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Abstract. 
The authors establish the two-weight norm inequalities for the one-sided Hardy-Littlewood maximal operators in variable Lebesgue spaces. As application, they obtain the two-weight norm inequalities of variable Riemann-Liouville operator and variable Weyl operator in variable Lebesgue spaces on bounded intervals.



1. Introduction and Main Results
The one-sided Hardy-Littlewood maximal operators  and  are defined bySawyer [1] showed that  is bounded from  to  if the pairs of nonnegative functions  satisfy Sawyer-type two-weight condition for the one-sided maximal operator. In [2] Martín-Reyes et al. generalized this result to , wherewith  is positive locally integrable function. The similar results are also true for  and  (see [1–3]).
Let  be a measurable set in . Given a measurable function , we denoteIf , we will simply note that  and 
Definition 1. Given ,  is a locally integrable function such that . We say that  if there exists a constant  such that for every , with ,
Definition 2 (see [4]). It is given that  We say that , if there exist constants  and  such that for all 
Let  The variable Lebesgue space  is the set of measurable functions  on  such thatThis is a Banach space (see [4–7]) with the normIf , we will write  as . The variable Lebesgue space is the special case of the Musielak-Orlicz space (see [7, 8]). For the detail of  we refer to [4–7] and so on.
Let  be a nonnegative locally integrable function on . The weighted variable Lebesgue space  is the set of measurable functions  on  such that  and . When  is a constant,  coincides with the classical weighted Lebesgue space .
Edmunds et al. [9] investigated the boundedness of  and  in the variable Lebesgue spaces . The two-weight weak type modular inequalities of  and  in  were discussed in [10]. In [11], Kokilashvili et al. acquired the sufficient condition such that  and  are bounded from  to , where  is constant on some interval  and  is bounded in  with
Throughout this paper,  and  are nonnegative locally integrable functions and  is a positive constant whose value may change from one occurrence to the next. For exponent function  with , its conjugate exponent will be denoted by  with . For a Lebesgue measurable set ,  will be its characteristic function.
Definition 3. It is given that  such that . We say that  if there exists a constant  such that for every interval , with ,where  and .
Definition 4. It is given that  such that . We say that  if there exist constants  and  such that for every interval , with ,where  and .
 and  can be considered to be the generalization of Sawyer-type two-weight condition (see [1]) for the one-sided maximal operator in variable exponents case. If  we will simply write  as  and  as . We can define , , and  in similar ways.
Our main results are the following theorems.
Theorem 5.  Let , , and  such that . If  and  with , then 
Theorem 6.  Let , , and  such that . If  and  with , then 
Theorem 7.  Let  be a bounded interval and let  such that . If  and  with , then 
Corollary 8.  It is given that  such that . If there exists a constant  such that  and  with , then
Corollary 9.  It is given that  such that , , and  with . If (a)there exists a constant  such that  and  for ,(b)there exist constants  and  such that for every interval , with ,Then
Remark 10. In Theorems 5 and 6, the set  is not empty. In fact, if  and , when , then .
Remark 11. If we change the conditions , ,  to , , and , respectively, in above theorems, we will obtain similar results of .
Remark 12. If we take  and  for  whenever  is an open interval, then  (see Definition 18 below) and the results of this paper coincide with those of [9].
Remark 13. The Sawyer-type condition was used earlier in [12] to characterize the two-weight boundedness of the classical Hardy-Littlewood maximal operator . Corresponding results for variable Lebesgue spaces can be found in [13–15].
2. Proof of the Main Results
In order to establish our main results, we will need following lemmas.
Lemma 14 (see [4]).  It is given that  and  such that . (a)If , then .(b)If , then .In particular, if , then 
Lemma 15 (see [4]).  If , the set of bounded functions with compact support is dense in .
Lemma 16 (see [1]).  Suppose  is integrable function with compact support on . If  is a component interval of the open set  with , then 
Lemma 17 (see [16]).  It is given that a set  and two exponents  and  such that Then for every  there exists a constant  such that for all functions  with ,where  is a given nonnegative measure.
Proof of Theorem 5. By the homogeneity, Lemma 15, the Fatou lemma for variable Lebesgue spaces [4] and Lemma 14, we only need to provefor the nonnegative bounded function  with compact support and . Let  be a positive integer and for , define Obviously each  is a bounded open set. Let  be the component intervals of , where  is an integer. Applying Lemma 16 to a fixed , we haveLet , then the sets  are pairwise disjoint and for every Therefore whereWe show that for every  and  the inequalityis valid, where ,  ( is the same as that in (10)), and  is independent of  and .
Let , then . By  and Lemma 14 we get Let , wherethenSince , by (27) we can getfor . ThenIf , by (4), we haveIf , thenThereforeThus, by the Hölder inequality and  we can get Next, we will estimate . If , by , we have On the other hand, if , noticing that  andthusApplying (38),  and the Hölder inequality,By  and Lemma 17, we getHence, combining (36) and (40)This completes the proof of (26) by (29), (35), and (41). Applying (26) to (24), we obtain Let  be the following linear operator:and . Since , if we show that the operator  is bounded from  to , we obtainIt is easy to see that  is bounded on . Therefore, we only need to show that  is bounded from  to  to complete our proof by the Marcinkiewicz interpolation theorem. For arbitrary  and each pair , defineObviously,  are pairwise disjoint. Let  and . It is clear that any two intervals of  are disjoint or one is contained in the other. By the definition of , we also haveLet  be the maximal elements of the family . These maximal elements exist since the intervals  have uniformly bounded length. The intervals  also satisfy (46). Then, by (9) and (46), we obtain This has proved the weak  inequality for . Hence the estimate for  is completed.
Since linear operator  is bounded from  to , by the second inequality of (10),Similarly, by (10), we have Therefore, by (42), (44), (48), and (49), we havewhere  is independent of . Let  tend to infinity and the proof of Theorem 5 is finished.
Theorem 6 can be proved similarly.
Proof of Theorem 7. We can assume  to be a bounded open interval and  to be nonnegative with . It is sufficient to prove thatFor , defineLet  be the component intervals of  and , where  is an integer. Using the same procedure as (24), we obtainwhereLet  and . The estimate for  is the same as (35). Since , we haveCombining (53) and (55), we obtainSimilarly as  we can estimate  to get . Applying (9) to , we have
The Corollary 8 can be obtained by the results of Theorems 5, 6, and 7 directly.
Proof of Corollary 9. Without loss of generality, we can assume that  is nonnegative and bounded with a compact support and . Let . Due to Theorem 7 we only need to proveLet  be a positive integer and . For , defineLet  be the component intervals of  and , where  is an integer. Using the same procedure as (24), we obtain where  and  have the similar definitions as those in the proof of Theorem 5. Let  and . The estimate for  is also the same as (35). Let , then  and  for . Since  for every  and , by the Hölder inequality and Lemma 17,By (35) and (61), we get Therefore we have By the similar estimates of  and , we get  andLet  tend to infinity and the proof is complete.
3. Applications
In this section, we assume that  with  Letwhere . If  is a constant function,  is the classical Riemann-Liouville operator and  is the classical Weyl operator. In [17], Andersen and Sawyer obtained the two weighted norm inequalities of  and  from  to . Other results about  and  on  can be seen in [18–21] and so forth.
Edmunds et al. [9] studied the boundedness of , , , and  in variable Lebesgue spaces. Kokilashvili et al. [11] discussed the two weighted norm inequalities of  and  from  to . In this section, we will discuss the two-weight inequalities of  and  in .
Definition 18 (see [9]). Given , we say that  if there exists a constant  such that for all , with , We also say that  if there exists a constant  such that for all  with , 
Our results in this section are the following theorems:
Theorem 19.  It is given that  such that  and . If  and , where  and , then
Theorem 20.  Given  such that  and . If  and , where  and , then 
Remark 21. The sets  and  are not empty. Let  (resp., ). If  is lower Ahlfors -regular (), which means there exists a constant  such that  for every bounded interval , then  (resp., ).
In order to prove Theorem 19, we need the following lemma.
Lemma 22 (see [9]).  It is given that , , and . If , then there exists a positive constant  depending only on  and  such that
Proof of Theorem 19. By the homogeneity of norm, we can assume that  and . It is sufficient to proveApplying (70) and Theorem 7 we have
Using the similar proving method as that of Lemma   in [9], we can prove the following lemma.
Lemma 23.  It is given that , , and . If , then there exists a positive constant  depending only on  and  such that
By this lemma and the two weighted results of , we can get the result of Theorem 20 directly.
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