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Abstract. 
We introduce a new space consisting of what we call -periodic limit functions. We investigate some properties of the new function space. In particular, we study inclusion relations among asymptotically periodic type function spaces. Finally, we apply the -periodic limit functions to investigate the existence and uniqueness of asymptotically -periodic mild solutions of an abstract Cauchy problem.



1. Introduction
Let  be a Banach space. In this paper, we denote by  the interval  and by  the space consisting of bounded and continuous functions from  into , endowed with the uniform convergence norm . Set    and   . A function  is said to be asymptotically -periodic if it can be expressed as , where  and . The subspace of  consisting of the asymptotically -periodic functions will be denoted by .
Let . Since  and , one getsThe converse is not true. The authors in [1] provided two examples to show that there exists a bounded and continuous function which satisfies (1) but is not asymptotically -periodic. At the same time, (1) leads authors in [2] to propose the following definition.
Definition 1 (see [2, Definition 3.1]). A function  is said to be -asymptotically -periodic if there exists  such that . The subspace of  consisting of the -asymptotically -periodic functions will be denoted by .
The following concept of -asymptotic -periodicity in the Stepanov sense is introduced in [3, Definition 1.3].
Definition 2. A function  is called -asymptotically -periodic in the Stepanov sense if  as . The subspace of  consisting of the -asymptotically -periodic functions in the Stepanov sense will be denoted by .
Let , where  consist of those functions from  which are uniformly continuous on . We have the following proper inclusions:References [1, Examples 2.1 and 2.2] and [2, Examples 3.1 and 3.2] show that there exists a function  but not in . We will give an -asymptotically -periodic function which is not uniformly continuous in Section 3. Reference [3, Example 2.3] shows that there exists a function  but not in . Moreover, the function  in this example is bounded continuous. That is,  but not in . Henríquez et al. in [2] and Pierri in [4] gave some conditions under which an -asymptotically -periodic function is asymptotically -periodic. Later, Henríquez in [3] showed that, if  and  is uniformly continuous on , then . For some qualitative properties of , we refer the reader to [2, 3]. For their applications we refer the reader to [2–10].
In this paper, we will introduce a new space consisting of what we call -periodic limit functions. Our aim to propose the new function space is twofold. On the one hand, -periodic limit functions generalize asymptotically -periodic functions in a different way from -asymptotically -periodic functions and have some relationship with asymptotically -periodic functions (in the Stepanov sense). On the other hand, the -periodic limit functions contribute to studying the existence and uniqueness of asymptotically -periodic mild solutions of some abstract Cauchy problems.
The paper is organized as follows. In Section 2, we define the space of -periodic limit functions and investigate its properties. In Section 3, we discuss inclusion relations among asymptotically periodic type function spaces. Finally, in Section 4 we study the existence and uniqueness of asymptotically -periodic mild solutions of an abstract Cauchy problem with -periodic limit coefficients.
2. Space of -Periodic Limit Functions
Definition 3. Let  and . We call -periodic limit if  is well defined for each , where . The collection of such functions will be denoted by .
Remark 4. The function  in Definition 3 is measurable but not necessarily continuous.
We list some basic properties of -periodic limit functions in the following proposition, its proof is obvious, and so we omit it.
Proposition 5.  If , , and  are -periodic limit and  is well defined for each , then the following statements are true: (1) is -periodic limit;(2) is -periodic limit for every scalar ;(3) for each ;(4) is bounded on ; moreover ;(5) is -periodic limit for each fixed .
Remark 6. It follows from Proposition 5(1)(2) that  is a linear subspace of .
Remark 7. Because of Proposition 5(3), we give name of -periodic limit for functions in Definition 3.
Theorem 8.   is a Banach space.
Proof. Let  be a sequence of -periodic limit functions such that uniformly in .
By the definition of the -periodic limit function, we have for each  and each . So for each  the sequence of  is a Cauchy sequence in  because of the following inequality: Thus the sequence  converges to a function  pointwise.
To show that  we only need to show that pointwise on . But this comes from the following inequality: 

Let , where  and . For each , one has which shows that .
Next we give an example to show that there exists an -periodic limit function which is not asymptotically -periodic. For concision, we only consider the case . Similarly one can exhibit examples for the general case .
Example 9 (example of a function  but not in ). Consider the set . For , define the function  by If we define the function  bythen we have  for each , . So  is a -periodic limit function.
On the other hand, if we choose , , then we have  as , while . This proves that  is not uniformly continuous on . So  is not asymptotically -periodic.
Fix  and  denotes the conjugate exponent of .
The Bochner transform , ,  of a function  on , with values in  is defined by .
Let  be a measurable function. We say that  is a Stepanov bounded function, with the exponent , if . The collection of such functions will be denoted by .
The space  endowed with the norm is a Banach space.
Define the subspaces of  by    and   . A function  is called asymptotically -periodic in the Stepanov sense if it can be expressed as , where  and . The subspace of  consisting of the asymptotically -periodic functions in the Stepanov sense will be denoted by .
Let . Then there exists a measurable function  such that  for each . By Proposition 5(3)(4), we know that . If we denote , , it is not hard to show that . Thus, .
Therefore, . It is easy to know that the inclusion is proper.
Now we have the following relationship between them:The following proposition is a part of [11, Theorem 2.1]. For the sake of completeness, we include the proof in Appendix.
Proposition 10.  Let  and  be well defined for each . If  uniformly on , then .
Corollary 11.  Let  and be well defined for each . If  uniformly on , then .
Proposition 12.  If  and  is uniformly continuous on , then .
Proof. We have that  is bounded [3, Proposition 2.2]. Let , where  and . Note that Let . Since , we can choose  such that when  for all . Therefore,as . We denote , . For  given, we select  such that when  for all . Then we havewhen  for all  and any . We will prove that  is a Cauchy sequence in norm . In fact, if we assume the contrary, there exist , , and sequences  such that  as  and  such that Since , . In particular, . So there exists a  such that  when , . We assume that . For , , we have Thus,when . This implies that Thus,which is a contradiction. Thus  is a Cauchy sequence in norm . Hence, there exists a function  such that  as . Then we have as . Combining with (15), we getfor every . From one getsfor every . Since , then  and . Combining with (26), we get  for every . Thus, . Denote . By (24), we have From , we have . Note that . We can show that . If we assume the contrary, there are a constant  and a nondecreasing sequence  such that  as  and . Since , there exists a  such that  when , . We assume that . Therefore, for . This implies that which is a contradiction. Therefore, .
Remark 13. In view of (12) and Proposition 12, it is interesting to know if there exists a function  but not in .
Corollary 14.  If  and  is uniformly continuous on , then .
Remark 15. If a function  and is also uniformly continuous, then . So the range of  is relatively compact. It is interesting to know if there exists a function  but the range of  is not relatively compact.
3. Inclusion Relations among Asymptotically Periodic Type Function Spaces
In this section, we mainly discuss inclusion relations for these asymptotically periodic type function spaces in (2) and (12).
Let , where  and . From one getswhich shows .
Example 16 (example of a function  but not in ). Let us come back to Example 9. For , we havewhere . If we choose , , then . So  is a -periodic limit function.
On the other hand, we have for , which shows that  is not -asymptotically -periodic.
Example 17 (example of a function  but not in ). Consider Example 9 again. If  satisfies the condition : , then by (32), one has which shows that  is -asymptotically -periodic. For example, let , . Clearly  and  also satisfies the condition . So  is -asymptotically -periodic. On the other hand,  is not uniformly continuous. Thus  is an -asymptotically -periodic function which is not uniformly continuous.
The following proposition plays a role in the example below.
Proposition 18.  If , then , where  is a nonnegative constant.
Proof. Let , where  and . We first prove that there exists a nonnegative constant  such that . Note that In the same way, one getsThus, we obtainLet . By (37), we have In view of ,  for each . Therefore, there exists a nonnegative constant  such that  for each . Thus,Since , we haveMoreover, one getsNote thatBy (39), (41), and (42), we have 
Example 19 (example of a function  but not in ). Let  be the function defined by Fix . Let , . Then we have  and  . For any , we can choose  such that  and . Thenwhich shows that  is -asymptotically -periodic. From (45) we know that  is uniformly continuous. Thus, .
On the other hand, there exist  such that , ,  when  and , ,  when .
So, when , one getsBy (46) the limit of  does not exist. By Proposition 18,  is not asymptotically -periodic in the Stepanov sense.
Now we can write down the following diagram which summaries asymptotically periodic type function spaces and their inclusion relations:
In view of Examples 16 and 19,  and  do not contain each other.
4. Existence of Asymptotically -Periodic Solutions of an Abstract Cauchy Problem
In this section we apply the results of Section 2 on  to investigate the existence and uniqueness of asymptotically -periodic mild solutions for the following abstract Cauchy problem:where  is the infinitesimal generator of an exponentially stable -semigroup ; that is, there exist  and  such that  for all .
The following definition generalizes Definition 3.
Definition 20. A joint continuous function  is called -periodic limit in  uniformly for  in bounded subsets of  if for every bounded subset  of ,  is bounded and  exists for each  and each . Denote by  the set of all such functions.
The following is a composition theorem of -periodic limit functions.
Theorem 21.  Let  be -periodic limit in  uniformly for  in bounded subsets of  and assume that  satisfies a Lipschitz condition in  uniformly in : for all  and , where  is a positive constant. Let  be -periodic limit. Then the function  defined by  is -periodic limit.
Proof. Since  is a -periodic limit function, we havefor each .
By Proposition 5(4), we can choose a bounded subset  of  such that ,  for all . Thus  is bounded.
On the other hand, we havefor each  and each .
Let us consider the function  defined by . Note that 
We deduce from (50) and (51) that for each , which finishes the proof.
Definition 22. A function  is called a mild solution of problem (48) if 
Now we can establish the main result of this section.
Theorem 23.  Let  be -periodic limit in  uniformly for  in bounded subsets of  and assume that  satisfies a Lipschitz condition in  uniformly in : for all  and , where  is a positive constant. If , then there exists a unique asymptotically -periodic mild solution of problem (48).
Proof. We define the operator  on the space  by We will show that . Since , it remains to show that . We denote  for short. In view of Theorem 21, if , then . By the definition of the -periodic limit function, is well defined for each . Moreover, by Proposition 5(3)(4), there exists a positive constant  such that  and . Note that Next we will prove that  is a Cauchy sequence in  for each . Let . For any , , one hasNow we estimate the term : We can choose  such that  when . That is,  when  uniformly for .
For , we consider Then we have For each , we have Since , for each , one has as . By Lebesgue’s Dominated Convergence Theorem, we obtain Moreover, we have Thus, we can select  such that  when  uniformly for .
Next we estimate the term : uniformly for .
Thus,  when . This shows that  is a Cauchy sequence. So we can denote  for each . We also have that  uniformly for .
Now we consider the term . Clearly  is well defined for each . For , , one has For each , we have   as  and  . By Lebesgue’s Dominated Convergence Theorem, we obtain For  given, we select  such that when . For any , one has when . Thus, when  uniformly for . That is, uniformly for . Now we have    uniformly for . By Corollary 11, we get .
The space  is a Banach space. For the sake of completeness, we include the proof of the completeness of the space  in Appendix.
Finally, for , one has which shows that  is a contraction. To complete the proof of the theorem we only need to invoke the contraction mapping principle.
Finally, we provide an example to illustrate our results.
Example 24. Consider the following partial differential equations:where , , and  are appropriate functions. In addition,  satisfieswhere . In what follows we consider  and let  be the operator given by  with domain . It is well known that  is the infinitesimal generator of an analytic semigroup  on . Moreover,  has discrete spectrum with eigenvalues , , and corresponding normalized eigenfunctions given by . Furthermore,  is an orthonormal basis of  and  for . Thus, we have  for every . Therefore, if , (75) has a unique asymptotically -periodic mild solution by Theorem 23.
Appendix
Proof of Proposition 10. We first show that . By Proposition 5(3)(4),  is bounded on  and  for each . To show the continuity of the function  on  we only need to prove that  is continuous on .
Now, take any fixed  and let . Let . Then, by assumption, we conclude that there exists a positive integer  such that for  and .
On the other hand, since , then there exists  such that for .
Therefore, we have when , which shows that  is continuous at . Moreover,  is continuous on . Hence .
Next, we will show that . Suppose that  and there exists a positive integer  such that  when  uniformly for  by assumption again.
Thus, for , , we conclude that  uniformly for . Moreover, if we denote , where  and , then we obtain for , . That is, , which shows that . Hence .
Proof of the Completeness of the Space . Suppose that ; that is, , where  and . We will prove that . In fact, if we assume the contrary, there exist  and  such that . Then, we have    , which is a contradiction. Thus, . Moreover, . Let  be a Cauchy sequence and suppose that , where  and . Thus,  is Cauchy too and so is . Since  and  are closed in , there exist  and  such that  and  as . Set . Then  and  as .
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