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Abstract. 
We investigate the boundary value problems of impulsive fractional order differential equations. First, we obtain the existence of at least one solution by the minimization result of Mawhin and Willem. Then by the variational methods and a very recent critical points theorem of Bonanno and Marano, the existence results of at least triple solutions are established. At last, two examples are offered to demonstrate the application of our main results.



1. Introduction
Fractional differential equations have been an area of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, and engineering; see [1–3] and the references therein. Fractional differential equations involving the Riemann-Liouville fractional derivative or the Caputo fractional derivative have been paid more and more attentions. But for almost all the papers above, the main methods are some fixed theorems, the coincidence degree theory, and the monotone iterative methods.
On the other hand, critical point theory and the variational methods have been very useful in dealing with the existence and multiplicity of solutions for integer order differential equations with some boundary conditions. We refer the readers to the books (or surveys) of Mawhin and Willem [4] and Rabinowitz [5] and [6, 7] and the references therein. But until now, there are few works that deal with the fractional differential equations via the variational methods; [8, 9] are the pioneer in the use of the variational methods to fractional models. By using the variational methods, Jiao and Zhou [8] first considered the following fractional boundary value problems:where  and  and  are the left and right Riemann-Liouville fractional derivatives, respectively.  (with ) is a suitable given function and  is the gradient of  with respect to . The problem in [8] and the related problems were further considered by critical point theory and the variational methods in [10–12].
By means of critical point theory, Jiao and Zhou [9] considered the following fractional boundary value problems:where  and  and  are the left and right Riemann-Liouville fractional derivatives gradient of  with respect to .
The above problem arises from the phenomena of advection dispersion and was first investigated by Ervin and Roop in [13]. The authors in [14–17] further studied the existence and multiplicity of solutions for the above problem or related problems by critical point theory.
The impulsive differential equations arise from the real world problems to describe the dynamics of processes in which sudden, discontinuous jumps occur. Such processes are naturally seen in biology, physics, engineering, and so forth. Due to their significance, many authors have established the solvability of impulsive differential equations. There have been many different approaches to the study of the existence of solutions to impulsive fractional differential equations, such as topological degree theory, fixed point theory, upper and lower solutions method, and monotone iterative technique.
To the best of our knowledge, the fractional boundary value problems with impulses using variational methods and critical point theory have received considerably less attention [18–20].
In [20], the authors investigated the following fractional differential equations with impulses:By using critical point theory and variational methods, the authors give some criteria of the existence of solutions.
Motivated by the work above, we consider the following problem (4) of impulsive fractional differential equations: where , , , ,  are the left and right Riemann-Liouville fractional integrals of order ,  and  are the left and right Caputo fractional derivative of order , respectively, ,  a given function satisfying some assumptions and  is the gradient of  at , , and 
In this paper, the existence results of at least one solution or triple solutions of problem (4) are established. The rest of this paper is organized as follows. In Section 2, some definitions and lemmas which are essential to prove our main results are stated. In Section 3, we give the main results. At last, two examples are offered to demonstrate the application of our main results.
2. Preliminaries
At first, we present the necessary definitions for the fractional calculus theory and several lemmas which are used further in this paper.
Definition 1 (see [3]). Let  be a function defined by . The left and right Riemann-Liouville fractional integrals of order  for function  denoted by  and  function, respectively, are defined byThe left and right Riemann-Liouville fractional derivatives of order  for function  denoted by  and  function, respectively, are defined byprovided that the right-hand side integral is pointwise defined on 
Lemma 2 (see [3]).  The left and right Riemann-Liouville fractional integral operators have the property of a semigroup; that is, in any point  for continuous function  and for almost every point in  if the function .
Definition 3 (see [3]). If  and , then the left and right Caputo fractional derivatives of order  of a function  denoted by  and  function, respectively, are defined byrespectively, where 
In view of Definition 1 and Lemma 2, we can easily transfer problem (4) to the following problem:where , , .
Then problem (4) is equivalent to problem (10). Therefore, a solution of problem (10) corresponds to a solution of BVP (4).
In order to establish a variational structure which enables us to reduce the existence of solution of problem (10) to existence of the critical point of corresponding functional, we construct the following appropriate function spaces.
Let us recall that, for any fixed  and ,Let , and we define the fractional derivative spaces  by the closure of  with respect to the weighted norm , , where Clearly, the fractional derivative space  is the space of functions  having -order Caputo left and right fractional derivatives and Riemann-Liouville left and right fractional derivatives, , , ,  and 
Lemma 4 (see [9]).  Let  and . For all , one has Moreover, if  and , then Then we can conclude that  is equivalent to ,  In the following, we will consider the fractional derivative spaces  with respect to the norm . Obviously,  is a reflexive and separable Banach space with the norm 
Definition 5. A function is called a classic solution of problem (10) if(i)  exist and satisfy the impulsive condition  and the boundary condition  holds,(ii) satisfies (10) a.e. on .
Definition 6. A function  is called a weak solution of problem (10) if for all .
Similar to the proof of Lemma 2.1 in [18], we have the following Lemma 7.
Lemma 7.  The function  is weak solution of (10), if and only if  is a classical solution of (10).
Lemma 8 (see [9]).  Let  and the sequence  converges weakly to  in ; then  in ; that is, , as .
Lemma 9 (see [9]).  Let . For any , one has 
The proofs of the main results in this paper are based on the following critical point theorems.
Theorem 10 (see [4, Theorem 1.1]).  If  is weakly lower semicontinuous (WLSC) on a reflexive Banach space  and has a bounded minimizing sequence, then  has a minimum on .
Theorem 11 (see [21]).  Let  be a reflexive real Banach space, let  be a sequentially weakly lower semicontinuous, coercive, and continuously Gateaux differentiable functional whose Gateaux derivative admits a continuous inverse on , and let  be a sequentially weakly upper semicontinuous and continuously Gateaux differentiable functional whose Gateaux derivative is compact. Assume that there exist  and  with , such that (i),(ii)for every , the functional  is coercive.Then, for each  the functional  has at least three distinct critical points in .
3. Main Results
For convenience, we give the following hypothesis .
 is a positive real parameter, , ,  is a function such that  is continuous in  for every ,  is a  function in  for any , , and  is the gradient of  at , .
Theorem 12.  Let  hold. If , the following assumption  is satisfied. 
 There exists a positive constant  such that uniformly for , . 
Then (4) possesses at least one solution.
Proof. We define Then, for all , we knowwhich shows that a critical point of the functional  is a weak solution of problem (10).
Our aim is to apply Theorem 10 to problem (10).
We begin by proving that  is weakly lower semicontinuous. Since  is a separable and reflexive real Banach space, we assume that  converges weakly to  in . By Lemma 8, we can obtain that  uniformly in , as ; that is, Together with , one has Then it implies that  is weakly lower semicontinuous.
Now, we are in the position of showing that the functional  is coercive.
From , we know that there exists a positive constant  large enough such that On the other hand, from the continuity of , we concluded that  is bounded for , . Then there exists a constant  such thatfor , .
Hence, for all , we can get Then it follows from  and Lemmas 4 and 9 thatIn view of , we have Then we know that  is coercive. Thus, by virtue of Theorem 10, the functional  has a minimum, which is a critical point of . It follows that the boundary value problem (10) has one weak solution. By virtue of Lemma 7, we can deduce that the boundary value problem (10) has one solution which implies that the boundary value problem (4) possesses at least one solution.
Remark 13. If the asymptotically quadratic case in  becomes the subquadratic case, that is, then we can get the similar result.
PutFor , we define the functional  as follows: 
Theorem 14.  Let  hold. Suppose that there exist a constant  and a function  such that  and the following assumptions  are satisfied:  ; , where .Then, for each the boundary value problem (4) has at least three distinct solutions in .
Proof. Obviously  is compactly embedded in . From (31), (32), and , it is well known that  are well defined and are Gateaux differentiable functional whose Gateaux derivative at the point  is the functionals , given byfor every .
For , ,  in  as , by Lemma 8, we know that  converges uniformly to  in . Hencewhich implies that  is sequentially weak upper semicontinuous.
By , one can get  as . By the Lebesgue control convergence theorem,  strongly, which implies that  is strongly continuous on ; that is,  is a compact operator.
From , Lemma 9, and (31), it is also easy to verify that  is sequentially weakly lower semicontinuous, coercive, and its derivative  admits a continuous inverse on . By the condition , (31), and Lemma 9, we have and .
Then, in order to apply Theorem 11, we only need to show that (i) and (ii) of Theorem 11 hold.
From Lemma 9, (14), and (31), one hasand it follows that From (31), (32), Lemma 9, and , we obtainThen (i) of Theorem 11 holds.
Furthermore, according to  there exist two constants  with such that Next we consider the functional . From (41), one hasObviously, if , it follows that , as .
On the other hand, if , from (13) and (30), then we haveFor , by (40), we can deduceHence the functional  is coercive. So condition (ii) of Theorem 11 holds. Then, by virtue of Theorem 11, we can conclude that the equation  has at least three distinct solutions. That is, the boundary value problem (10) has at least three distinct weak solutions. As a consequence of Lemma 7, we deduce that the boundary value problem (10) has at least three distinct solutions which implies that problem (4) possesses at least three distinct solutions.
Finally, we give two examples to illustrate the usefulness of our main result. Consider the following impulsive system of fractional differential equations.
Example 15. Considerwhere . From (45), we know , , , . Let ; we can easily verify that all the conditions of hypothesis  are satisfied.
Choose ; it follows thatIt is also easy to see which implies that condition  holds.
Then problem (45) satisfies all the conditions in Theorem 12. In view of Theorem 12, problem (45) has at least one solution for .
Example 16. Considerwhere . From (48), we can see that , , , . Let Then it is easy to verify that assumption  holds.
We choose , . By a direct calculation, we can obtainHence all the assumptions of Theorem 14 are satisfied. Then our results can be applied to problem (48), which shows that problem (48) possesses at least three distinct solutions in , for .
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