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Abstract. 
By some estimates for the variable fractional maximal operator, the authors prove that the fractional integral operator is bounded and satisfies the weak-type inequality on variable exponent Lebesgue spaces.



1. Introduction
It is well known that the boundedness of fractional integral operators is the focus of study in the classical Lebesgue spaces. Sobolev [1] showed that the fractional integral operator is bounded from the classical Lebesgue space  to . In 1999, Kenig and Stein [2] have obtained the boundedness of multilinear fractional integral operator  from  to . During the recent three decades, variable exponent function spaces have been studied extensively; see, for example, [3–15]. The characterization and the boundedness of the classical operators on variable exponent function spaces were systemically studied; see [5, 6, 16–21]. For example, Capone et al. [22] proved that Riesz fractional integral  satisfies the weak-type inequality on variable exponent Lebesgue spaces in 2007.
Motivated by the aforementioned results, we will consider the variable fractional integral operator  in this paper. Before stating our results, we need to recall some notions firstly.
Given a bounded open set  and a measurable function  The variable exponent Lebesgue space  is equipped with the norm
Denote by  the set of measurable functions  on  with values in  satisfyingwhere we use the standard notation 
Definition 1. (i) If  satisfies then we say  satisfies the Log-Hölder condition.
(ii) If  satisfiesthen we say  satisfies the Log-Hölder decay condition.
Given , , the variable fractional operator can be defined by Now the first result is the following theorem.
Theorem 2.  Given an open set  and , let  be a function from  to  such that  and . Suppose further that  satisfies condition (5) and  satisfies conditions (3), (5), and (6). Define  by Then, the fractional integral operator  satisfies the weak-type inequality 
Remark 3. If , Theorem 2 is consistent with Theorem  in [22].
Given  with , the multilinear variable fractional integral operators can be defined byThe following is our second result.
Theorem 4.  Let  and  satisfy the Log-Hölder condition,  If  satisfies the Log-Hölder condition and , for , and then if each ,
The following sections are the proofs of Theorems 2 and 4. Here we point out that  denotes a positive constant, but it may vary from line to line.
2. Proof of Theorem 2
All cubes are assumed to have their sides parallel to the coordinate axes;  denotes that a cube is centered at  with side length .  is the Lebesgue measure of .  denotes that a ball is centered at  with radius 
Define the variable fractional maximal operator by If ,  becomes which is the usual Hardy-Littlewood maximal function.
Given a function , denote 
Lemma 5 (see [4]).  Given  such that , then  if and only if . In particular, if either constant equals 1, we can take the other equal to 1 as well.
Lemma 6 (see [4]).  Given a set  with finite measure and exponent functions  such that , 
The next lemma is the generalized Hölder inequality on variable exponent Lebesgue spaces.
Lemma 7 (see [12]).  If , there is a constant  such that, for all  and all , where .
Lemma 8 (see [23]).  Given an open set  and a function  which satisfies the Log-Hölder condition, then, for any ball  such that , 
Lemma 9 (see [22]).  Given an open set  and a function  which satisfies the Log-Hölder condition, then, for any ball  such that  and , 
Here and below, for , let 
Lemma 10 (see [22]).  Given a set  and two nonnegative functions  and , suppose that, for each , Then, there exists a constant  such that, for every function  obeying , 
Lemma 11.  Given , fix . Then, there exists a constant  such that, for all  and all ,
Proof. Let  be given. Then, Let ; we have where . Hence,  Similarly, By choosing , one finds 
Lemma 12.  Given an open set  and , let  be such that , , and such that  satisfies the Log-Hölder condition. Define  by Then, for all  such that  and such that  or ,
Proof. Fix , and fix a ball  containing . Then, by the definition of , To complete the proof we will show that We consider it in two cases depending on the size of  Suppose first that . Let . By Chebyschev’s inequality and Lemma 5, Therefore, since , by Lemma 6, Now suppose . If , then  and  satisfies the Log-Hölder condition, so by Lemmas 7 and 9The argument is the same when  except that instead of applying Lemma 9 we note that, by Lemma 6, Then, by Lemma 8, This completes the proof.
Lemma 13.  Given an open set  and , let  be such that , , and satisfy the Log-Hölder decay condition. Define  by Then, for all  such that  and , ,where .
Proof. Fix  and let  be any ball containing . It will suffice to show that where  is independent of .
It follows at once from the definition of  that . Therefore, by Hölder’s inequality, Since , , so . Therefore, to complete the proof we only need to show that Forit suffices to prove Define the setsThen, The integral in the right-hand side is easy to estimate. If , then . Thus, since , by Lemma 5, To estimate the first integral, we will apply Lemma 10. If , then, by the Log-Hölder decay condition, Therefore, for any  and ,  is integrable, andThis completes the proof.
Lemma 14 (see [22]).  Given an open set , let  satisfy the Log-Hölder decay condition. Suppose  such that . Then, for every ball  and every , where  and 
Proof of Theorem 2. Fix ; without loss of generality we may assume that . Since , by Lemma 5 it will suffice to prove that Fix , such that Define  by Since  and , by (23) and Young’s inequality, for each , Therefore,Denote , where  and .
Therefore, by (29) and (38), Therefore, We estimate each integral in turn.
For each , define , where . Then, for each  the set  is bounded, and by the monotone convergence theorem, the first integral is immediate: So, it will suffice to prove that where  is independent of  Fix ; for each  there exists a ball  containing  such that Therefore, by the Besicovitch covering lemma (see [24]), there exists a sequence  of  such that and such that the balls  have finite overlap uniformly bounded by a constant depending only on the dimension. Hence, Forby Lemma 14, we have where, in the third inequality, since , we used the boundedness of maximal operator on , and in the last inequality, we used the fact that the balls have uniformly bounded finite overlap.
For , ; then, it will suffice to prove We consider the two cases  and  to estimate it.
If , since , therefore If , since , by Hölder’s inequality To estimate the second term, we need to show that We first need to control the quantity  Fix ; then, there exists , such that  Then, by the Log-Hölder decay condition, we have Since  is arbitrary and , it follows that For ,  is integrable, and by Lemma 10The proof now proceeds as it does for the first term.
We estimate  as we did before; here we omit the detail. Then, we finish the proof of Theorem 2.
3. Proof of Theorem 4
To prove Theorem 4, we need the following lemma.
Lemma 15 (see [16]).  Let  be bounded. Suppose that  satisfies conditions (3) and (5) and  also satisfies the Log-Hölder condition: If , then there exists a positive constant  such that for all 
Proof of Theorem 4. Since , some . If , , since , we have . Then, integration in  reduces matters to the case when all  are finite (and ). Thus, we can assume that all .
Now, observe that ; we can find  such that . Let . Since  and it follows that where  is the variable exponent fractional integral operator.
Because , by Hölder’s inequality and (72), we obtain This finishes the proof.
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