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Abstract. 
We give necessary and sufficient conditions for exchange of limits of double-indexed families, taking values in sets endowed with an abstract structure of convergence, and for preservation of continuity or semicontinuity of the limit family, with respect to filter convergence. As a consequence, we give some filter limit theorems and some characterization of continuity and semicontinuity of the limit of a pointwise convergent family of set functions. Furthermore, we pose some open problems.



1. Introduction
A widely investigated problem in convergence theory and topology is to find necessary and/or sufficient conditions for continuity and/or semicontinuity of the limit of a pointwise convergent net of functions or measures. There have been many recent related studies in abstract structures, like topological spaces, lattice groups, metric semigroups, and cone metric spaces, with respect to usual, statistical, or filter/ideal convergence and associated with the notions of equicontinuity, filter exhaustiveness, and filter continuous convergence (see also [1–9]). The study of semicontinuous functions is associated with quasimetric spaces, that is, spaces endowed with an asymmetric distance function (for a related literature, see, e.g., [3–5, 10–13]).
A concept associated with these topics is that of strong uniform continuity, which is used to study the problem of finding a topology with respect to which the set of the continuous functions is closed, and pointwise convergence of continuous functions implies convergence in this topology (see also [1, 14, 15]).
Another related field is the study of convergence theorems for measures taking values in abstract structures. When dealing with the classical convergence, it is possible to prove -additivity, -boundedness, and absolute continuity of the limit measure directly from pointwise convergence (with respect to a single order sequence of regulator) of the involved measures, without requiring additional hypotheses. This is not always true in the setting of filter convergence. A historical comprehensive overview, together with a survey on the most recent results and developments, can be found in [16] (see also its bibliography).
In this paper we present a unified axiomatic approach and extend results of this kind to double-indexed families, taking values in abstract structures, whose particular cases are lattice groups, topological groups, (quasi)metric semigroups, and cone (quasi)metric spaces. To include both continuity and semicontinuity, we assume the existence of a “generalized distance” function, which is assumed to satisfy only the triangular property and takes values in a group endowed with a suitable system of “intervals” or “half lines” containing its neutral element . Thus, both topological groups and lattice groups endowed with -, -, or order convergence are particular cases of these abstract structures. We prove some results on exchange of limits in the setting of filter convergence. Observe that the involved “distance” can be symmetric or asymmetric (for a literature, see also [3, 5, 10] and their bibliographies). Furthermore, in our setting, both sequences and nets of functions/measures are included, and note that it is possible to consider them as families endowed with filters (see also [17–19]).
As applications, we give some necessary and sufficient conditions for continuity from above/below and absolute continuity and semicontinuity of the limit measure in the context of filter convergence, which include the cases of -additivity and -boundedness, showing, by means of related examples, that they are not always satisfied, differently from the classical case. For a literature on measures satisfying upper/lower semicontinuity conditions or similar properties and related applications, see, for instance, [20] and the bibliography therein. Finally, we pose some open problems.
2. Assumptions and Examples
We begin with giving our axiomatic approach, which deals with abstract convergence with respect to filters, without using necessarily nets. For a literature about these topics, see, for instance, [16, 17, 19, 21–24] and their bibliographies.
Definition 1. (a) Let  be any nonempty set, and let  be the class of all subsets of . A family of sets  is called a filter of  iff , , and  for each , , and  whenever  and .
Some examples are the filter  of all subsets of  whose complement is finite and the filter  of all subsets of  having asymptotic density one. Some other classes of filters can be found in [16].
(b) Let  be a nonempty set, and let  be an abelian group with neutral element . Given  and , , put , and  ( times).
(c) Let  be a nonempty set. A -system  is a class of families  of subsets of , with  for each , such that for every  and  there is  such that  for every . Let  be a function, and suppose that for every ,  and for each  and , if  and , then .(d) Fix a -system  on  and a filter  of . A family , , of elements of  is said to -backward (resp., -forward) converge to  iff there is a family , such that for every  there is a set  with  (resp., ) for any . We say that -converges to  iff it -converges both backward and forward to , and in this case we write .
(e) Let  be a nonempty set. Given two families  and  of elements of , we say that -backward (resp., -forward) converges to  iff there is a family , such that for each  and  there is  with  (resp., ) for any . Analogously as above it is possible to formulate the notions of -convergence and -limit.
Remark 2. Observe that, in our context, we will consider filters without dealing explicitly with nets, and this is not a restriction. A net on  is a function , where  is a directed set, namely, a partially ordered set such that for any  there exists  with , . Given a directed set , it is possible to associate the filter  generated by the family . Note that  is a filter base of ; that is, for every  there is an element  with . The filter generated by a filter base  is the family . Conversely, given a filter base , it is possible to associate a directed partial order  on , by setting  if and only if ,  (see also [18, 19]).
Example 3. We now present some kinds of abstract space in which our approach can be applied, including both symmetric and asymmetric distance functions (for a literature, see also [3, 5, 10–13]).
(a) Let  be a Dedekind complete lattice group, , and let , , be the absolute value of . It is possible to define different kinds of convergences, as follows (see also [16]).
Let  be endowed with the usual order,  (-convergence); let  be with the usual order, , where an -sequence is a decreasing sequence in  whose infimum is equal to  (order convergence of -convergence); let  be directed with the pointwise order, , where a -sequence or regulator is a bounded double sequence in  such that  is an -sequence for each  (-convergence). The -convergence was presented in [25] to give direct proofs of extension theorems for vector lattice-valued functionals and replaces the -technique in dealing with suprema and infima of lattice group- or vector lattice-valued families. For technical reasons, sometimes the -convergence is easier to handle than -convergence, and in particular it is very useful when one replaces a sequence of regulators with a single -sequence (for a literature about these topics, see also [16, 23, 26, 27]).
It is not difficult to check that , , are -systems, satisfying .
(b) We can extend the examples given in (a) to the case in which  is a cone metric space (with respect to ); that is,  is a nonempty set and  is a Dedekind complete lattice group endowed with a distance function , satisfying the following axioms: (i) and  if and only if .(ii) (symmetric property).(iii) (triangular property) for every , , .(See also [6, 28].) When a cone metric space  is a semigroup, we say that  is a cone metric semigroup, a cone metric semigroup in which  is said to be a metric semigroup. Note that the set of fuzzy numbers is a metric semigroup, but not a group (see also [20]). If  satisfies the first and the third of the above axioms, but not the symmetric property, then we say that  is an asymmetric distance function and that  is a cone asymmetric metric space or cone quasimetric space (see also [3, 5, 10]). For example, let  be a nonempty set, , and let  be a fixed positive real number and let  be a fixed element of  with . For each  and , setand let . It is not difficult to see that  is an asymmetric distance function (see also [3, 10]).
(c) When  is a lattice group and , it is advisable to deal not only with continuity, but also with upper or lower semicontinuity (see also [4]). In this setting we take , , , , as in (a), and ; ; .
(d) Let  be a Hausdorff topological group with neutral element  satisfying the first axiom of countability, , , , and . It is not difficult to see that  is a -system (see also [16, 29]).
(e) Let  be a filter of . When we consider -convergence and  is a cone quasimetric space, a family  of elements of  is said to -backward converge to  iff there is , , with  for all . When we deal with -sequences, we say that -backward converges to  iff there exists an -sequence  in  with  for every . When we consider -sequences, we say that the net -backward converges to  iff there exists a regulator  in  with When  and , we have the classical -,  -, and -(backward, forward) convergence (see also [3, 16]). If  is a Hausdorff topological group and , then we say that a net , , in , -backward converges to  iff  for each neighborhood  of . Similarly as above it is possible to formulate the corresponding notions of -, -, and -(forward) convergences and limits.
(f) When  is a Dedekind complete lattice group,  and  are two families in  and  is the -system associated with -convergence (resp., -convergence, -convergence); we say that  (resp., , ) iff . Analogously it is possible to formulate the corresponding concepts of backward and forward convergences (see also [3, 5, 10]). In particular, when  endowed with the usual convergence, since it coincides with - -, and -convergence, we will denote by - and -(backward, forward) convergence the usual filter (backward, forward) convergence and the ordinary pointwise filter (backward, forward) convergence. When  is a Hausdorff topological group, ,  are as in (d), and we get that the -convergence is equivalent to the pointwise -convergence, and hence we write  for every , or .
(g) Observe that, in general, a family  can be backward (resp., forward) convergent to more than one element. For example, if  is a Dedekind complete lattice group,  is a nonempty set,  is any filter of ,  for every , ,  for every , and  is any element of  with  (resp., ), then it is not difficult to see that -backward (resp., -forward) converges to .
(h) In general, backward and forward convergence are not equivalent. For example, similarly as in (1), let  be a nonempty set, let  be endowed with the usual order, let  be a filter of  containing all half lines  with , pick , and let ,  be those functions which associate with every element of  the real constants , , respectively. For any ,  and , setand put . It is not difficult to check that  is an asymmetric distance function (see also [3, 10]). For each , set  and . Note that , , , and . From this it is not difficult to deduce that the family -forward converges to  and -backward converges to , while  does not -backward converge to  and  does not -forward converge to .
However, if  is any nonempty set,  is any filter of ,  is as in (1), and , then it is not difficult to see that  whenever , . From this it follows that a family  in  is -backward convergent if and only if it is -forward convergent. We claim that, in this case, the involved limit coincides. Indeed, if -backward converges to  and -forward converges to  with respect to , then there exist , , such that for every  there are  with  for every ,  whenever . Note that . If  is any fixed element of , then from the triangular property of  we deduce that Thus, by arbitrariness of , we get , and hence , getting the claim.
3. The Main Results
In this section we give the fundamental results of the paper in our unified setting, which includes lattice groups, cone metric spaces, metric groups and topological groups, symmetric and asymmetric distances, continuity and semicontinuity of the limit, and families of functions and of measures. We first present the notion of weak filter backward and forward exhaustiveness in our abstract context, which extends the corresponding ones given in the literature and the classical concept of equicontinuity (see also [4, 8, 16, 30]).
Definition 4. (a) Let  be a nonempty set; fix  and let  be a filter of . One says that the family  is weakly -backward (resp., forward) exhaustive at  iff there exists a family  such that for each  there is a set  such that for every  there is a set  with  (resp., ) for any . The family  is said to be weakly -exhaustive at  iff it is both weakly -backward and weakly -forward exhaustive at .
(b) Let , , be a family of filters of . One says that  is weakly - (backward, forward) exhaustive on  iff it is weakly - (backward, forward) exhaustive at every  with respect to a single family , independent of .
Example 5. We now show that, in general, weak -backward and forward exhaustiveness do not coincide. Let , , be equipped with the usual convergence; that is, let  be endowed with the usual order, and . Let us define  by It is not difficult to see that  is an asymmetric distance function (see also [10, Example  5.3]). Let  be any filter of , and, for every , let  be the filter of all neighborhoods of  with respect to the topology generated by . Set , , . We claim that the family  is weakly -forward exhaustive at . Indeed, in correspondence with , take , and set  for any , where  denotes the ball of center  and radius  with respect to . For every  and  we get , getting the claim.
Now, in correspondence with every  and , let  and take . Note that . Choose arbitrarily . It is not hard to see that  for every . Hence, the family  is not weakly -backward exhaustive at . Furthermore note that, analogously as in (3), it is not difficult to check that -forward (resp., backward) convergence does not imply -backward (resp., forward) convergence with respect to .
The following result deals with characterizations and properties of the limit family and extends [3, Theorem  3.1], [4, Theorems  2.5, 2.6], and [6, Theorem  3.1] to the abstract context.
Theorem 6.  Assume that -converges to , fix , and let  be a filter of . Then the following are equivalent: (i) is weakly -backward (resp., forward) exhaustive at .(ii)-backward (resp., forward) converges to  as .
Proof. We give the proof only in the “backward” case, since the other case is analogous.
 Let  be a family related to -backward exhaustiveness of  at . By hypothesis, for each , there exists a set , associated with weak -backward exhaustiveness. Pick arbitrarily . There is a set  with  for any . Moreover, thanks to -convergence, there is a family  such that for every  there exists  with  and  whenever . From this and  it follows that , getting (ii).
 By hypothesis, there exists a family  such that for each  there is a set  withChoose . By -convergence of  to , there is a family  such that for every  there is a set  withfor each . From (6), (7), and  we get that for every  there is  such that for each  there exists  with  whenever . Thus the family  is weakly -backward exhaustive at . This ends the proof.
Remark 7. Observe that Theorem 6 holds also if -convergence is replaced by -forward convergence, under the hypothesis that forward convergence implies backward convergence (see also [10]). In general this last condition is essential. Indeed, let  be endowed with the usual order, let  be a filter of  containing all half lines  with , let  be equipped with the usual distance, let , , be the filter of all neighborhoods of , let  be endowed with the usual convergence, , and let  be defined by It is not difficult to check that  is an asymmetric distance function. For every  and , set . Observe that  and  for every  and . It is not difficult to see that the family -forward converges to , where , , but does not -backward converge. Moreover, since , for every , , the family  is neither -backward nor -forward convergent to  as . Furthermore, we getfor every  and . From (9) it is not difficult to deduce that the family  is both weakly -forward and weakly -backward exhaustive at  (see also [3, Example  3.7], [10, Example  5.10]).
We now give some kinds of convergences for families, which are some necessary and sufficient conditions for exchange of limits, which extend to our context some results proved in [1, 2, 4, 6, 9] about necessary and sufficient conditions for continuity of the pointwise limit of continuous functions. We extend to our setting the concepts of Arzelà, Alexandroff, and strong uniform convergence given in [1, 15, 31, 32].
Definition 8. (a) Fix , and let  be a filter of . One says that -forward strongly uniformly converges to  at  (shortly, ) iff there exists a family  such that for each  there is  such that for every  there is a set  with  whenever .
(b) One says that  is -forward Arzelà convergent to  at  (in brief, ) iff there exists a family  such that for every  and  there are a finite set  and a set , such that for each  there is  with .
(c) If , , is a family of filters of , then one says that a finitely uniform cover of  is a family  of subsets of  such that , and for every  there are a set  and a finite subset  of , such that for each  there exists  with .
(d) The family  is said to -forward strongly uniformly (resp., -forward Arzelà) converge to  on  iff it -strongly uniformly (resp., -Arzelà) converges to  at  for every  with respect to a single family , independent of .
(e) One says that  is -forward Alexandroff convergent to  on  (shortly,  on ) iff there exists a family  such that for each  and  there are a nonempty set  and a finitely uniform cover  of  with  for any  and .
Note that, analogously as above, it is possible to formulate the corresponding concepts of (backward) filter strong uniform, Arzelà, and Alexandroff convergence.
The next result extends [2, Theorem  3.9], [4, Theorems  2.9, 2.11 and Corollary  2.10], and [9, Proposition  3.5].
Theorem 9.  Let  be fixed, let  be a filter of , and suppose that (3.6.1);(3.6.2)the family -converges to .Then the following are equivalent: (i)-backward converges to  as .(ii) at .(iii) at .
Proof.  Let , , and  be three families associated with (i), (3.6.1), and (3.6.2), respectively, and take arbitrarily . By (3.6.2), there is  with  for all . By (3.6.1) and (i), for each  there is  with  and  for any . For such ’s, taking into account , we have , getting (ii).
 Let  be a family, according to -strong uniform convergence. Choose arbitrarily  and , and let  be associated with -strong uniform convergence. Pick any finite set : since  is a filter,  does exist. For every , let  be related to -strong uniform convergence, and set . Note that . By construction, for each  and , we get . Thus, we obtain (iii).
 Let , , and  be families related to (iii), (3.6.1), and (3.6.2), respectively. By (3.6.2), there is a set  withChoose arbitrarily . By (iii), in correspondence with  and , there exist a finite set  and a set  such that for every  there is  withThanks to (3.6.1), we find a set , without loss of generality , withfor each . From (10), (11), (12), and  it follows that  for every , getting (i).
Remark 10. (a) In general, Theorem 9 does not hold, when the involved “forward” convergences are replaced by the corresponding “backward” ones. Indeed, for example, let ,  be any filter of , let  be endowed with the usual metric, , and let  be the filter of all neighborhoods of  contained in , , , , . Put , , . We get  for every , and Note that for each  and  we get Hence,  at . On the other hand, for every  and for each neighborhood  of  contained in  there is a real number , close enough to , with , and hence Thus,  at . The family -forward, but not backward, converges to  as : indeed for every  we have  for each , but . Note that the function , , is upper semicontinuous, but not lower semicontinuous, at .
(b) Observe that Theorem 9 does not hold, where in (3.6.1) the involved convergence is replaced by the corresponding backward or forward convergence (see also [2, Example  3.3]).
Let , , , , , and  be as in (a), let  be endowed with the usual metric, , and let  be the filter of all neighborhoods of . Set Observe that  for every , so that (3.6.2) holds, and condition (i) of Theorem 9 is fulfilled. Moreover it is not difficult to see that, for each ,  converges backward, but not forward, to  as  tends to , and hence (3.6.1) is not verified. However, note that for every  and for every neighborhood  of  there is  with , and hence . Thus, condition (ii) of Theorem 9 is not satisfied.
Furthermore, if we define , , , by then Hence, (3.6.2) is satisfied, but condition (i) of Theorem 9 does not hold. Observe that, for any ,  converges forward, but not backward, to  as  tends to , and hence (3.6.1) is not satisfied. On the other hand, since  for any  and , we get that condition (ii) of Theorem 9 is fulfilled.
We now turn to the main theorem in our abstract setting, which extends [1, Theorems  4.7, 4.11], [2, Theorem  3.10], [4, Theorem  2.12], and [6, Corollary  3.5] to our abstract unified setting.
Theorem 11.  Let , , be a family of filters of , with the property that  for every  and . Suppose that (3.6.2) holds and that(3.8.1) for each  with respect to a single family , independent of both  and .Then the following are equivalent: (i)-backward converges to  as  for every , with respect to a single family , independent of .(ii) on .(iii) on .(iv) on .(v) is weakly -backward exhaustive on .
Proof.  It is similar to Theorem 6.
 It is similar to Theorem 9.
 Let  be a family associated with --convergence of  to . Choose arbitrarily  and . By (ii), for every , there exists a set , such that for every  there is  with  for any . Set : note that , where . For every , let Pick arbitrarily  and choose . We have  whenever . Thus, . For each , set . Note that  is a cover of . For every  and  there is  with , and hence . Now, in correspondence with , choose an element  and pick . Note that  and . Thus,  is a finitely uniform cover of , with  and . Therefore, -Alexandroff converges to .
 Let  be a family associated with -Alexandroff convergence of  to . Pick arbitrarily , , and . By (iii), there are a nonempty set  and a finitely uniform cover  of , with  for each  and . Since  is a finitely uniform cover, in correspondence with , there exist a set  and a finite subset , such that for every  there is  with . Thus , and so we obtain (iv). This ends the proof.
Remark 12. Observe that when the function  is symmetric, Theorems 6, 9, and 11 can be viewed as necessary and sufficient conditions in order to have exchange of limits (for a related literature, see also [16, 26, 33]).
4. Applications to Set Functions
In this section, as consequences of Theorems 6, 9, and 11, we will give some necessary and sufficient conditions for some kind of continuity and semicontinuity of the limit of set functions. We begin with proving a result on continuity from below the limit measure. Note that, thanks to the limit theorems existing in the literature, these conditions are often fulfilled (for a comprehensive historical survey, see [16] and its bibliography). However, we give an example in which these properties do not hold in the setting of filter convergence.
Let  be any nonempty set, let  be any filter of , let  be any infinite set, let  be -algebra of subsets of , and let  be a (symmetric) cone metric semigroup, , , . It is not difficult to check that  is a filter of . Moreover, let  be a fixed -system associated with .
A set function  is said to be -continuous from below (resp., from above) on  iff  for every increasing (resp., decreasing) sequence  in  whose union (resp., intersection) is equal to . A consequence of Theorems 6 and 9 is the following.
Theorem 13.  Let , , be a family of set functions, -continuous from below on , with respect to a family  independent of . Suppose that (4.1.1), , exists in  with respect to a family  independent of .Then the following are equivalent: (i) is -continuous from below on .(ii)For every increasing sequence  in  there is a family  such that for any  there is  such that, for every , there is a set  with  for each .(iii)For any increasing sequence  in  there is a family  such that for every  there is  such that for each  there exists a positive integer  with  for any .(iv)For every increasing sequence  in  there is a family  such that for each  and  there are  and  such that for each  there exists  with .
Indeed, it is enough to take where  is a fixed increasing sequence in , whose union is . Conditions (i) of Theorem 6 and (ii) and (iii) of Theorem 9 become conditions (ii), (iii), and (iv) of Theorem 13, respectively.
Remark 14. (a) Observe that results analogous to Theorem 13 hold when the involved set functions , , are -continuous from above or -bounded on , that is, if  for every disjoint sequence  in .
(b) Note that conditions (ii)–(iv) of Theorem 13 are just satisfied, for example, when  is a Dedekind complete lattice group, , , , , and  is a sequence of -additive positive -valued measures, thanks to the classical limit theorems (see also [16, 34, 35]).
The next step is to give necessary and sufficient conditions for absolute continuity of the limit measure.
Let  be a finitely additive measure. We endow  with the Fréchet-Nikodým topology generated by the pseudometric , . Pick now , and for each  let  be the filter generated by the base .
We say that  is weakly -exhaustive at  iff there is a family  (depending on ) such that for each  there is  such that for every  with  there is a set  with  whenever . We say that  is weakly -exhaustive on  iff it is weakly --exhaustive at every  with respect to a family  independent of .
A measure  is said to be -continuous at  iff there is a family  (depending on ) such that for every  there is  with  whenever . We say that  is globally -continuous on  with respect to  iff it is --continuous at  with respect to  for each , relative to a family , independent of .
The next result is a consequence of Theorem 11.
Theorem 15.  Let , , be a family of measures --continuous at a fixed set  (resp., globally --continuous on ) with respect to a family  independent of  and -convergent to a measure . Then the following are equivalent: (i)The limit measure  is --continuous at  (resp., globally --continuous on ).(ii)The net , , is weakly -exhaustive at  (resp., on ).(iii)There is a family , depending on  (resp., independent of ), such that for each  there is  such that for every  there is  with  for each  with .(iv)There is a family , depending on  (resp., independent of ), such that for every  and  there are  and a positive real number  such that for any  with  there exists  with .Moreover, if ’s are globally --continuous, statements (i)–(iv) are equivalent to the following: (v)There is a family  such that for any  and  there exist a nonempty set  and a finitely uniform cover  of  with  whenever  and .
Remark 16. (a) Observe that when , , , , are positive -additive measures,  is a Dedekind complete lattice group, and , , , , we get that conditions (ii)–(v) of Theorem 15 are fulfilled, thanks to the limit theorems existing in the literature (see also [16, 34, 35]).
(b) Let  be the class of all subsets of ; let  be a filter containing  and , . For each , let us define the Dirac measure  byIt is not difficult to see that  is -additive on . Moreover,  is -continuous at  (i.e., -absolutely continuous): indeed, if  and , then , and hence . We claim that the sequence  is not weakly -exhaustive at . Indeed, observe that for each  there is a cofinite set  with . Note that since  contains , every element of  is infinite; otherwise , which is impossible. Furthermore, observe that for every infinite subset , and a fortiori for any , there is a sufficiently large integer , so that . From this we deduce that the sequence  is not weakly -exhaustive at . If  is an ultrafilter of  containing  (the existence of such ultrafilters follows from the Axiom of Choice; see also [19, 36]), then for every  we haveWe claim that  is not -continuous at . Indeed, fix arbitrarily  and let  be such that . Let  be any element of  and set ; then . We get  and , getting the claim.
Furthermore, in this case, conditions (i)–(iv) in Theorem 13 do not hold. Indeed, choose a filter  of  containing , and let , . Observe that, as said before, every element of  is infinite. For every  and for any infinite set  there is , and hence we get . Thus, in this case, condition (ii) of Theorem 13 is not fulfilled. If  is an ultrafilter of , then the measure  defined in (22) is not -additive on . Indeed, if  is any element of , then we get  and .
When  is a Dedekind complete lattice group, , , and , , are as in Example 3(c); we obtain some results similar to the previous ones also for semicontinuous set functions (for a related literature, see also [20] and the references therein).
In this setting, the concepts of weak backward (resp., forward) filter exhaustiveness and lower (resp., upper) semicontinuity are formulated as follows.
Definition 17. (a) One says that  is weakly -backward (resp., forward) exhaustive at  iff there is a family  (depending on ) such that for each  there is  such that for every  with  there is a set  with  whenever .
(b) One says that  is weakly -backward (resp., forward) exhaustive on  iff it is weakly --backward (resp., forward) exhaustive at every  with respect to a family  independent of .
(c) One says that  is weakly -exhaustive at  (resp., on ) iff it is weakly --backward and forward exhaustive at  (resp., on ).
(d) One says that  is -lower (resp., upper) semicontinuous at  iff there is a family  (depending on ) such that for every  there is  with  (resp.,  whenever . We say that  is globally -lower (resp., upper) semicontinuous on  iff it is --lower (resp., upper) semicontinuous at  for each  with respect to a family , independent of .
Similarly as Theorem 15, it is possible to prove the following result about semicontinuity of the limit set function. The next theorem is given in the case of lower semicontinuity; an analogous result holds in the setting of upper semicontinuity.
Theorem 18.  Suppose that , , are globally --continuous on  with respect to a family , independent of , and -convergent to a set function . Then the following are equivalent: (i) is --lower semicontinuous at  (resp., globally --lower semicontinuous on ).(ii)The family  is weakly -backward exhaustive at  (resp., on ).(iii)There is a family , depending on  (resp., independent of ), such that for any  there is  such that for every  there is  with for each  with .(iv)There exists a family , depending on  (resp., independent of), such that for every  and  there are  and  such that for any  with  there exists  with .Moreover, global --lower semicontinuity of  is equivalent to the following condition: (v)There is a family , such that for every  and  there exist a nonempty set  and a finitely uniform cover  of with  for all  and .
Remark 19. (a) Let  be an ultrafilter of  containing , let  be as in Remark 16(b) and let , , , be as in (22) and (21), respectively. It is not difficult to check that the sequence  is weakly --backward exhaustive but not weakly --forward exhaustive at  and that  is -lower semicontinuous but not -upper semicontinuous at .
(b) With the same techniques as above, it is possible to prove similar results even when the involved set  is endowed with a bornology, extending earlier theorems proved in [1, 6]. A bornology on  is a family  of nonempty subsets of , which covers , stable under finite unions and with  whenever  and . Examples of bornologies on  are the classes of all finite nonempty subsets and of all nonempty subsets of , the collection of all nonempty subsets of  with compact closure when  is a topological space, and, if  is a metric space, the families of all nonempty -bounded subsets of  and of all nonempty -totally bounded subsets of  (see also [1, 14, 15] and the literature therein).
5. Conclusions
We studied the problem of finding conditions for preserving continuity or semicontinuity of the limit family of a double-indexed family of elements of a set endowed with an abstract structure of convergence.
Our axiomatic approach includes symmetric and asymmetric distance functions, topological and lattice groups, cone (quasi)metric spaces, functions and measures, and nets and filters.
We proved some theorems on exchange of limits, giving some necessary and sufficient conditions in terms of weak filter exhaustiveness, Alexandroff, Arzelà, and strong uniform convergence. As a consequence, we proved some necessary and sufficient conditions for continuity from above/below and absolute continuity of the limit set function of a converging family. We showed that, different from the classical cases, these conditions are not always fulfilled.
Open Problems. (a) Prove some similar results in some other abstract contexts and with respect to other types of convergence.
(b) Investigate some other properties of continuous or semicontinuous functions/measures in abstract settings.
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