.,  and their representing operator-valued measures is a central problem in the theory. The main aim of the present paper is to extend to “the completely regular setting” some classical results concerning various classes of bounded operators  (resp., ), where  is a compact Hausdorff space (resp., a locally compact Hausdorff space). In [12] using the device of embedding the space  into  we establish general Riesz representation theorems for -continuous linear operators  with respect to the representing measures  (see Theorems 6 and 8 below). In Section 3 we show that if  is -continuous and strongly bounded, then its representing measure  has its values in  and possesses a unique extension  that is variationally semiregular; that is, the set  is uniformly countably additive (see Theorem 11 below). In Sections 4–9 we study the folowing classes of -continuous linear operators  unconditionally converging, weakly completely continuous, completely continuous, weakly compact, nuclear, and strongly singular. We show that if a -continuous linear operator  belongs to any of these classes of operators, then  is strongly bounded and, for each , the operator  shares the property of  (see Theorems 17, 23, 26, 29, 34, and 36 below). We derive some applications concerning to the coincidence among these classes of -continuous operators (see Corollary 13, Theorems 18 and 19, Corollary 27, Theorem 29).
2. Integral Representation of Continuous Operators on 
The space of all -aditive members of  will be denoted by  (see [3, 4]). Then . Let 
						
					Then  if  (see [5, Proposition 3.9]).
For the integration theory of functions  with respect to  we refer the reader to [6, page 197], [5]. The following result will be of importance (see [6, Theorem 5.3]).
Theorem 4.  The following statements hold: (i)for  the following conditions are equivalent:(a) is -continuous;(b)there exists a unique  such that 
													 and ;(ii)for ,  for .
In view of [9, Corollary 5] we have the following characterization of convergence in .
Theorem 5.  For a sequence  in  the following statements are equivalent: (i) for ;(ii) and  in  for each .
The following theorem gives a characterization of -continuous operators  in terms of the corresponding operator measures  (see [12, Theorem 9 and Corollary 7]).
Theorem 6.  Let  be a -continuous linear operator and  be the representing measure of . Then the following statements hold. (i).(ii)For each ,  for .(iii)For each  and  there exists a unique vector in , denoted by , such that  for each .(iv)For each , the mapping  is a -continuous linear operator.(v)For ,  and .(vi).(vii)For  and ; we have 
										
Following [34] by  (= ), we denote the space of all bounded countably additive, real-valued, regular (with respect to zero sets) measures on .
We define  to be the set of all measures  such that the following two conditions are satisfied.(i)For each , the function  defined by  for , belongs to .(ii), where, for each , we define , where the supremum is taken over all finite -partitions  of  and all finite collections .It is known that if , then  (see [34, Lemma 2.1]).
The following result will be of importance (see [34, Theorem 2.5]).
Theorem 7.  Let . Then  possesses a unique extension  and .
From Theorem 7 and [13, Corollary 10, page 4] it follows that if , then  for .
By  we will denote the space of all operator measures  such that  and  for each . By  we will denote the space of all operator measures  with  such that  for each .
The following theorem characterizes -continuous linear operators  such that  are weakly compact for each  (see [12, Theorem 14 and Lemma 11]).
Theorem 8.  Let  be a -continuous linear operator such that  is weakly compact for each , and let  be the representing measure of . Then the following statements hold. (i) for each ,  and the measure  defined by  for , , belongs to  and possesses a unique extension  with  which is countably additive both in the strong operator topology and the weak star operator topology. Moreover,  for .(ii)For every  and  there exists a unique vector in , denoted by , such that for each ,  and 
										(iii)For each , the mapping  defined by  is a -continuous linear operator.(iv) for .
Remark 9. As a consequence of Theorem 8 (for ) we have
							
						where for ,  for  and .
3. Strongly Bounded Operators on 
Making use of [35, Theorem 8] we can state the following analogue (for Baire measures on a completely regular Hausdorff space) of the celebrated Dieudonné-Grothendieck’s criterion on weak compactness in the space of Borel measures on a compact Hausdorff space (see [36, Theorem 2], [37, Theorem 14, pages 98–103]), which will play a crucial role in the study of different classes of operators on .
By  we denote the topology of simple convergence in . Then  is generated by the family  of seminorms, where  for .
A completely regular Hausdorff space  is said to be an -space if a subset which meets every zero-set in a zero-set must be a zero-set. One can note that every metrizable space is a -space.
From now on we will assume that  is a -space.
Theorem 10.  Assume that  is a subset of  such that . Then the following statements are equivalent. (i) is relatively -compact subset of .(ii) is uniformly countably additive, that is,  whenever , .(iii) is uniformly strongly additive, that is,  whenever  is pairwise disjoint in .(iv) for every pairwise disjoint sequence  in .
Proof. (i)(ii) See [38, Theorem 7].
(ii)(iii) See [37, Theorem 10, pages 88-89].
(iv)(i) See [35, Theorem 8].
Now we can state a characterization of -continuous strongly bounded operators .
Theorem 11.  Let  be a -continuous linear operator and let  be its representing measure. Then the following statements are equivalent. (i)For each ,  is weakly compact and  is variationally semiregular; that is,  whenever , .(ii) is strongly bounded.(iii) whenever  is a uniformly bounded sequence in  such that  in  for each .(iv) whenever  is a uniformly bounded sequence in  such that  for .
Proof. (i)(ii) It follows from Theorem 8 and [12, Theorem 16].
(ii)(iii) It follows from [12, Theorem 17].
(iii)(iv) It is obvious.
(iv)(i) Assume that (iv) holds. First we shall show that for each ,  is weakly compact. Assume on the contrary that  is not weakly compact for some . This means that  is not strongly bounded. Since for , , we obtain that the family  is not uniformly strongly additive. Hence the family  is not uniformly countably additive. It follows that the family  is not uniformly countably additive. In view of Theorem 10 there exist , a sequence  in  and a pairwise disjoint sequence  in  such that for , . Note that 
							
						Hence there exists a sequence  in  such that ,  and
							
						Let  for . Then  for  and by (iv), , which contradics (12). This means that  is weakly compact for each , as desired.
In view of Theorem 8   can be uniquely extended to a measure . Assume that  is not variationally semiregular. Then by Theorem 10 there exist , a pairwise disjoint sequence  in  and a sequence  in  such that . Hence by Theorem 7 there exists a sequence  in  and  with  for  such that 
							
						Then, for ,
							
						On the other hand, since  for , by (iv), . This contradiction establishes that (i) holds.
Corollary 12.  Let  be a -continuous and strongly bounded linear operator and let  be its representing measure. Then the set  is uniformly regular on ; that is, for each  and , there exist  with  and  with  such that 
							
Proof. In view of Theorem 11 the family  is uniformly countably additive. Let  be a control measure for  and let  and  be given. Then there is  such that  whenever  and . By the regularity of  there exists  with  and  with  such that . Hence we get , .
Corollary 13.  Assume that  is a -continuous linear operator and  contains no isomorphic copy of . Then  is strongly bounded.
Proof. Let  stand for the representing measure of . We shall first show that  is weakly compact for each . Assume on the contrary that  is not weakly compact for some . Then by the proof of implication (iv)(i) of Theorem 11 there exist , a sequence  in , and a pairwise disjoint sequence  in  such that  for . By the Rosenthall lemma (see [13, Lemma 1, page 18]) the sequence  in  and  in  can be chosen such that for ,
							
						Since, for , 
							
						there exists a sequence  in  such that  with  and 
							
						Let . We see that  is an isomorphic copy of . Assume that  for some sequence  in . Then for  we have
							
						But , so
							
						This means that  is an isomorphism on , so  contains an isomorphic copy of , which contradicts our assumption on . This means that  is weakly compact for each . Hence in view of Theorem 8   is countably additive in the weak star operator topology and by [19, Remark 7, page 923] and Theorem 11 we derive that  is strongly bounded, as desired.
Remark 14. If  is a compact Hausdorff space, the equivalence (ii)(iii) of Theorem 11 was obtained by Brooks and Lewis (see [16, Theorem 2.1]).
Let  stand for the Banach space of all bounded strongly -measurable functions , equipped with the uniform norm . Assume that  with  is variationally semiregular. Then every  is -integrable (see [39, Definition 2, page 523 and Theorem 5, page 524]) and  whenever  is a uniformly bounded sequence in  converging pointwise to  (see [40, Proposition 2.2]).
Note that if  then  is -measurable. Hence if  is assumed to be separable then  is strongly -measurable; that is,  (see [2, Proposition 21, page 9]).
Recall that a function  is -measurable if for each  the function  is -measurable. For  by  we denote the vector space of all weak*-measurable functions  for which there exists  such that -a.e. on  (see [41, page 26]).
Following [40] we can distinguish an important class of operators on .
Definition 15. A bounded linear operator  is said to be -smooth if  whenever  is a uniformly bounded sequence in  such that  for each .
Proposition 16.  Assume that  is separable. Let  be a ,-continuous and strongly bounded linear operator, and let  be its representing measure. Then for each  there exists  such that 
							
						where  is a control measure for .
Proof. Since  is supposed to be separable, . Moreover, since  is variationally semiregular (see Theorem 11), the corresponding integration operator  is -smooth and for  we have (see [40, Proposition 2.2])
							
						It follows that  for each .
Let . Then  is a -smooth functional on , and  is -absolutely continuous; that is, . According to the Radon-Nikodym type theorem (see [41, Theorem ]) there exists a weak*-measurable function  which satisfies the following conditions.(1)The function  is -measurable and -integrable; that is, .(2)For every  and , 
										
It follows that . Note that for every  the mapping  is -measurable and using (2) we get
							
						Now let . Then there exists a sequence  in  such that  and  for each  and  (see [2, Theorem 1.6, page 4]). Then the mapping  is -measurable. Using the Lebesgue dominated convergence theorem we have
							
						It follows that
							
4. Unconditionally Converging Operators on 
Recall that a series  in a Banach space  is called weakly unconditionally Cauchy (wuc) if, for each , . We say that a bounded linear operator  is unconditionally converging if, for every weakly unconditionally Cauchy series  in , the series  converges unconditionally in a Banach space .
If  is a compact Hausdorff space, Swartz [33] proved that every unconditionally converging operator  is strongly bounded. Dobrakov (see [28, Theorem 3]) showed that if  is a locally compact Hausdorff space, then every unconditionally converging operator  is strongly bounded and for every Borel set  in , the operator  is unconditionally converging. Moreover, Brooks and Lewis [27, Theorem 5.2] showed that if  contains no isomorphic copy of , then every strongly bounded operator  is unconditionally converging. We will extend these results to the setting when  is a -continuous linear operator and  is a completely regular Hausdorff space.
Theorem 17.  Let  be a -continuous and unconditionally converging linear operator, and  stand for the representing measure of . Then the following statements hold. (i) is strongly bounded.(ii)For each ,  is an unconditionally converging operator.
Proof. (i) Assume that  is a uniformly bounded sequence in  such that  for . Then  is bounded in  and, since  is unconditionally converging, we obtain that . Hence by Theorem 11   is strongly bounded.
(ii) Let  and assume that  is  in . Then . In view of Theorem 11   is uniformly countably additive and let  stand for the control measure of  (see Corollary 12). Let  be given. Then there is  such that  whenever , . Then there exist  with  and  with  such that . Hence 
							
						Then one can choose  with , , and . Define  for . We shall show that  is unconditionally converging. Indeed, for , . Hence the series  is unconditionally convergent; that is,  is unconditionally converging, as desired. Then for each , we have
							
						Hence  and since the class of all unconditionally converging operators from  to  is a closed linear subspace of  (see [28, page 20]), we derive that  is unconditionally converging.
Theorem 18.  Assume that  is separable and contains no isomorphic copy of . Then for a -continuous linear operator  the following statements are equivalent. (i) is unconditionally converging.(ii) is strongly bounded.
Proof. (i)(ii) See Theorem 17.
(ii)(i) See [12, Corollary 18].
Recall that a subset  of a Banach space  is said to be weakly precompact if every bounded sequence  in  contains a subsequence  so that  converges for each . An operator  is said to be weakly precompact if  is weakly precompact in a Banach space .
Abbott et al. [17, Theorem 2.8] discussed the relationship between strongly bounded and unconditionally converging operators  whenever  is a compact Hausdorff space. They showed that if  contains no isomorphic copy of  and  has the RNP, then the classes of strongly bounded and unconditionally converging operators  coincide. Now we state an analogue of Theorem 2.8 of [17] for -continuous linear operator , where  is a completely regular Hausdorff space.
Theorem 19.  Assume that  contains no isomorphic copy of  and  has the RNP. Then for a -continuous linear operator  the following statements are equivalent. (i) is weakly precompact.(ii) is unconditionally converging.(iii) is strongly bounded.
Proof. (i)(ii) See [17, Theorem 2.7].
(ii)(iii) See Theorem 17.
(iii)(i) Assume that  is strongly bounded. Since , we have to show that  is a weakly precompact subset of the Banach space . By Theorem 11   is uniformly countably additive, and let  be a control measure for . Since  is supposed to have the RNP, for each  there exists  such that  and  for . It follows that  is a uniformly integrable subset of  and since  contains no isomorphic copy ,  is a weakly precompact subset of  (see [42]). Since  (= the Banach space of all -continuous members of ) and the Radon-Nikodym theorem establishes the isometry between  and , we obtain that  is a weakly precompact subset of  because  for .
5. Weakly Completely Continuous Operators on 
Recall that a bounded linear operator  from a Banach space  to a Banach space  is said to be a Dieudonné operator if  maps -Cauchy sequences in  into weakly convergent sequences in .
If  is a compact Hausdorff space, then Dieudonné operators from the Banach space  to  were studied by Bombal and Cembranos [23] and Abbott et al. (see [17, Theorems 3.1, 3.5 and Theorem, page 334].
Definition 20. A bounded linear operator  is said to be weakly completely continuous if  is -convergent in  whenever  is a uniformly boundd sequence in  such that  is a -Cauchy sequence in  for each .
Proposition 21.  Let  be a bounded linear operator. Then the following statements are equivalent. (i) is weakly completely continuous.(ii) maps -Cauchy sequences in  onto -convergent sequences in .
Proof. (i)(ii) Assume that  is weakly completely continuous and  is a -Cauchy sequence in . Then for each ,  is a -Cauchy sequence in  because , where  for . Since  is -bounded, we get . It follows that  is -convergent.
(ii)(i) Assume that (ii) holds and  is a uniformly bounded sequence in  such that  is a -Cauchy sequence in  for each . We shall show that  is a -Cauchy sequence. Assume on the contrary that  is not a -Cauchy sequence. Then there exist  and  and a subsequence  of  satisfying  for . Since  for each , by Theorem 5   for , . Hence . This contradiction establishes that  is a , -Cauchy sequence, and it follows that a sequence  is -convergent in .
From Proposition 21 it follows that every weakly completely continuous operator  is a Dieudonné operator. As a consequence, we get the following result (see [37, Problem 8, page 54]).
Corollary 22.  Assume that  is a weakly completely continuous operator. Then  is unconditionally converging.
Theorem 23.  Let  be a -continuous and weakly completely continuous linear operator and  stand for its representing measure. Then the following statements hold. (i) is strongly bounded.(ii)For each ,  is a Dieudonné operator.
Proof. (i) It follows from Corollary 22 and Theorem 17.
(ii) Let  and assume that  is a -Cauchy sequence in . Hence . Since  is strongly bounded, arguing as in the proof of Theorem 17 for a given  there exist  with  and  with  such that 
							
						Then we can choose  with , , and . Define  for . We shall show that  is a Dieudonné operator. Let  for . Then  and  is a -Cauchy sequence in  for each . Hence  is -convergent in  and this means that  is a Dieudonné operator. Then arguing as in the proof of Theorem 17, we obtain that  and since the class of all Dieudonné operators from  to  is a closed linear subspace of  (see [17, Theorem 3.5]), we derive that  is a Dieudonné operator.
6. Completely Continuous Operators on 
Recall that a bounded linear operator  from a Banach space  to a Banach space  is said to be a Dunford-Pettis operator if  in  for  implies  (see [43, Section 19]).
Definition 24. A bounded linear operator  is said to be completely continuous if  whenever  is a uniformly bounded sequence in  such that  in  for each .
Using Theorem 5 one can get the following result.
Proposition 25.  Let  be a bounded linear operator. Then the following statements are equivalent. (i) is completely continuous.(ii) whenever  in .
Theorem 26.  Let  be a -continuous and completely continuous operator and  its representing measure. Then the following statements hold. (i) is strongly bounded.(ii)For each ,  is a Dunford-Pettis operator.
Proof. (i) In view of [43, Theorem 19.1] and Proposition 25   maps ,  Cauchy sequences in  onto norm convergent sequences in . It follows that  is a Dieudonné operator and hence  is unconditionally converging. Thus  is strongly bounded (see Theorem 17).
(ii) Let  and assume that  in  for . Then . Since  is strongly bounded, arguing as in the proof of Theorem 17 for a given  there exist  with  and  with  such that 
							
						Then we can choose  with , , and . Define  for . We shall show that  is a Dunford-Pettis operator. Let  for . Then  in  for each  and . It follows that  and this means that  is a Dunford-Pettis operator (see [43, Theorem 19.1]). Then arguing as in the proof of (ii) of Theorem 17, we obtain that . Since the class of all Dunford-Pettis operators from  to  is a closed linear subspace of  (see [28, page 27]), we derive that  is a Dunford-Pettis operator.
Corollary 27.  Assume that  is a Schur space. Let  be a -continuous linear operator. The the following statements are equivalent. (i) is strongly bounded.(ii) is completely continuous.(iii) is weakly completely continuous.(iv) is unconditionally converging.(v) converges unconditionally whenever  is a uniformly bounded sequence in  such that  for .
Proof. (i)(ii) Assume that  is strongly bounded and  is a uniformly bounded sequence in  such that  in  for each . It follows that  because  is supposed to be a Schur space. Hence by Theorem 11  , as desired.
(ii)(iii) It is obvious.
(iii)(iv) See Proposition 21.
(iv)(v) Assume that (iv) hold and let  be a uniformly bounded sequence in  such that  for . Let  and . Then
							
						and it follows that  is  in  (see [44]). Hence  converges unconditionally in .
(v)(i) It follows from Theorem 11.
Theorem 28.  Assume that  is separable. Let  be a ,-continuous and strongly bounded operator and let  be its representing measure. Then the following statements are equivalent. (i) is completely continuous.(ii) whenever  is a uniformly bounded sequence in  such that  in  for  and  is a sequence in .Here  is a control measure for  and for ,  is an element of  corresponding to  (see Proposition 16).
Proof. (i)(ii) Assume that  is completely continuous and let  be a uniformly bounded sequence in  such that  in  for each  and  is a sequence in . Then, by Proposition 16, 
							
						(ii)(i) Assume that (ii) holds. Let  be a uniformly bounded sequence in  such that  in  for each . Choose a sequence  in  such that . Hence, by Proposition 16, 
							
						so  is completely continuous.
7. Weakly Compact Operators on 
If  is a compact Hausdorff space (resp.,  is a locally compact Hausdorff space), weakly compact operators  (resp., ) have been studied intensively by Batt and Berg [19, 20], Brooks and Lewis [27], Bombal [24], and Saab [29]. The aim of this section is to extend a characterization of weakly compact operators  of [27, Theorem 4.1] to -continuous and weakly compact operators .
Theorem 29.  Let  be a -continuous linear operator and let  be its representing measure. Then the following statements hold. (i)Assume that  is weakly compact. Then  is strongly bounded and for each ,  is a weakly compact operator.(ii)Assume that  and  have the RNP and  is strongly bounded and for each ,  is a weakly compact operator. Then  is weakly compact.
Proof. (i) In view of [45, Corollary .] the conjugate operator  maps  onto a relatively weakly compact subset of , where  for . Hence  is a relatively weakly compact subset of the Banach space , equipped with the total variation norm. Making use of the Bartle-Dunford-Schwartz theorem [13, Theorem 5, pages 105-106], we obtain that the set  is uniformly countably additive and, for each , the set  is relatively weakly compact in . Thus by Theorem 11   is strongly bounded and, since , we derive that  is weakly compact.
(ii) By Theorem 11   is uniformly countably additive. Moreover, for each ,  is relatively weakly compact in . This means that  is relatively weakly compact subset of  (see [13, Theorem 5, pages 105-106]). Since ,  is a relatively weakly compact subset of . Hence according to [45, Corollary ]  is weakly compact.
Corollary 30.  Assume that  is reflexive. Then for a -continuous linear operator  the following statements are equivalent. (i) is weakly compact.(ii) is strongly bounded.
As a consequence of Corollaries 13 and 30 we can state a generalization of the well known theorem due to Batt and Berg telling us that if  is a compact Hausdorff space,  is reflexive, and  contains no isomorphic copy of , then every bounded linear operator  is weakly compact (see [20, Theorem 9]).
Corollary 31.  Assume that  is reflexive and  contains no isomorphic copy of . Then every -continuous linear operator  is weakly compact.
8. Nuclear Operators on 
Following [46, Ch. 3, §7] we have the following definition.
Definition 32. A -continuous linear operator  is said to be nuclear if it can be represented as 
							
						where  is a -equicontinuous sequence in ,  is a bounded sequence in , and  is a sequence in  such that .
In particular, an operator  is said to be nuclear if there exist sequences  in  and  in  such that  is of the form 
						
					and . Then we say that  represents a nuclear operator . The nuclear norm of a nuclear operator  is defined by 
						
					where the infimum is taken over all sequences  and  such that  holds for each . The nuclear operators  form a normed space under the nuclear norm , which we shall denote by  (see [13, Proposition 2, page 170]).
If  is a compact Hausdorff space, then nuclear operators from the Banach space  to  have been studied by Saab and Smith [31]. In this section we extend Proposition 1 of [31] to the completely regular setting.
Let  stand for bidual of . Note that . Then one can embed  into  by the mapping , where, for , 
						
					(Here  for ).
Proposition 33.  Let  be a -continuous linear operator such that  is weakly compact for each , and let  be its representing measure. Then the following statements hold. (i) for .(ii) for , .
Proof. (i) Let  and  stand for the conjugate and the biconjugate operators of , respectively. Then for each ,  for , and hence, for ,
							
(ii) Let . Then by (i) for each  and  we get
							
						Hence  for , .
For  by  we denote the variation of  on ; that is, 
						
					where the supremum is taken over all finite -partitions  of .
Theorem 34.  Let  be a -continuous and nuclear operator and let  be its representing measure. Then the following statements hold. (i) is strongly bounded.(ii)For each , .(iii) and  is -countably additive.
Proof. (i) In view of [46, Ch. 3, §7, Corollary 1]  is -compact. Hence by Theorem 29   is strongly bounded.
(ii) Assume that  is of the form 
							
						where  is a -equicontinuous sequence in  is a bounded sequence in , and  is a sequence in  such that . Then for , , where  and  (see Remark 9). It follows that . Assume that . Then for , , using Proposition 33 we get
							
						Hence 
							
						Note that , and hence
							
						This means that  is a nuclear operators, as desired.
(iii) To show that , assume  is a -partition of . Then using (43)
						Hence , as desired. Now we will show that  is -countably additive. Let  be given. Since , one can choose  such that 
							
						Since , for , there exists  such that 
							
						Hence
							
						This means that  is -countably additive.
9. Strictly Singular Operators on 
Definition 35. A bounded linear operator  is said to be strictly singular if it does not have a bounded inverse on any infinite-dimensional subspace contained in .
Bilyeu and Lewis [21, Theorem 4.1] showed that if  is compact, then every strictly singular operator  is strongly bounded and, for each Borel set in ,  is strictly singular. Strictly singular operators  have been studied by Bessaga and Pełczyński [44] and Abbott et al. [18].
Now we show an analogue of Theorem 4.1 of [21] for -continuous and strictly singular operators , where  is a completely regular Hausdorff space.
Theorem 36.  Let  be a -continuous and strictly singular linear operator and let  be its representing measure. Then the following statements hold. (i) is strongly bounded.(ii)For each ,  is strictly singular.
Proof. Since  is strictly singular,  is unconditionally converging (see [47, Proposition 1.5]) and hence by Theorem 17   is strongly bounded. Suppose that there is  such that  is not strictly singular. Then there is an infinite-dimensional subspace  of  so that  has a bounded inverse. Therefore, there is  so that  for each .
Let  be given such that . Hence by Corollary 12, there exist ,  and ,  such that . Choose a function  with  such that  and . For  let . Then, by Theorem 8,
							
						Let . Then  is an infinite-dimensional subspace of , and this means that  is not strictly singular, a contradiction.
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