Journal of Function Spaces
Volume 2016 (2016), Article ID 2619271, 9 pages
http://dx.doi.org/10.1155/2016/2619271
Research Article
New Inner Product Quasilinear Spaces on Interval Numbers
Hacer Bozkurt1 and Yılmaz Yilmaz2
1Department of Mathematics, Batman University, 72100 Batman,  Turkey
2Department of Mathematics, İnönü University, 44280 Malatya,  Turkey
Received 22 January 2016; Accepted 23 March 2016
Academic Editor: Adrian Petrusel
Copyright © 2016 Hacer Bozkurt  and Yılmaz Yilmaz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
Primarily we examine the new example of quasilinear spaces, namely, “ interval space.” We obtain some new theorems and results related to this new quasilinear space. After giving some new notions of quasilinear dependence-independence and basis on quasilinear functional analysis, we obtain some results on  interval space related to these concepts. Secondly, we present , and  quasilinear spaces and we research some algebraic properties of these spaces. We obtain some new results and provide an important contribution to the improvement of quasilinear functional analysis.



1. Introduction
In 1986, Aseev generalized the notion linear spaces by introducing firmly quasilinear spaces. He used the partial order relation when he defined quasilinear spaces and then he can give consistent counterpart of results in linear spaces. For more details, the reader can refer to [1]. This work has motivated a lot of authors to introduce new results on set-valued analysis [2, 3].
One of the most useful examples of a quasilinear space is the set  of all convex compact subsets of a normed space . The investigation of this class involves a convex interval analysis. Intervals are excellent tools for handling global optimization problems and for supplementing standard techniques. This is because an interval is an infinite set and is thus a carrier of an infinite amount of information which means global information. Further, the theory of set differential equations also needs the analysis of  [3].
Inspired and motivated by research going on in this area, we introduce an inner product quasilinear space which is defined in [4]. Generally, in [4], we give some examples of quasi-inner product properties on  of all convex compact subsets of a normed space . In our present paper we examine a new type of a quasilinear space, namely, . We find some important results related to the geometric structure of the  quasilinear space and we examine some algebraic properties of the  interval space. Furthermore, we explore the concepts of , and  interval sequence spaces as new examples of quasilinear spaces. Moreover, we obtain some theorems and results related to these new spaces which provide us with improving the elements of the quasilinear functional analysis.
2. Quasilinear Spaces and Hilbert Quasilinear Spaces
Let us start this section by introducing the definition of a quasilinear space and some of its basic properties given by Aseev [1].
Definition 1. A set  is called a quasilinear space if a partial order relation “,” an algebraic sum operation, and an operation of multiplication by real numbers are defined in it in such way that the following conditions hold for any elements  and any real numbers : (1),(2) if  and ,(3) if  and ,(4),(5),(6)there exists an element  such that ,(7),(8),(9),(10),(11),(12) if  and ,(13) if .
A linear space is a quasilinear space with the partial order relation “.” The most popular example which is not a linear space is the set of all closed intervals of real numbers with the inclusion relation “,” algebraic sum operationand the real-scalar multiplicationWe denote this set by . Another one is , the set of all compact subsets of real numbers. By a slight modification of algebraic sum operation (with closure) such asand by the same real-scalar multiplication defined above and by the inclusion relation we get the nonlinear QLS,  and , the space of all nonempty closed bounded and convex closed bounded subsets of some normed linear space , respectively.
Lemma 2.  Suppose that any element  in a QLS  has an inverse element . Then the partial order in  is determined by equality, the distributivity conditions hold, and, consequently,  is a linear space [1].
Suppose that  is a QLS and . Then  is called a subspace of  whenever  is a QLS with the same partial order and the restriction to  of the operations on . One can easily prove the following theorem using the condition of being a QLS. It is quite similar to its linear space analogue.
Theorem 3.   is a subspace of a QLS  if and only if, for every  and  [5].
Let  be a QLS. An  is said to be symmetric if , where , and  denotes the set of all such elements.  denotes the zero’s additive unit of  and it is minimal, that is,  if . An element  is called inverse of  if . The inverse is unique whenever it exists and  in this case. Sometimes  may not exist but  is always meaningful in QLSs. An element  possessing an inverse is called regular; otherwise it is called singular. For a singular element  we should note that  Now,  and  stand for the sets of all regular and singular elements in , respectively. Further, , and  are subspaces of  and they are called regular, symmetric, and singular subspaces of , respectively [5]. It is easy from the definitions that  and .
In a linear QLS that is in a linear space, there is no singular element. Further, in a QLS , it is obvious that any element  is regular if and only if .
Proposition 4.  In a QLS , if  and  then .
Proposition 5.  In a quasilinear space  every regular element is minimal [5].
Definition 6. Let  be a QLS and . The set of all regular elements preceding  is called floor of , and  denotes the set of all such elements. Therefore,The floor of any subset  of  is the union of floors of all elements in  and is denoted by  [6].
Definition 7. Let  be a QLS,  and .  is called a proper set if the following two conditions hold: (i) for all ,(ii) for each pair of points  with .
Otherwise  is called an improper set. Particularly if  is a proper set, then it is called a proper quasilinear space (briefly, proper qls) [6].
Definition 8. Let  be a quasilinear space.  is called a solid-floored quasilinear space whenever for each . Otherwise,  is called a non-solid-floored quasilinear space [6].
Definition 9. Let  be a QLS. Consolidation of floor of  is the smallest solid-floored QLS  containing , that is, if there exists another solid-floored QLS  containing  then .
Clearly,  for some solid-floored QLS . Further, . For a QLS , the setis the floor of  in 
Definition 10. Let  be a QLS. A real function  is called a norm if the following conditions hold [1]: (14) if ,(15),(16),(17)if , then ,(18)if for any  there exists an element  such that  and  then .
A quasilinear space  with a norm defined on it is called normed QLS. It follows from Lemma 2 that if any  has an inverse element , then the concept of a normed QLS coincides with the concept of a real normed linear space.
Let  be a normed QLS. Hausdorff or norm metric on  is defined by the equality 
Since  and , the quantity  is well defined for any elements , andIt is not hard to see that this function  satisfies all of the metric axioms.
Lemma 11.  The operations of algebraic sum and multiplication by real numbers are continuous with respect to the Hausdorff metric. The norm is a continuous function with respect to the Hausdorff metric [1].
Example 12. Let  be a Banach space. A norm on  is defined byThen  and  are normed quasilinear spaces. In this case the Hausdorff metric is defined as usual:where  denotes a closed ball of radius  about  [1].
Let us give an extended definition of inner-product. This definition and some prerequisites are given by Y. Yılmaz. We can see following inner-product as (set-valued) inner product on QLSs.
Definition 13. Let  be a quasilinear space. A mapping  is called an inner product on  if for any  and  the following conditions are satisfied:(19)if  then ,(20),(21),(22),(23) for  and ,(24),(25)if  and  then ,(26)if for any  there exists an element  such that  and  then .
A quasilinear space with an inner product is called an inner product quasilinear space, briefly IPQLS.
Example 14. One can see easily , the space of closed real intervals, is a IPQLS with inner-product defined by
Every IPQLS  is a normed QLS with the norm defined byfor every  [4].
Proposition 15.  If in an IPQLS  and , then  [4].
AN IPQLS is called Hilbert QLS, if it is complete according to the Hausdorff (norm) metric.
Example 16. Let  be an inner product space. Then we know that  is an IPQLS and it is complete with respect to the Hausdorff metric. So,  is a Hilbert QLS [4].
Definition 17 (orthogonality). An element  of an IPQLS  is said to be orthogonal to an element  ifWe also say that  and  are orthogonal and we write . Similarly, for subsets  we write  if  for all  and  if  for all  and  [4].
An orthonormal set  is an orthogonal set in  whose elements have norm 1; that is, for all 
Definition 18. Let  be a nonempty subset of an inner product quasilinear space . An element  is said to be orthogonal to , denoted by , if  for every . The set of all elements of  orthogonal to , denoted by , is called the orthogonal complement of  and is indicated by
Theorem 19.  For any subset  of an IPQLS  is a closed subspace of  [4].
Definition 20. Let  be a quasilinear space, . The element  withis said to be a quasilinear combination (ql-combination) of  corresponding to scalars . ql-combination of  corresponding to the scalars  may not be unique, from the definition, while it is well known that the linear combination of  corresponding to these scalars is unique. The setis said to be quasispan of  and is denoted by . One can see easily that  is a subspace of  [7].
It is clear that  and  iff  is a linear space, where  is the span of  in .
Definition 21. Let  be a QLS,  and . If implies , then  is said to be quasilinear independent (ql-independent); otherwise, it is said to be ql-dependent in  [7].
Theorem 22.  Any set which has  elements has to be ql-dependent in  [7].
Definition 23. Let  be a QLS and let  be a ql-independent subset of . If , then the set  is called a (Hamel) basis for  [7].
Definition 24. Singular dimension of QLS  is defined as the maximum number of ql-independent elements in singular subspace of . If this number is finite then  is called finite singular dimensional; otherwise it is called infinite singular dimensional. Further the dimension of regular subspace of  is called regular dimension of . It is denoted by  and , respectively [6].
On the other hand, if  then  is said to be dimension of  and is written as  [6].
Definition 25. Let  be a solid-floored quasilinear space. A Schauder basis is a sequence  of elements of  such that for every element  and for every  there exists a unique sequence of  scalars so thatThis definition is identical to the following definition.  is a Schauder basis of  if and only if for every  and for every .
Example 26.  and  are solid-floored quasilinear space. But singular subspace of  is a non-solid-floored quasilinear space.
Recall that the closed interval denoted by  is the set of real numbers given by . Although various other types of intervals (open, half-open) appear throughout mathematics, our work will center primarily on closed intervals. In this paper, the term interval will mean closed interval.
3. Interval Spaces
In this section, we introduce some new examples of quasilinear space. Let  be a set of all closed intervals of real numbers. In this case,  is the whole compact convex subset of real numbers. Now, we can give two-dimensional interval vector such that . And, so we can giveWe should state that  is not a vector space that is not linear space. Also, the convergence of these sets was discussed in [8].
Example 27. Let  and . The algebraic sum operation on  is defined by the expressionand multiplication by a real number  is defined byIf we will assume that the partial order on  is given bythen  is a quasilinear space with the above sum operation, multiplication, and partial order relation. From here, we get that  is another example of quasilinear spaces.
Remark 28. The quasilinear space  and the quasilinear space  are different from each other. For example, while the set  is an element of , it is not an element of . On the other hand,  but . So,  and  are two different examples of quasilinear spaces.
Example 29. Let . We can find  such that . So,  is a regular subset of . Also, if  for every , then  is a regular subset of . On the other hand, if  for  and , then  is a singular subset of .
The norm on  is defined byThen  is a normed quasilinear space. From [1], we know that  is a normed quasilinear space with . For example, let . Then, we get .
The Hausdorff metric is defined as usual:where  is the closed ball of radius  about .
Theorem 30.   interval space is a Banach -space with .
Proof. Let  be any Cauchy sequence in . Then, given any , there is  such that for all  we haveHence, for any , we get . On the other hand, since  is a quasilinear space, for every . This shows that  is a Cauchy sequence in . By completeness of , there is  such that  for all . Furthermore, since  for every . From (28), by letting , we obtainfor all . So, we get , since . Also, we obtainfor all . This means that the sequence  converges to  in .
Now, we will show that  is an -space. Suppose . From the definition of -space, since we have . This proves the theorem.
Example 31. The space  is a normed quasilinear space with norm defined by
The quasilinear space  with the inner productis an inner product quasilinear space.
Theorem 32.   is a Hilbert quasilinear space with  norm.
Proof. The norm in Example 31 is defined by  and can be obtained from the inner product quasilinear in Example 31. Let  be any Cauchy sequence in . Then, given any , there is  such that for all  we haveHence, for any , we get . On the other hand, since  is a quasilinear space, for every . This shows that  is a Cauchy sequence in . By completeness of , there is  such that  for all . Furthermore, since  for every . From the above inequality, by letting , we obtainfor all . So, we getand  for all . This means that the sequence  is convergent to  in .
Example 33. Let  and take the singleton  in . The q-span of  isFor example,  since  whereas . Because there is no  such that , clearly, . Let  be another element of . For any , clearly, we can write  for some . This means .
Example 34. In , let  and . Then  is ql-independent since  for , where  is the zero of the quasilinear space . In contrast, the singleton  is ql-dependent since  for . This is an unusual case in linear spaces because a nonzero singleton is clearly a linearly independent set in such case. Particularly, any subset of  possessing every vector of an element related to zero must be ql-dependent even if it is a singleton.
Example 35. From Example 33, . Also,  is ql-independent since . From here,  is a basis for .
Corollary 36.   is a normed quasilinear space with . From Example 31,  is an inner product quasilinear space with (33). Further, the set  is an orthonormal subset of  Hence,  is an orthonormal basis for .
Example 37. Let  Floor of  is Floor of  is 
Theorem 38.  The space  is a solid-floored quasilinear space.
Proof. Let . We know that  and  for all . From the definition of the floor of an element, we haveSince  is a quasilinear space, if , then we find  for every . Here,  for every  and . Since  for all . Hence, since  is a solid-floored quasilinear space. This shows that  for every .
Example 39. The set  consists of all symmetric elements of .  is a non-solid-floored quasilinear space since supremum of floors of every element in  is . For the same reason, the subspace of is non-solid-floored.
Lemma 40.  The space  is a proper quasilinear space.
Proof. Let us take arbitrary elements  such that . If , then  for at least . Hence, there is at least  such that . So  and . From here, we have If , then  for at least . Hence, there is at least  such that . So  and . From here, we have  and . If there is not a comparison between  and , then there is not a comparison between  and  for some  Hence, there exist two elements ,  and ,  for some . Thus ,  and ,  for this . So, we have  and . So,  is a proper quasilinear space.
Example 41. The singular subspace of is improper, because, in this space, floors of some elements may be empty set and floors of any two different elements may be the same.
Example 42. Regular and singular dimensions of the quasilinear spaces , and  are as follows:
Example 43. Let us consider the subspace  of  and the elements  and  of . The set  is ql-independent in  since there are nonzero scalars  and  satisfying the inclusion . Hence singular dimension of  must be greater than or equal to . Remember that  is a subspace of  and Theorem 22. Then  Clearly,  is equivalent to  and so .
4. Interval Sequence Spaces
In this section, we will introduce interval sequence spaces as a different example of quasilinear spaces. We first define the following new interval spaces. The setis called all intervals sequence space. Let  and . The algebraic sum operation on  is defined by the expressionand multiplication by a real number  is defined byIf we will assume that the partial order on  is given bythen  is a quasilinear space with the above sum operation, multiplication, and partial order relation.  is a metric space with for every . Here,  is the known Hausdorff metric on .
Now, we give a new interval sequence space, denoted by , namely, the space of all bounded interval sequences  of real numbers such thatHere, the boundedness of interval sequences will be considered according to the Hausdorff metric.  is a quasilinear space with (48), (49), and (50). The sum operation and scalar multiplication are well defined since 
 is a normed quasilinear space with norm function defined by Indeed, since it is easy to verify conditions (14)–(17) we only prove condition (18). Let  and  for every . Then we have  for all . On the other hand, we find  for all  when . Since  is a normed quasilinear space, we get  for every . Thus, we obtain .
Denotethat is, the space  consists of all convergent sequences  whose limit is zero such that is a quasilinear space the same as  with (48), (49), and (50).
The space  with the normis a normed quasilinear space.
A new example of the nonlinear quasilinear space is defined by is a not linear space.
Example 44.  is a metric space with where .
Proposition 45.   with the norm defined by is a normed quasilinear space but  is not a Banach quasilinear space with (61).
Proof. First we show that  is a quasilinear space, then that (61) is a norm in , and finally that the space is not complete. The fact that  is a quasilinear space with (48), (49), and (50) is obvious. Here, sum operation and scaler multiplication are well defined since for every  and . Also, (61) provides the (14)–(18) conditions and  is a normed quasilinear space with (61).
Now, we assume that  is a Cauchy sequence in . Ifthen given any , there exists a number  such thatNamely, for every , there exists a number  such thatNote that this implies that for every fixed  and for every  there exists a number  such thatBut this means that, for every , the sequence  is a Cauchy sequence in  and thus convergent. Denote We are not going to prove that  is an element of  and that the sequence  does not converge to . Indeed, from (65), by letting , we obtainfor every . Here, for every , we get butSo, we have that  is not convergent to  whether or not .
Corollary 46.   interval sequence space is not a Banach quasilinear space with (61) sincebutfor every .
Example 47. , and  interval sequence spaces are solid-floored quasilinear space. Definition of the  interval sequence space . We find definition of solid-flooredness in which Since  is a quasilinear space, we find  and  such thatfor every . Here, we see clearly that . Otherwise, since  is a solid-floored quasilinear space, we have for every . Hence, we obtain  since  is a quasilinear space with “” relation.
Example 48. Singular subspace of  is a non-solid-floored quasilinear space. For example, we have  for .
Example 49. Let us recall that  is a quasilinear space with the partial order relation “.” If we take  where , then  and . The quantity of ql-independent elements in  is not finite. Indeed, the family is ql-independent. Let us show that any finite subset of this family is ql-independent. This also implies that this family is ql-independent: assume that
Example 50. For the QLS  and .
Example 51. We can say that  and , for the QLS
Theorem 52.  Let  The sequence  is a Schauder basis for  and  for .
Proof. Now, we show that  is a Schauder basis for ; the other proof is similar to . Let  and  for every . We choose  From here, we getSincewe have  for . Now we show that this representation is unique.
To prove uniqueness, we assume thatfor , . Since , we get Hence, we find  for every . This proves the theorem.
Example 53.  sequence given in Theorem 52 is an orthonormal basis for .
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