Research Article

Two-Weight Norm Inequality for the One-Sided Hardy-Littlewood Maximal Operators in Variable Lebesgue Spaces

Caiyin Niu,1,2 Zongguang Liu,1 and Panwang Wang1

1School of Science, China University of Mining & Technology, Beijing 100083, China
2Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaiian, Jiangsu 223003, China

Correspondence should be addressed to Caiyin Niu; niucaiyin@yahoo.com

Received 24 June 2016; Revised 16 October 2016; Accepted 27 October 2016

Academic Editor: Stanislav Hencl

The authors establish the two-weight norm inequalities for the one-sided Hardy-Littlewood maximal operators in variable Lebesgue spaces. As application, they obtain the two-weight norm inequalities of variable Riemann-Liouville operator and variable Weyl operator in variable Lebesgue spaces on bounded intervals.

1. Introduction and Main Results

The one-sided Hardy-Littlewood maximal operators \(M^+ \) and \(M^- \) are defined by

\[
M^+ f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t)| \, dt,
\]

\[
M^- f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x} |f(t)| \, dt.
\]

Sawyer [1] showed that \(M^+ \) is bounded from \(L^p(v) \) to \(L^p(u) \) if the pairs of nonnegative functions \((u, v)\) satisfy Sawyer-type two-weight condition for the one-sided maximal operator. In [2] Martin-Reyes et al. generalized this result to \(M^+_g \), where \(g \) is positive locally integrable function. The similar results are also true for \(M^- \) and \(M^-_g \) (see [1–3]).

Let \(E \) be a measurable set in \(\mathbb{R} \). Given a measurable function \(p(\cdot) : E \rightarrow (0, +\infty) \), we denote

\[
p^-_E = \text{ess inf}_{x \in E} p(x),
\]

\[
p^+_E = \text{ess sup}_{x \in E} p(x).
\]

If \(E = \mathbb{R} \), we will simply note that \(p^- = p^-_{\mathbb{R}} \) and \(p^+ = p^+_{\mathbb{R}} \).

Definition 1. Given \(p(\cdot) : E \rightarrow [1, +\infty) \), \(\sigma \) is a locally integrable function such that \(0 < \sigma(x) < \infty \) a.e. \(x \in E \). We say that \(p(\cdot) \in P^\sigma(E) \) if there exists a constant \(C > 0 \) such that for every \((x, x+h) \subset E\)

\[
p(x) - \sigma(x, x+h) \leq \frac{C}{\ln \left(\frac{1}{\sigma(x) + |x|} \right)}.
\]

Let \(E \) be a measurable set in \(\mathbb{R} \). Given a measurable function \(p(\cdot) : E \rightarrow (0, +\infty) \), we denote

\[
p^-_E = \text{ess inf}_{x \in E} p(x),
\]

\[
p^+_E = \text{ess sup}_{x \in E} p(x).
\]

If \(E = \mathbb{R} \), we will simply note that \(p^- = p^-_{\mathbb{R}} \) and \(p^+ = p^+_{\mathbb{R}} \).

Definition 2 (see [4]). It is given that \(p(\cdot) : E \rightarrow [1, +\infty) \). We say that \(p(\cdot) \in LH^\sigma(E) \), if there exist constants \(p_\infty \geq 1 \) and \(C_\infty > 0 \) such that for all \(x \in E \)

\[
|p(x) - p_\infty| \leq \frac{C_\infty}{\ln (e + |x|)}.
\]
Let \(1 \leq p_− \leq p_+ < \infty\). The variable Lebesgue space \(L^{p(⋅)}(E)\) is the set of measurable functions \(f\) on \(E\) such that
\[
\rho_{p(⋅),E}(f) = \int_E |f(x)|^{p(⋅)(x)} \, dx < \infty.
\]
(6)
This is a Banach space (see \([4–7]\)) with the norm
\[
\|f\|_{L^{p(⋅)}(E)} = \inf \left\{ \lambda > 0 : \rho_{p(⋅),E}(f^{\lambda}) \leq 1 \right\}.
\]
(7)
If \(E = \mathbb{R}\), we will write \(\|f\|_{L^{p(⋅)}(\mathbb{R})}\) as \(\|f\|_{L^p(⋅)}\). The variable Lebesgue space is the special case of the Musielak-Orlicz space (see \([7, 8]\)). For the detail of \(L^{p(⋅)}\) we refer to \([4–7]\) and so on.

Let \(w\) be a nonnegative locally integrable function on \(E\). The weighted variable Lebesgue space \(L^{p(⋅)}(E;w)\) is the set of measurable functions \(f\) on \(E\) such that \(fw \in L^{p(⋅)}(E)\) and \(\|fw\|_{L^{p(⋅)}(E)} = \|f\|_{L^{p(⋅)}\cdot(E;w)}\). When \(p(⋅) = p\) is a constant, \(L^{p(⋅)}(E;w)\) coincides with the classical weighted Lebesgue space \(L^p(E;w)\).

Edmunds et al. \([9]\) investigated the boundedness of \(M^+\) and \(M^-\) in the variable Lebesgue spaces \(L^{p(⋅)}\). The two-weight weak type modular inequalities of \(M^+\) and \(M^-\) in \(L^{p(⋅)}\) were discussed in \([10]\). In \([11]\), Kolkashvili et al. acquired the sufficient condition such that \(M^+\) and \(M^-\) are bounded from \(L^{p(⋅)}(\mathbb{R}^-)\) to \(L^{p(⋅)}(\mathbb{R}^+),\) where \(p(⋅)\) is constant on some interval \((a, +\infty)\) \((a > 0)\) and \(T_{vw}\) is bounded in \(L^{p(⋅)}(\mathbb{R}^+)\) with
\[
T_{vw}f(x) = v(x) \int_x^{+\infty} \frac{f(y)}{yw(y)} \, dy, \quad x \in \mathbb{R}^+.
\]
(8)
Throughout this paper, \(u\) and \(v\) are nonnegative locally integrable functions and \(C\) is a positive constant whose value may change from one occurrence to the next. For exponent function \(p(⋅)\) with \(p(\cdot) \geq 1\), its conjugate exponent will be denoted by \(p'(⋅)\) with \(1/p(x) + 1/p'(x) = 1\). For a Lebesgue measurable set \(E \subset \mathbb{R}, \chi_E\) will be its characteristic function.

Definition 3. It is given that \(p(⋅) : E \to [1, +\infty)\) such that \(1 \leq p_− \leq p_+ < \infty.\) We say that \((u, v) \in S^{p(⋅)}(E)\) if there exists a constant \(C > 0\) such that for every interval \(I = (a, b) < E,\)
\[
\int_I M^+(\chi_I \sigma)(x) u(x)^{p(x)} \, dx \leq C \int_I \sigma(x) \, dx
\]
< +\infty,
where \(v(x) > 0\) a.e. \(x \in E\) and \(\sigma(x) = v(x)^{-p'(x)}\).

Definition 4. It is given that \(p(⋅) : E \to [1, +\infty)\) such that \(1 \leq p_− \leq p_+ < \infty.\) We say that \((u, v) \in S^{p(⋅)}(E)\) if there exist constants \(m \geq 1/p_−\) and \(C_1, C_2 > 0\) such that for every interval \(I = (a, b) < E,\)
\[
\int_I M^+(\chi_I \sigma)(x) u(x)^{p(x)} \, dx \geq 0,
\]
(10)
\[
\int_I \frac{u(x)^{p(x)}}{(e + |x|)^{mp}} \, dx \leq C \int_I \frac{\sigma(x)}{(e + |x|)^{mp}} \, dx \leq C_2,
\]
where \(v(x) > 0\) a.e. \(x \in E\) and \(\sigma(x) = v(x)^{-p'(x)}\).

\(S^p(E)\) can be considered to be the generalization of Sawyer-type two-weight condition (see \([1]\)) for the one-sided maximal operator in variable exponents case. If \(E = \mathbb{R}\) we will simply write \(S^p(E)\) as \(S^p_\mathbb{R}\) and \(S^{p^+}(\mathbb{R})\) as \(S^{p^+}_\mathbb{R}\). We can define \(p(⋅) \in \mathcal{P}_σ(E), (u, v) \in S^{p^+}(E),\) and \((u, v) \in S^{p^+}(E)\) in similar ways.

Our main results are the following theorems.

Theorem 5. Let \(D = (−\infty, d) < [1, +\infty)\) such that \(1 < p_D < p^+ < +\infty.\) Then \((u, v) \in S^{p(⋅)}(D)\) and \(p(⋅) \in (\mathcal{P}_σ(\mathbb{R}) \cap LH_{co}(\mathbb{R}))\) with \(\sigma(x) = v(x)^{-p'(x)}\), then
\[
\|M^+(f)\|_{L^{p(⋅)}(D)} \leq C \|f\|_{L^{p(⋅)}(D)}.
\]
(11)

Theorem 6. Let \(D = (d, +\infty) < (−\infty, +\infty)\) such that \(1 < p^- \leq p < +\infty.\) Then \((u, v) \in S^{p^-}(D)\) and \(p(⋅) \in (\mathcal{P}_σ(\mathbb{R}) \cap LH_{co}(\mathbb{R}))\) with \(\sigma(x) = v(x)^{-p'(x)}\), then
\[
\|M^+(f)\|_{L^{p(⋅)}(D)} \leq C \|f\|_{L^{p(⋅)}(D)}.
\]
(12)

Theorem 7. Let \(D\) be a bounded interval and \(p(⋅) : D \to [1, +\infty)\) such that \(1 < p^+ \leq p^- < +\infty.\) Then \((u, v) \in S^{p^+}(D)\) and \(p(⋅) \in (\mathcal{P}_σ(\mathbb{R}) \cap LH_{co}(\mathbb{R}))\) with \(\sigma(x) = v(x)^{-p'(x)}\), then
\[
\|M^+(f)\|_{L^{p(⋅)}(D)} \leq C \|f\|_{L^{p(⋅)}(D)}.
\]
(13)

Corollary 8. It is given that \(p(⋅) : \mathbb{R} \to [1, +\infty)\) such that \(1 < p < p^+ < +\infty.\) Then \((u, v) \in S^{p^+}(\mathbb{R})\) and \(p(⋅) \in (\mathcal{P}_σ(\mathbb{R}) \cap LH_{co}(\mathbb{R} \} [-c, c])\) with \(\sigma(x) = v(x)^{-p'(x)}\), then
\[
\|M^+(f)\|_{L^{p(⋅)}(\mathbb{R})} \leq C \|f\|_{L^{p(⋅)}(\mathbb{R})}.
\]
(14)

Corollary 9. It is given that \(p(⋅) : \mathbb{R} \to [1, +\infty)\) such that \(1 < p \leq p^+ < +\infty.\) Then \((u, v) \in S^{p^+}(\mathbb{R})\) and \(p(⋅) \in (\mathcal{P}_σ(\mathbb{R}) \cap LH_{co}(\mathbb{R} \} [-c, c])\) with \(\sigma(x) = v(x)^{-p'(x)}\), then
\[
\int \frac{\sigma(x)}{(e + |x|)^{mp}} \, dx \leq C,
\]
(15)

where \(\sigma(x) = v(x)^{-p'(x)}\).
\[
\| (M^+ f) u \|_{P(D)} \leq C \| f \|_{P(D)}. \tag{16}
\]

Remark 10. In Theorems 5 and 6, the set \(S^p_{P(D)} \cap S^{p'}_{P(D)} \) is not empty. In fact, if \(v(x) \geq 1 \) and \(0 \leq u(x) \leq v(x)^{1/(1-p(x))} \), when \(x \in D \), then \((u, v) \in (S^p_{P(D)} \cap S^{p'}_{P(D)}(D)) \).

Remark 11. If we take \(u(x) = 1 \) and \(v(x) = 1 \) for a.e. \(x \in D \) whenever \(D \) is an open interval, then \(\mathcal{B}^p_\alpha(D) = \mathcal{B}^p_\alpha(D) = \mathcal{B}^{p'}_\alpha(D) \) (see Definition 18 below) and the results of this paper coincide with those of [9].

Remark 12. If we use the Sawyer-type condition was used earlier in [12] to characterize the two-weight boundedness of the classical Hardy-Littlewood maximal operator \(M \).

Corresponding results for variable Lebesgue spaces can be found in [13–15].

2. Proof of the Main Results

In order to establish our main results, we will need following lemmas.

Lemma 14 (see [4]). It is given that \(E \) and \(p(\cdot) : E \rightarrow [1, +\infty) \) such that \(P_E^p < \infty \).

(a) If \(\| f \|_{L^{p(\cdot)}(E)} \leq 1 \), then \(p_E^{p(\cdot)}(E) f^{1/p_E^p} \leq \| f \|_{L^{p(\cdot)}(E)} \leq p_E^{p(\cdot)}(E) f^{1/p_E^p} \).

(b) If \(\| f \|_{L^{p(\cdot)}(E)} > 1 \), then \(p_E^{p(\cdot)}(E) f^{1/p_E^p} \leq \| f \|_{L^{p(\cdot)}(E)} \leq p_E^{p(\cdot)}(E) f^{1/p_E^p} \).

In particular, if \(\| f \|_{L^{p(\cdot)}(E)} \leq 1 \), then \(p_E^{p(\cdot)}(E) f \leq 1 \).

Lemma 15 (see [4]). If \(P_E^p < \infty \), the set of bounded functions with compact support is dense in \(L^{p(\cdot)}(E) \).

Lemma 16 (see [1]). Suppose \(g \geq 0 \) is integrable function with compact support on \(\mathbb{R} \). If \(I = (a, b) \) is a component interval of the open set \(\{ x \in \mathbb{R} : M^+ g(x) > \lambda \} \) with \(\lambda > 0 \), then

\[
\frac{1}{b-x} \int_x^b g(t) \, dt \geq \lambda \quad \text{for} \quad a \leq x < b. \tag{17}
\]

Lemma 17 (see [16]). It is given that a set \(G \subseteq \mathbb{R} \) and two exponents \(s(\cdot) \) and \(r(\cdot) \) such that

\[
|s(y) - r(y)| \leq \frac{C_0}{\ln(e + |y|)}. \tag{18}
\]

Then for every \(t \geq 1 \) there exists a constant \(C = C(t, C_0) \) such that for all functions \(f \) with \(|f(y)| \leq 1 \),

\[
\int_G [f(y)]^{s(y)} \, d\mu(y) \leq C \left(\int_G [f(y)]^{r(y)} \, d\mu(y) \right)^{1/r},
\]

where \(\mu \) is a given nonnegative measure.

Proof of Theorem 5. By the homogeneity, Lemma 15, the Fatou lemma for variable Lebesgue spaces [4] and Lemma 14, we only need to prove

\[
\int_{-\infty}^d M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq C \tag{20}
\]

for the nonnegative bounded function \(f \) with compact support and \(\| f \|_{L^{p(\cdot)}(E)} = 1 \). Let \(N > |d| \) be a positive integer and for \(k \in \mathbb{Z} \), define

\[
\Omega_{k,N} = \{ x \in \mathbb{R} : M^+ f(x) > 2^k \} \cap (-N, d). \tag{21}
\]

Obviously each \(\Omega_{k,N} \) is a bounded open set. Let \(I_{jk} = (a_{jk}, b_{jk}) \) be the component intervals of \(\Omega_{k,N} \), where \(j \) is an integer. Applying Lemma 16 to a fixed \(I_{jk} \), we have

\[
\frac{1}{b_{jk} - a_{jk}} \int_{a_{jk}}^{b_{jk}} f(t) \, dt \geq 2^k \quad \text{for} \quad x \in [a_{jk}, b_{jk}). \tag{22}
\]

Let \(E_{jk} = I_{jk} \setminus \Omega_{k+1,N} \), then the sets \(\{ E_{jk} \} \) are pairwise disjoint and for every \(k \)

\[
\bigcup_j E_{jk} = \{ x \in \mathbb{R} : 2^k < M^+ f(x) \leq 2^{k+1} \} \cap (-N, d). \tag{23}
\]

Therefore

\[
\int_{-N}^d M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx
\]

\[
= \sum_{k,j} \int_{E_{jk}} M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx
\]

\[
\leq 2^{p_E^p} \sum_{k,j} \int_{E_{jk}} \left(\frac{1}{b_{jk} - a_{jk}} \int_{a_{jk}}^{b_{jk}} f(t) \, dt \right)^{p(x)} u(x)^{p(x)} \, dx
\]

\[
= 2^{p_E^p} \sum_{k,j} \int_{-N}^d (A_{jk} (f^{-1})(x))^{p(x)} \, dx,
\]
where
\[A_{jk}g(x) = \left(\frac{1}{\int_{b^j_k}^{b^j_k} g(t) \sigma(t) \, dt} \right) \chi_{E_{jk}}(x), \]
\[\varphi_{jk}(x) = \left(\frac{1}{b^j_k - x} \right) \left(\frac{1}{\int_{b^j_k}^{b^j_k} g(t) \sigma(t) \, dt} \right) \chi_{E_{jk}}(x). \]

We show that for every \(j \) and \(k \) the inequality
\[A_{jk}g(x)^{p(x)} \leq C \left(A_{jk} \left(g^{p(\cdot)/p_D}(x) \right)^{p_D} + A_{jk} R(x)^{p_D} + R(x)^{p_D} \right) \]
(26)
is valid, where \(g = f\sigma^{-1}, R(x) = C/(e + |x|)^m \) (\(m \geq 1/p_D \) is the same as that in (10)), and \(C \) is independent of \(j \) and \(k \).

Let \(q(x) = p(x)/p_D \), then \(q(x) \in \mathcal{P}_D(\sigma) \). By \(\|f\|_{L^{p(x)}(D)} = 1 \) and Lemma 14 we get
\[\int_D g(x)^{p(x)} \sigma(x) \, dx = \int_D f(x)^{p(x)} \nu(x)^{p(x)} \, dx \leq 1. \]
(27)
Let \(g(x) = g_1(x) + g_2(x) \), where
\[g_1(x) = g(x) \mathbb{1}_{\{x \in D, g(x) > 1\}}(x), \]
\[g_2(x) = g(x) \mathbb{1}_{\{x \in D, g(x) < 1\}}(x), \]
then
\[A_{jk}g(x)^{p(x)} \leq 2^{p(x)-1} \left(A_{jk}g_1(x)^{p(x)} + A_{jk}g_2(x)^{p(x)} \right). \]
(29)
Since \(g_1(t) \geq 1 \), by (27) we can get
\[\int_{b^j_k}^{b^j_k} g_1(t) \sigma(t) \, dt \leq \int_D g_1(t)^{p(t)} \sigma(t) \, dt \leq 1 \]
for \(x \in E_{jk} \). Then
\[A_{jk}g_1(x)^{q(x)} \leq \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)} \]
\[\cdot \left(\int_{b^j_k}^{b^j_k} g_1(t) \sigma(t) \, dt \right)^{q(x)} \]
\[= \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)-q(x)} \]
\[\cdot \left(\int_{b^j_k}^{b^j_k} g_1(t) \sigma(t) \, dt \right)^{q(x)} \]
\[\leq \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)-q(x)} \]
\[\cdot \left(\int_{b^j_k}^{b^j_k} g_1(t) \sigma(t) \, dt \right)^{q(x)} \]
\[\leq \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)-q(x)}/C. \]
(31)
If \(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \leq 1/2 \), by (4), we have
\[\left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)-q(x)} \]
\[\leq \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)-q(x)} \]
\[\leq C. \]
(32)
If \(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt > 1/2 \), then
\[\left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \right)^{-q(x)-q(x)} \leq 2^{-q(x)-q(x)} \leq 2^{q(x)} \leq C. \]
(33)
Therefore
\[A_{jk}g_1(x)^{p(x)} \]
\[\leq C \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \int_{b^j_k}^{b^j_k} g_1(t) \sigma(t) \, dt \right)^{q(x)}/C. \]
(34)
Thus, by the Hölder inequality and \(g_1(t) \geq 1 \) we can get
\[A_{jk}g_2(x)^{p(x)} \]
\[\leq C \left(\int_{b^j_k}^{b^j_k} \sigma(t) \, dt \int_{b^j_k}^{b^j_k} g_2(t) \sigma(t) \, dt \right)^{p(x)}/C. \]
(35)
Next, we will estimate \(A_{jk}g_2(x) \). If \(A_{jk}g_2(x) \leq R(x) \), by \(R(x) \leq 1 \), we have
\[A_{jk}g_2(x)^{q(x)} \leq R(x)^{q(x)} \leq R(x). \]
(36)
On the other hand, if \(A_{jk}g_2(x) > R(x) > 0 \), noticing that \(A_{jk}g_2(x) \leq 1 \) and
\[q(x) - q \geq -|q(x) - q| \quad \text{for } x \in \mathbb{R}, \]
(37)
thus
\[0 < A_{jk}g_2(x)^{q(x)} \leq A_{jk}g_2(x)^{-|q(x)|} \leq R(x)^{-|q(x)|}. \]
(38)
Applying (38), \(q(\cdot) \in LH_\infty(D) \) and the Hölder inequality,
\[
A_{jk} g_2(x)^{q(x)} \leq A_{jk} g_2(x)^{-q(x)\cdot q_\infty} A_{jk} g_2(x)^{q_\infty} \\
\leq R(x)^{-q(x)\cdot q_\infty} \\
\frac{1}{b_x} \int_{b_x}^{b_x} g_2(t) \sigma(t) \, dt \\
\leq C \left(\int_{b_x}^{b_x} \sigma(t) \, dt \right)^{-1} \int_{b_x}^{b_x} g_2(t)^{q_\infty} \sigma(t) \, dt.
\]
By \(0 \leq g_2(t) \leq 1 \) and Lemma 17, we get
\[
A_{jk} g_2(x)^{q(x)} \leq C \left(\int_{b_x}^{b_x} \sigma(t) \, dt \right)^{-1} \\
\left(\int_{b_x}^{b_x} g_2(y)^{q(y)} \sigma(y) \, dy \right) \\
+ \int_{b_x}^{b_x} \sigma(y) \left(e + |y|^m \right) \, dy \\
\leq C \left(A_{jk} \left(g_2^{q(\cdot)} \right)(x) \right) \\
+ A_{jk} R(x).
\]
Hence, combining (36) and (40)
\[
A_{jk} g_2(x)^{p(x)} \leq C \left(A_{jk} \left(g_2^{q(\cdot)} \right)(x) + A_{jk} R(x) \right) \\
+ R(x)^{p_D} \leq C \left(\left(A_{jk} \left(g_2^{q(\cdot)} \right)(x) \right)^{p_D} \right) \\
+ A_{jk} R(x)^{p_D} + R(x)^{p_D}.
\]
This completes the proof of (26) by (29), (35), and (41). Applying (26) to (24), we obtain
\[
\int_{-N}^{d} M^\ast f(x)^{p(x)} u(x)^{p(x)} \, dx \\
\leq C \sum_{k,j} \int_{-N}^{d} \left(A_{jk} \left(\left(f \sigma^{-1} \right)^{p(\cdot)} \right)(x) \right)^{p_D} \varphi_{jk}(x) \, dx \\
+ C \sum_{k,j} \int_{-N}^{d} A_{jk} R(x)^{p_D} \varphi_{jk}(x) \, dx \\
+ C \sum_{k,j} \int_{-N}^{d} R(x)^{p_D} \varphi_{jk}(x) \, dx = I_1 + I_2 + I_3.
\]
Let \(T \) be the following linear operator:
\[
Th(x) = \sum_{k,j} A_{jk} h(x)
\]
and \(\varphi(x) = \sum_{k,j} \varphi_{jk}(x) \). Since \(\|f\|_{L^p(D)} = 1 \), if we show that the operator \(T \) is bounded from \(L^{p(D)}((-N,d),\sigma dx) \) to \(L^{p(\lambda)}((-N,d),\sigma dx) \), we obtain
\[
I_1 = C \int_{-N}^{d} \left(\left(f \sigma^{-\lambda} \right)^{p(\lambda)} \right)(x) \, dx \\
\leq C \int_{-N}^{d} \left(f(x) \sigma(x)^{-\lambda} \right)^{p(\lambda)} \sigma(x) \, dx \\
\leq C \int_{-N}^{d} f(x)^{p(x)} \varphi(x) \, dx \leq C.
\]

It is easy to see that \(T \) is bounded on \(L^{p(\lambda)}(D) \). Therefore, we only need to show that \(T \) is bounded from \(L^1((-N,d),\sigma dx) \) to \(L^{1,\infty}((-N,d),\sigma dx) \) to complete our proof by the Marcinkiewicz interpolation theorem. For arbitrary \(\lambda > 0 \) and each pair \((j,k) \), define
\[
F_{jk} (\lambda) = E_{jk} \cap \{ x \in (-N,d) : Th(x) > \lambda \}.
\]
Obviously, \(F_{jk} (\lambda) \) are pairwise disjoint. Let \(c_{jk}(\lambda) = \inf F_{jk} (\lambda) \) and \(J_{jk} = [c_{jk}(\lambda),b_{jk}] \). It is clear that any two intervals of \(\{J_{jk}\} \) are disjoint or one is contained in the other. By the definition of \(J_{jk} \), we also have
\[
\int_{J_{jk}} h(t) \sigma(t) \, dt \geq \lambda \int_{J_{jk}} \sigma(t) \, dt.
\]
Let \(\{I_j\} \) be the maximal elements of the family \(\{\{J_{jk}\}\} \). These maximal elements exist since the intervals \(J_{jk} \) have uniformly bounded length. The intervals \(I_j \) also satisfy (46). Then, by (9) and (46), we obtain
\[
\int_{\{x \in (-N,d) : Th(x) > \lambda\}} \varphi(x) \, dx \\
= \sum_{i \in \{k,j \}} \int_{\{x \in (-N,d) \}} \left(\frac{1}{b_{jk} - x} \int_{x}^{b_{jk}} \chi_{I_i}(t) \sigma(t) \, dt \right)^{p(x)} u(x)^{p(x)} \, dx \\
\cdot u(x)^{p(x)} \, dx \leq \sum_{i} M^\ast \left(\chi_{I_i} \sigma \right)^{p(x)} \, dx \leq C \sum_{i} \frac{1}{\lambda} \\
\cdot \int_{I_i} h(x) \sigma(x) \, dx \leq C \int_{-N}^{d} h(x) \sigma(x) \, dx.
\]
This has proved the weak (1,1) inequality for \(T \). Hence the estimate for \(I_1 \) is completed.
Since linear operator \(T \) is bounded from \(L^{p(\lambda)}((-N,d),\sigma dx) \) to \(L^{p(\lambda)}((-N,d),\sigma dx) \), by the second inequality of (10),
\[
I_2 = C \int_{-N}^{d} TR(x)^{p(\lambda)} \varphi(x) \, dx \\
\leq C \int_{-N}^{d} R(x)^{p(\lambda)} \sigma(x) \, dx \leq C \int_{D} \frac{\sigma(x)}{(e+|x|)^{mp_D}} \, dx \leq C.
\]
Similarly, by (10), we have
\[
I_3 = C \sum_{k,j} \int_{-N}^{d} \left(\frac{1}{b_{jk} - x} \int_{x}^{b_k} \sigma(t) \, dt \right)^{p(x)} \cdot u(x)^{p(x)} \chi_{E_{jk}}(x) \, dx \leq C \int_{-N}^{d} \left(M^+ (\sigma \chi(-N,d)) \right)^{p(x)} \cdot u(x)^{p(x)} \, dx \tag{49}
\]
\[
\cdot \left(\frac{u(x)^{p(x)}}{(e + |x|)^{mp_D}} \right) \, dx \leq C \int_{-N}^{d} R(x)^{p_D} \sigma(x) \, dx \leq C.
\]

Therefore, by (42), (44), (48), and (49), we have
\[
\int_{-N}^{d} M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq C, \tag{50}
\]
where \(C \) is independent of \(N \). Let \(N \) tend to infinity and the proof of Theorem 5 is finished. \(\square \)

Theorem 6 can be proved similarly.

Proof of Theorem 7. We can assume \(D \) to be a bounded open interval and \(f \) to be nonnegative with \(\|f\|_{\text{Lip}^1(D)} = 1 \). It is sufficient to prove that
\[
\int_D M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq C. \tag{51}
\]
For \(k \in \mathbb{Z} \), define
\[
\Omega_k = \left\{ x \in D : M^+ f(x) > 2^k \right\}. \tag{52}
\]
Let \(I_{jk} = (a_{jk}, b_{jk}) \) be the component intervals of \(\Omega_k \) and \(E_{jk} = I_{jk} \setminus \Omega_{k+1} \), where \(I \) is an integer. Using the same procedure as (24), we obtain
\[
\int_D M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq 2^k \sum_{k,j} \int_{A_{jk}} \left(f \sigma^{-1}(x) \right)^{p(x)} \varphi_{jk}(x) \, dx, \tag{53}
\]
where
\[
A_{jk}g(x) = \left(\frac{1}{\int_{x}^{b_k} \sigma(t) \, dt} \int_{x}^{b_k} g(t) \sigma(t) \, dt \right) \chi_{E_{jk}}(x), \tag{54}
\]
\[
\varphi_{jk}(x) = \left(\frac{1}{b_{jk} - x} \int_{x}^{b_k} \sigma(t) \, dt \right)^{p(x)} u(x)^{p(x)} \chi_{E_{jk}}(x). \tag{55}
\]
Let \(g(x) = f(x) \sigma^{-1}(x) \), \(g_1(x) = g(x) \chi_{E_{jk}}(x) \) and \(g_2(x) = g(x) \chi_{E_{jk}}(x) \chi_{\Omega_{k+1}}(x) \). The estimate for \(A_{jk}g_1(x) \) is the same as (35). Since \(A_{jk}g_2(x) \leq 1 \), we have
\[
A_{jk}g(x)^{p(x)} \leq C \left(A_{jk}g_1(x)^{p(x)} + A_{jk}g_2(x)^{p(x)} \right) \leq C \left(A_{jk} \left(g^{p(x)/p_D} \right)^{p_D} + 1 \right), \tag{56}
\]
Combining (53) and (55), we obtain
\[
\int_D M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq C \sum_{k,j} \int_D \left(A_{jk} \left(f \sigma^{-1}(x)^{p(x)/p_D} \right)^{p_D} \right) \varphi_{jk}(x) \, dx \tag{57}
\]
\[
\cdot \chi_{E_{jk}}(x) \, dx \leq C \int_D M^+ (\sigma \chi(D)) (x) \varphi_{jk}(x) \, dx \tag{58}
\]
\[
\cdot \left(\frac{u(x)^{p(x)}}{(e + |x|)^{mp_D}} \right) \, dx \leq C \int_D \sigma(x) \, dx \leq C.
\]
\(\square \)

The Corollary 8 can be obtained by the results of Theorems 5, 6, and 7 directly.

Proof of Corollary 9. Without loss of generality, we can assume that \(f \) is nonnegative and bounded with a compact support and \(\|f\|_{\text{Lip}} = 1 \). Let \(H = \mathbb{R} \setminus [-c,c] \). Due to Theorem 7 we only need to prove
\[
\int_H M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq C. \tag{59}
\]
Let \(N > c \) be a positive integer and \(D = (-N,c) \cup (c,N) \). For \(k \in \mathbb{Z} \), define
\[
\Omega_k = \left\{ x \in H : M^+ f(x) > 2^k \right\} \cap D. \tag{60}
\]
Let \(I_{jk} = (a_{jk}, b_{jk}) \) be the component intervals of \(\Omega_k \) and \(E_{jk} = I_{jk} \setminus \Omega_{k+1} \), where \(j \) is an integer. Using the same procedure as (24), we obtain
\[
\int_D M^+ f(x)^{p(x)} u(x)^{p(x)} \, dx \leq 2^k \sum_{k,j} \int_{A_{jk}} \left(f \sigma^{-1}(x) \right)^{p(x)} \varphi_{jk}(x) \, dx, \tag{61}
\]
where \(A_{jk} \) and \(\varphi_{jk} \) have the similar definitions as those in the proof of Theorem 5. Let \(g(x) = f(x) \sigma^{-1}(x) \), \(g_1(x) = g(x) \chi_{E_{jk}}(x) \) and \(g_2(x) = g(x) \chi_{E_{jk}}(x) \chi_{\Omega_{k+1}}(x) \). The estimate for \(A_{jk}g_1(x) \) is also the same as (35). Let \(q(x) = p(x)/p_D \), then \(q(x) \in \text{Lip}_{p_D}(H) \) and \(q(x) \geq q_{\infty} = p_{co}/p \) for
\(x \in H \). Since \(A_{jk}g_2(x) \leq 1 \) for every \(j \) and \(k \), by the Hölder inequality and Lemma 17,
\[
A_{jk}g_2(x)\eta(x) \leq A_{jk}g_2(x) \eta^{\infty} \leq C \left(\int_x^{b_{jk}} \sigma(t) \, dt \right)^{-1}
\]
\[
\cdot \int_x^{b_{jk}} g_2(t) \eta^{\infty} \sigma(t) \, dt \leq C \left(\int_x^{b_{jk}} \sigma(t) \, dt \right)^{-1}
\]
\[
\cdot \left(\int_x^{b_{jk}} g_2(t) \eta(t) \sigma(t) \, dt + \int_x^{b_{jk}} \frac{\sigma(t)}{(e + |t|)^{mp\alpha_{jk}}} \, dt \right)
\]
\[
\leq C \left(A_{jk} \left(g_2^{\eta(t)} \right)(x) + A_{jk} ((e + |x|)^{-m}) (x) \right).
\]
By (35) and (61), we get
\[
A_{jk}g_2(x)\eta(x) \leq C \left(A_{jk}g_1(x)\eta(x) + A_{jk}g_2(x)\eta(x) \right)^{\rho^-}
\]
\[
\leq C \left(A_{jk} \left(g^{\eta(t)\rho^-} \right)(x) \right)^{\rho^-}
\]
\[
+ \left(A_{jk} ((e + |x|)^{-m}) (x) \right)^{\rho^-}.
\]
Therefore we have
\[
\int_D M^+f(x)u(x)\eta(x) \, dx
\]
\[
\leq C \sum_{k,j} \int_D \left(A_{jk} \left((f\sigma^{-1})^{\eta(t)\rho^-} \right)(x) \right)^{\rho^-} \varphi_{jk}(x) \, dx
\]
\[
+ C \sum_{k,j} \int_D \left(A_{jk} ((e + |x|)^{-m}) (x) \right)^{\rho^-} \varphi_{jk}(x) \, dx
\]
\[
= I_6 + I_7.
\]
By the similar estimates of \(I_1 \) and \(I_2 \), we get \(I_6 \leq C \) and
\[
I_7 \leq C \int_D \frac{\sigma(x)}{(e + |x|)^{mp}} \, dx
\]
\[
\leq C \left(\int_0^\infty \frac{\sigma(x)}{(e + |x|)^{mp}} \, dx + \int_{-N}^N \frac{\sigma(x)}{(e + |x|)^{mp}} \, dx \right)
\]
\[
\leq C.
\]
Let \(N \) tend to infinity and the proof is complete. \(\square \)

3. Applications

In this section, we assume that \(I = (0, b) \) with \(0 < b < +\infty \). Let
\[
\mathcal{R}_{\alpha}f(x) = \int_0^x f(t) (x - t)^{\alpha(x) - 1} \, dt, \quad x \in (0, b),
\]
\[
\mathcal{W}_{\alpha}f(x) = \int_x^b f(t) (x - t)^{\alpha(x) - 1} \, dt, \quad x \in (0, b),
\]
where \(0 < \alpha(x) < 1 \). If \(\alpha(x) \) is a constant function, \(\mathcal{R}_{\alpha} \) is the classical Riemann-Liouville operator and \(\mathcal{W}_{\alpha} \) is the classical Weyl operator. In [17], Andersen and Sawyer obtained the two weighted norm inequalities of \(\mathcal{R}_{\alpha} \) and \(\mathcal{W}_{\alpha} \) from \(L^p(R, \eta(x)) \) to \(L^q(R, \varphi(x)) \). Other results about \(\mathcal{R}_{\alpha} \) and \(\mathcal{W}_{\alpha} \) on \(L^p \) can be seen in [18–21] and so forth.

Edmunds et al. [9] studied the boundedness of \(\mathcal{R}_{\alpha} \), \(\mathcal{W}_{\alpha} \), \(\mathcal{R}_{\alpha} \), and \(\mathcal{W}_{\alpha} \) in variable Lebesgue spaces. Kokilashvili et al. [11] discussed the two weighted norm inequalities of \(\mathcal{R}_{\alpha} \) and \(\mathcal{W}_{\alpha} \) in \(L_{\eta}^p(R) \) and \(L_{\eta}^q(R_\star) \). In this section, we will discuss the two-weight inequalities of \(\mathcal{R}_{\alpha} \) and \(\mathcal{W}_{\alpha} \) in \(L_{\eta}^p(I) \).

Definition 18 (see [9]). Given \(p(\cdot) : E \to [1, +\infty) \), we say that \(p(\cdot) \in \mathcal{P}_\alpha(E) \) if there exists a constant \(C > 0 \) such that for all \(x, y \in E \), with \(0 < x - y < 1/2 \),
\[
p(x) - p(y) \leq \frac{C}{-\ln(x - y)}.
\]
We also say that \(p(\cdot) \in \mathcal{P}_\alpha(E) \) if there exists a constant \(C > 0 \) such that for all \(x, y \in E \) with \(0 < y - x < 1/2 \),
\[
p(x) - p(y) \leq \frac{C}{-\ln(y - x)}.
\]

Our results in this section are the following theorems:

Theorem 19. It is given that \(p(\cdot) : I \to [1, +\infty) \) such that \(1 < p_1^\star < +\infty \) and \(0 < \alpha^\star \leq \alpha(x) < 1/p_1^\star \). If \((q^{(\eta(t))\rho^-}, p(\cdot), \eta(\cdot)) \in S_{p_1^\star}^+(I) \) and \(p(\cdot) \in (\mathcal{P}_{\alpha}^+(I) \cap \mathcal{P}_{\alpha}^-(I)) \), where \(\sigma(x) = \nu(x)^{-\rho^-} \) and \(q(x) = p(x)/(1 - \alpha(x)p(x)) \), then
\[
\| (\mathcal{R}_{\alpha}f) \|_{L_{\nu(x)}^p(I)} \leq C \| f \|_{L_{\nu(x)}^p(I)}.
\]

Theorem 20. Given \(p(\cdot) : I \to [1, +\infty) \) such that \(1 < p_1^\star < +\infty \) and \(0 < \alpha^\star \leq \alpha(x) < 1/p_1^\star \). If \((u^{(\eta(t))\rho^-}, p(\cdot), \eta(\cdot)) \in S_{p_1^\star}^+(I) \) and \(p(\cdot) \in (\mathcal{P}_{\alpha}^+(I) \cap \mathcal{P}_{\alpha}^-(I)) \), where \(\sigma(x) = \nu(x)^{-\rho^-} \) and \(q(x) = p(x)/(1 - \alpha(x)p(x)) \), then
\[
\| (\mathcal{W}_{\alpha}f) \|_{L_{\nu(x)}^p(I)} \leq C \| f \|_{L_{\nu(x)}^p(I)}.
\]

Remark 21. The sets \((\mathcal{P}_{\alpha}^+(I) \cap \mathcal{P}_{\alpha}^+(I)) \) and \((\mathcal{P}_{\alpha}^-(I) \cap \mathcal{P}_{\alpha}^-(I)) \) are not empty. Let \(p(\cdot) \in (\mathcal{P}_{\alpha}^+(I) \cap \mathcal{P}_{\alpha}^-(I)) \). If \(\sigma(x) \) is lower Ahlfors \(Q \)-regular (\(Q > 0 \)), which means there exists a constant \(C = C(Q) > 0 \) such that \(\int_0^1 \sigma(t) \, dt \geq C(b - a)^2 \) for every bounded interval \((a, b) \subset I \), then \(p(\cdot) \in (\mathcal{P}_{\alpha}^+(I)) \) (resp., \(p(\cdot) \in (\mathcal{P}_{\alpha}^-(I)) \)).

In order to prove Theorem 19, we need the following lemma.

Lemma 22 (see [9]). It is given that \(p(\cdot) \in \mathcal{P}_\alpha(I), 0 < \alpha \leq \alpha(x) < 1/p_1^\star \), and \(g(x) = p(x)/(1 - \alpha(x)p(x)) \). If \(\| f \|_{L_{\nu(x)}^p(I)} \leq 1 \), then there exists a positive constant \(C \) depending only on \(p(\cdot) \) and \(\alpha(x) \) such that
\[
\| \mathcal{W}_{\alpha}f \|_{L_{\nu(x)}^p(I)} \leq C \| f \|_{L_{\nu(x)}^p(I)}^{\rho^-/\rho+x} \chi(I).
\]
Proof of Theorem 19. By the homogeneity of norm, we can assume that \(\|f\|_{L^p(I)} \leq 1 \) and \(\|f\|_{L^p(I)} \leq 1 \). It is sufficient to prove
\[
\int_I (W_{a(x)} f)(x) y(x) u(x) y(x) \, dx \leq C. \tag{71}
\]
Applying (70) and Theorem 7 we have
\[
\int_I (W_{a(x)} f)(x) y(x) u(x) y(x) \, dx \\
\leq C \int_I (M^+ f)(x) p(x) \left(u(x)^p(x)/p(x) \right)^{p(x)} \, dx \leq C. \tag{72}
\]

Using the similar proving method as that of Lemma 3.1 in [9], we can prove the following lemma.

Lemma 23. It is given that \(p(\cdot) \in \mathcal{P}(I), 0 < \alpha_{\ell} \leq \alpha(x) < 1/\ell^p, \) and \(q(x) = p(x)/(1 - \alpha(x) p(x)). \) If \(\|f\|_{L^p(I)} \leq 1 \), then there exists a positive constant \(C \) depending only on \(p(\cdot) \) and \(\alpha(\cdot) \) such that
\[
\mathcal{R}_{a(\cdot)}(|f|)(x) \leq C [M^+ f(x)]^{p(x)/q(x)}, \quad x \in I. \tag{73}
\]

By this lemma and the two weighted results of \(M^+ \), we can get the result of Theorem 20 directly.

Competing Interests
The authors declare that there are no competing interests regarding the publication of this paper.

Acknowledgments
This research is supported by NNSF-China (Grants nos. 11171345 and 51234005).

References