Journal of Function Spaces
Volume 2016 (2016), Article ID 3698463, 6 pages
http://dx.doi.org/10.1155/2016/3698463
Research Article
Optimal Bounds for Gaussian Arithmetic-Geometric Mean with Applications to Complete Elliptic Integral
Hua Wang,1,2 Wei-Mao Qian,3 and Yu-Ming Chu4
1Department of Mathematics and System Science, National University of Defense Technology, Changsha 410073,  China
2Department of Mathematics, Changsha University of Science and Technology, Changsha 410014,  China
3School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000,  China
4School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000,  China
Received 8 May 2016; Revised 11 June 2016; Accepted 23 June 2016
Academic Editor: Rudolf L. Stens
Copyright © 2016 Hua Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
We present the best possible parameters  and  such that the double inequalities , ,  hold for all  with , where , , and  are the arithmetic, quadratic, and Gauss arithmetic-geometric means of  and , respectively. As applications, we find several new bounds for the complete elliptic integrals of the first and second kind.



1. Introduction
Let  and . Then the elliptic elliptic integral of the first kind  and second kind , Gaussian arithmetic-geometric mean , arithmetic mean , and quadratic mean  are, respectively, given by 
The Gauss identity [1–3] shows that for all , where and in what follows .
It is well known that the elliptic elliptic integrals  and  and the Gaussian arithmetic-geometric mean  have many applications in mathematics, physics, mechanics, and engineering [4–9]. Recently, the bounds for the Gaussian arithmetic-geometric mean  have attracted the attention of many researchers.
The inequalities for all  and  with  can be found in the literature [10–12], where  and  are, respectively, the logarithmic and th generalized logarithmic means of  and . The first inequality of (5) is due to Carlson and Vuorinen [13].
By using a variant of L’Hospital’s rule and representation theorems with elliptic integrals, Vamanamurthy and Vuorinen [14] proved, among other results, the inequalities for all  with  and , where  is the identric mean of  and .
By use of the homogeneity of the above means and a series representation of  due to Gauss, Sándor [15] obtained, among other results, new proofs for inequalities (7), (8) and a counterpart of inequality (9): for all  with , where  is the geometric mean of  and . Inequalities (9) and (12) show that  lies between the arithmetic and geometric means of  and . In [16], Sándor provided new proofs for inequalities (6) and (8), (9), (10), and (12) by using only elementary methods for recurrent sequences and found much stronger forms of these results.
Neuman and Sándor [17] gave the comparison of the Gaussian arithmetic-geometric mean and the Schwab-Borchardt mean.
The upper bounds  for  in (4) were replaced by  due to Kühnau [18].
Qiu and Vamanamurthy [19] presented that  and  are, respectively, the lower and upper bounds for  with . Alzer and Qiu [20] proved that  and  are the best possible parameters such that the double inequality holds for all  with .
Chu and Wang [21] proved that the double inequality holds for all  with  if and only if  and , where  and  is the th Gini mean of  and . In [22], Yang et al. proved that the inequalitieshold for all  and  with , where  is the Stolarsky mean [23] of  and .
Let  with  and . Then it is not difficult to verify that the function  is continuous and strictly increasing on the interval . Note that
Inequalities (16) give us the motivation to deal with the best possible parameters  and  such that the double inequalities hold for all  with .
2. Lemmas
In order to prove our main results we need several derivative formulas and particular values for  and , which we present in this section.
 and  satisfy the formulas (see [24])where  is the classical Euler gamma function.
Lemma 1 (see [24, Theorem  1.25]).  Let ,  be continuous on  and differentiable on  and  on . Then both functions are increasing (decreasing) on  if  is increasing (decreasing) on . If  is strictly monotone, then the monotonicity in the conclusion is also strict.
Lemma 2 (see [24, Theorem  3.21(1), Theorem  3.21(7), and Exercises  3.43(32)]).  The following statements are true: (1)The function  is strictly increasing from  onto .(2)The function  is strictly decreasing from  onto  if .(3)The function  is strictly increasing from  onto .
Lemma 3.  Let  and  be defined by Then there exists  such that  for  and  for .
Proof. From (21) we clearly see that  can be rewritten as It follows from Lemma 2 and  together with (22) that  is strictly increasing on .
Numerical computations show that Therefore, Lemma 3 follows easily from (23) and the monotonicity of  on the interval .
3. Main Results
Theorem 4.  The double inequality holds for all  with  if and only if  and .
Proof. Since , , and  are symmetric and homogenous of degree 1, without loss of generality, we assume that . Let . Then (2) and (3) lead to Let Then simple computations give It follows from Lemmas 1, 2 and (27) and (28) that and  is strictly increasing on the interval .
Note that Therefore, Theorem 4 follows easily from (26), (27), (29), and (30) and the monotonicity of  on the interval .
Remark 5. The left side inequality of Theorem 4 for  can be derived directly from the fact that  and  for all  with .
Theorem 6.  The double inequality holds for all  with  if and only if   and .
Proof. Without loss of generality, we assume that . Let . Then it follows from (2) and (3) that Let Then simple computations lead to It follows from Lemmas 1, 2(1) and (2) together with (33) and (34) that and  is strictly decreasing on the interval .
Note that Therefore, Theorem 6 follows easily from (32), (33), (35), and (36) and the monotonicity of  on the interval .
Remark 7. The right side inequality of Theorem 6 for  can be derived directly from the fact that  and  for all  with .
Theorem 8.  Let . Then the double inequality holds for all  with  if and only if  and .
Proof. Without loss of generality, we assume that . Let  and . Then (2) and (3) lead to wherewhere  is defined by (21).
We divide the proof into four cases.
Case  1 (). Then (42) becomesIt follows from Lemma 3 and (43) that there exists  such that  is strictly decreasing on  and strictly increasing on . Therefore, follows from (39), (41), and (44) together with the piecewise monotonicity of  on the interval .
Case  2 (). Then we clearly see that Case  3 (). Then (42) leads to Equation (39) and inequality (47) imply that there exists small enough  such that for all  with .
Case  4 (). Then (40) leads to Note that Equations (39) and (49) together with inequality (50) imply that there exists small enough  such that for all  with .
4. Applications
In this section, we use Theorems 4, 6, and 8 to present several bounds for the complete elliptic integrals  and .
From Theorems 4, 6, and 8 we get Theorem 9 immediately.
Theorem 9.  Let , , and . Then the double inequalities hold for all .
It follows from the inequality given in [24] that 
Theorem 9 and (54) lead to the following.
Theorem 10.  Let , , and . Then the double inequalities hold for all .
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