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Abstract. 
This paper deals with the second-order nonlinear neutral delay difference equation , . Using the Banach fixed point theorem, Mann iterative method with errors, and some new techniques, we prove the existence of uncountably many positive solutions and the convergence of the sequences generated by the Mann iterative method with errors relative to these solutions for the above equation. Six examples are included. Our results extend and improve essentially the known results in this field.



1. Introduction and Preliminaries
Consider the second-order nonlinear neutral delay difference equation with forcing term:where , , ,  with, , and  are real sequences with  for each , , and .
In the recent ten years, there have been a lot of activities concerning the oscillation, nonoscillation, asymptotic behavior, and existence of solutions, nonoscillatory solutions, and positive solutions for various types of difference equations, which are special cases of (1); see, for example, [1–21] and the references cited therein. In 2007, Cheng [3] used the Banach fixed point theorem to investigate the second-order neutral delay linear difference equation with positive and negative coefficients: and got a sufficient condition for the existence of a nonoscillatory solution of (3). In 2004, Malaguti et al. [15] discussed the second-order nonlinear difference equation and obtained sufficient and necessary conditions for the existence of bounded solutions of (4). In 2007, by using the Krasnoselskii fixed point theorem and Schauder fixed point theorem, Rath et al. [16] investigated the existence of solutions of the second-order nonlinear neutral delay difference equation  In 2003, Agarwal et al. [1] used a nonlinear alternative of Leray-Schauder type to obtain the existence of a nonoscillatory solution for the following second-order neutral delay difference equation: In 2009, using the Banach fixed point theorem, Liu et al. [12] researched the global solvability for the second-order nonlinear neutral delay difference equation However, the study of the existence of bounded positive solutions for a lot of second-order neutral delay difference equations appears to be insufficient. In particular, the uncountably many bounded positive solutions for these second-order neutral delay difference equations obtain less concern.
The purpose of this paper is to study the solvability and convergence of Mann iterative approximations of (1). By means of the Banach fixed point theorem, Mann iterative method with errors, and a few new techniques, we obtain the existence of uncountably many bounded positive solutions of (1) and prove that the sequences generated by the Mann iterative method with errors converge to these bounded positive solutions. Our results generalize and improve all results in [3, 12]. Six examples are constructed in order to illustrate the superiority and applications of the results presented in this paper.
Throughout this paper, we assume that , ,  and  denote the sets of all positive integers and integers, respectively, and  stands for the forward difference operator; that is, . Let  Assume that  represents the Banach space of all bounded real sequences  with the norm  and It is easy to see that  is a bounded closed and convex subset of the Banach space .
By a solution of (1), we mean a real sequence  with a positive integer  such that (1) holds for all .
Lemma 1 (see [22]).  Let , , , and  be four nonnegative real sequences satisfying the inequality where , , , and . Then, .

Lemma 2.  Let ,  be two constants and let ,  be two nonnegative sequences. Then, 
Proof. For each ,  denotes the largest integer not exceeding . Notice that Thus, (11) follows from (12). This completes the proof.
2. Main Results
According to the different ranges of the sequence , now we use the Banach fixed point theorem to study the existence of uncountably many bounded positive solutions and convergence of the Mann iterative approximations of (1).
Theorem 3.  Assume that there exist constants , , , , and  and two nonnegative sequences  and  satisfying Then, one has the following. 
(a) For any , there exist  and  such that, for each , the Mann iterative sequence with errors  generated by the scheme converges to a bounded positive solution  of (1) and has the following error estimate: where  is an arbitrary sequence in  and  and  are any sequences in  such that (b) Equation (1) has uncountably many bounded positive solutions in .
Proof. First, we show that (a) holds. Let . It follows from (14) and (19) that there exist  and  sufficiently large such that  Define an operator  by for any . On account of (15)(18) and (23)(24), we get that, for every , and ,  which yield that that is,  is a contraction operator in  and  has a unique fixed point , which means that for all which yields that for all which implies that  is a bounded positive solution of (1) in .
By (20), (24), and (26), we infer that for any  and which implies that That is, (21) holds. Consequently, Lemma 1 and (21)(22) imply that .
Next, we show that (b) holds. Let ,  denote two arbitrary constants in  with . As in the proof of (a), we infer similarly that for each  there exist constants , , and an operator  satisfying (23), (24), and (26), where , , and  take the place of , , and , respectively. Moreover, the contraction operator  has a unique fixed point , which is also a bounded positive solution of (1); that is, which together with (15)(18), (23), (24), and (26) gives that for each  which yields that  that is, . This completes the proof.
Theorem 4.  Assume that there exist constants , , , , and  and two nonnegative sequences  and  satisfying (15)(19): Then, one has the following. 
(a) For any , there exist  and  such that, for each , the Mann iterative sequence with errors  generated by (20) converges to a bounded positive solution  of (1) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22). 
(b) Equation (1) has uncountably many bounded positive solutions in .
Proof. First, we show that (a) holds. Let . It follows from (19) and (35) that there exist  and  sufficiently large such that Let the operator  be defined by (24). By virtue of (15)(18), (24), and (36), we obtain that, for every , , and , The rest of the proof is similar to that of Theorem 3 and is omitted. This completes the proof.
Theorem 5.  Assume that there exist constants , , , , , and  and two nonnegative sequences  and  satisfying (15)~(19): Then, one has the following. 
(a) For any , there exist  and  such that, for each , the Mann iterative sequence with errors  generated by the scheme converges to a bounded positive solution  of (1) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22). 
(b) Equation (1) has uncountably many bounded positive solutions in .
Proof. First, we show that (a) holds. Let . It follows from (19) and (39) that there exist  and  sufficiently large such that Define an operator  as follows: for any . In view of (15)(18) and (41)(42), we get that, for every , , and , which yield that (26) holds; that is,  is a contraction operator in  and  has a unique fixed point , which gives that for all which implies that for all which means that  is a bounded positive solution of (1) in .
It follows from (26), (40), and (42) that for any  and which implies that That is, (21) holds. Consequently, Lemma 1 and (21)(22) imply that .
Next, we show that (b) holds. Let  with . As in the proof of (a), we conclude similarly that for each  there exist constants , , and an operator  satisfying (26) and (41)(42), where , , and  are replaced by , , and , respectively, and the contraction operator  has a unique fixed point , which is also a bounded positive solution of (1); that is, which together with (15)(18), (26), and (41)(42) guarantees that for each which yields that that is, . This completes the proof.
Theorem 6.  Assume that there exist constants , , , , , and  and two nonnegative sequences  and  satisfying (15)~(19): Then, one has the following. 
(a) For any , there exist  and  such that, for each , the Mann iterative sequence with errors  generated by (40) converges to a bounded positive solution  of (1) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22). 
(b) Equation (1) has uncountably many bounded positive solutions in .
Proof. First, we show that (a) holds. Let . It follows from (19) and (52) that there exist  and  satisfying Define an operator  by (42). In light of (15)(19), (42), and (53), we get that, for every , , and , The rest of the proof is similar to that of Theorem 5 and is omitted. This completes the proof.
Theorem 7.  Assume that there exist constants , , , and  with  and two nonnegative sequences  and  satisfying (15)(19) and Then, one has the following. 
(a) For any , there exist  and  such that, for each , the Mann iterative sequence with errors  generated by the scheme converges to a bounded positive solution  of (1) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22). 
(b) Equation (1) has uncountably many bounded positive solutions in .
Proof. First, we show that (a) holds. Let . It follows from (19) that there exist  and  sufficiently large such that Define an operator  as follows: for each . In view of (15)(18) and (57)(58), we conclude that, for every , , and , which yield (26); that is,  is a contraction operator in  and  has a unique fixed point , which means that for all which gives that for all which implies that for all which means that  is a bounded positive solution of (1) in .
Using (20), (26), and (58), we deduce that for any  and which implies that That is, (21) holds. Consequently, Lemma 1 and (21)(22) ensure that .
Next, we show that (b) holds. Let  with . As in the proof of (a), we deduce similarly that for each  there exist constants , , and an operator  satisfying (26) and (57)(58), where , , and  are replaced by , , and , respectively, and the contraction operator  has a unique fixed point , which is also a bounded positive solution of (1); that is, which together with (15)(18), (26), and (57)(58) means that for each which yields that which ensures that . This completes the proof.
Theorem 8.  Assume that there exist constants , , , and  with  and two nonnegative sequences  and  satisfying (15)~(18): Then, one has the following. 
(a) For any , there exist  and  such that, for each , the Mann iterative sequence with errors  generated by the scheme converges to a bounded positive solution  of (1) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22). 
(b) Equation (1) has uncountably many bounded positive solutions in .
Proof. First, we show that (a) holds. Let . It follows from Lemma 2 and (69) that which guarantees that there exist  and  sufficiently large such that  Define an operator  by for each . By virtue of (15)(18) and (72)(73), we get that, for every , , and , which yield (26); that is,  is a contraction operator in  and  has a unique fixed point  with which yields that which implies that which means that  is a bounded positive solution of (1) in .
It follows from (20), (26), and (73) that for any  and which implies that That is, (21) holds. Thus, Lemma 1 and (21)(22) ensure that .
Next, we show that (b) holds. Let  with . As in the proof of (a), we deduce that for each  there exist constants , , and an operator  satisfying (26) and (72)(73), where , , and  are replaced by , , and , respectively, and the contraction operator  has a unique fixed point , which is also a bounded positive solution of (1); that is, which together with (15)(18), (26), and (72)(73) gives that for each which yields that that is, . This completes the proof.
Remark 9. Theorems 3~8 extend and unify Theorem  in [3] and Theorems  2.1~2.7 in [12], respectively.
3. Examples
In what follows, we construct six examples to demonstrate that Theorems 3~8 extend properly the corresponding results in [3, 12], respectively. Note that none of the known results can be applied to the examples.
Example 1. Consider the second-order nonlinear neutral delay difference equation with forcing term where  is fixed. Let , , , , , , It is easy to show that (13)(18) are satisfied. Note that that is, (19) holds. It follows from Theorem 3 that (83) has uncountably many bounded positive solutions in . On the other hand, for each , there exist  and  such that the Mann iterative sequence with errors  generated by (20) converges to a bounded positive solution  of (83) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22).

Example 2. Consider the second-order nonlinear neutral delay difference equation with forcing term where  is fixed. Let , , , , ,  It is clear that (15)(18), (34), and (35) hold. Notice that which implies (19). It follows from Theorem 4 that (86) has uncountably bounded positive solutions in . On the other hand, for any , there exist  and  such that the Mann iterative sequence with errors  generated by (20) converges to a bounded positive solution  of (86) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22).
Example 3. Consider the second-order nonlinear neutral delay difference equation with forcing term  where  is fixed. Let , , , , , , ,  It is easy to show that (15)(18), (38), and (39) are satisfied. Note that which means (19). It follows from Theorem 5 that (89) has uncountably bounded positive solutions in . On the other hand, for any , there exist  and  such that the Mann iterative sequence with errors  generated by (40) converges to a bounded positive solution  of (89) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22).
Example 4. Consider the second-order nonlinear neutral delay difference equation with forcing term where  is fixed. Let , , , , , , ,  It is easy to show that (15)(18), (51), and (52) are satisfied. Note that that is, (19) holds. It follows from Theorem 6 that (92) has uncountably bounded positive solutions in . On the other hand, for any , there exist  and  such that the Mann iterative sequence with errors  generated by (40) converges to a bounded positive solution  of (92) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22).
Example 5. Consider the second-order nonlinear neutral delay difference equation with forcing term  where  is fixed. Let , , , , ,  It is easy to show that (15)(18) and (55) hold. Note that that is, (19) holds. It follows from Theorem 7 that (95) has uncountably bounded positive solutions in . On the other hand, for any , there exist  and  such that the Mann iterative sequence with errors  generated by (56) converges to a bounded positive solution  of (95) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22).
Example 6. Consider the second-order nonlinear neutral delay difference equation with forcing term where  is fixed. Let , , , , , It is easy to show that (15)(18) and (68) are satisfied. Note that that is, (69) holds. It follows from Theorem 8 that (98) has uncountably bounded positive solutions in . On the other hand, for any , there exist  and  such that the Mann iterative sequence with errors  generated by (70) converges to a bounded positive solution  of (98) and has the error estimate (21), where  is an arbitrary sequence in  and  and  are any sequences in  satisfying (22).
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