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Abstract. 
We study the existence and multiplicity of positive periodic solutions to the nonlinear differential equation: ,  ,  ,  , where ,  ,  is a 1-periodic function. The proof is based on the Krasnoselskii fixed point theorem.



1. Introduction
Fifth-order boundary value problems (BVPs) are known to arise in the mathematical modeling of viscoelastic flow and other branches of mathematical, physical, and engineering sciences; see [1–4]. So the existence, multiplicity, and nonexistence of solutions to the fifth-order BVPs are noticed by many authors. For example, Agarwal and Odda [5, 6] gave some theorems which list conditions for the existence and uniqueness of solutions to the fifth-order BVPs by the topological methods; Gamel and Lv [7, 8] focused their attention on the study of numerical solution to the fifth-order BVPs.
On the other hand, all kinds of topological methods, such as the method of upper and lower solutions, degree theory, and some fixed point theorems in cones, have been widely applied to study the singular and regular periodic boundary value problems; see [9–19].
Inspired by the above references, we establish the existence and multiplicity results of  the nonlinear differential equation in this paper:where ,  , and  is a 1-periodic function.
Both of regular and singular cases are considered. The proof is based on the Krasnoselskii fixed point theorem in a cone.
Lemma 1 (see [20]).  Let  be a Banach space, and let  be a cone in . Assume  and   are open subsets of  with ,  , and let  be a completely continuous operator such that either (i),  ,  and  ,   or(ii),  ,  and  ,  .Then,  has a fixed point in .
This paper is organized as follows: in Section 2, some preliminaries are given; in Section 3, we give the main results; in Section 4, we give an example to illustrate our main results.
2. Preliminaries
If , , , ,  satisfy the assumption(H1),  ,  ,  ,  , ,then (1) can be rewritten as  Furthermore, we have
From Lemma 3 in [12], the fourth-order linear problem has a unique continuous solution  and ,  . Let  For given constants  and , the minimum  and maximum  can be computed explicitly. Let  denote the Banach space  with the maximum norm .
Lemma 2 (see [12]).  Assume that (H1) holds. For , the linear boundary value problem  has a unique solution , which is given by expression  where 
Lemma 3 (see [13]).  For any  and , the linear boundary value problem  has a unique solution , which can be expressed as  where  satisfying the estimates 
From Lemmas 2 and 3, it follows that  is the solution of (1) if and only if  satisfies  We define an operator  on  by 
Let  be a cone in  defined as  where . For , let . Note that .
Lemma 4.  Assume that (H1) holds. In addition, we suppose the following conditions hold: (H2) and .(H3) is continuous.(H4),   for .Then,  and  is completely continuous.
Proof. For any , on one hand, we have  On the other hand, we have  Thus, Therefore, . Using the Ascoli-Arzela theorem (Chapter 2 [21]), it is easy to show that  is compact and continuous.
From Lemma 4 and [18], it follows that
Lemma 5.  Assume that (H1) and (H2) hold. In addition, we suppose the following conditions hold: (H5).(H6) is continuous.Then,  and  is completely continuous.
3. Main Results
For convenience, we give the notations 
Theorem 6 (regular case).  Assume that (H1)–(H4) hold. (a)If  and , then, for all , (1) has a positive solution.(b)If  and , then, for all , (1) has a positive solution.(c)If  or , then there exists a  such that, for all , (1) has a positive solution.(d)If  or , then there exists a  such that, for all , (1) has a positive solution.(e)If , then there exists a  such that, for all , (1) has two positive solutions.(f)If , then there exists a  such that, for all , (1) has two positive solutions.
Proof. (a) Since , there exists a  such that , for any , where  satisfies . Then, for any , we have Since , there exists a  such that , for any , where  satisfies . Take . Then, for any , we have  and By the above inequalities and Lemma 1,  has a fixed point in .
(b) Since , there exists a  such that , for any , where  satisfies . Then, for any , we have Since , there exists a  such that , for any , where  satisfies .
Take . Then, for any , we have  and By the above inequalities and Lemma 1,  has a fixed point in .
(c) For any , let . Then, there exists a  such that  for any ,  .
If , from the proof of (a), it follows that there exists a  such that If , from the proof of (b), it follows that there exists a  such that By Lemma 1,  has a fixed point in  or .
(d) For any , let  Then, there exists a  such that  for any ,  .
From the part proof of (a) and (b), the results of (d) follow.(e)From the proof of (c), it is easy to obtain the result.(f)From the proof of (d), it is easy to obtain the result.
Theorem 7 (singular case).  Assume that (H1), (H2), (H5), and (H6) hold. (A)There exists a  such that (1) has a positive solution for .(B)If , then, for any , (1) has a positive solution.(C)If , then (1) has two positive solutions for all sufficiently small .
Proof. (A) On one hand, from the proof of (d) in Theorem 6, it is clear to see that there exists a  such that . On the other hand, since , there exists a  with  such that , for , where  satisfies . For any , we have . Therefore, by Lemma 1,  has a fixed point in .
Finally, from (A) and (b), result (B) follows. From (A) and (d), result (C) follows.
4. Examples
Example 1. Consider the fourth-order nonlinear problems whereFirst, via some simple computations, it is easy to see that (H1) and (H2) hold. Second, if , then (H3) and (H4) obviously hold. Now we illustrate the cases of Theorem 6 via the discussions of  and  . (a)If  and  , then, for all , (28) has a positive solution.(b)If  and  , then, for all , (28) has a positive solution.(c)If  or , then there exists a  such that, for all , (28) has a positive solution.(d)If  or , then there exists a  such that, for all , (28) has a positive solution.(e)If  and  , then there exists a  such that, for all , (28) has two positive solutions.(f)If  and , then there exists a  such that, for all , (28) has two positive solutions.Finally, if , , then (H5) and (H6) hold. Now we illustrate the cases of Theorem 7 via the discussions of  and  . (A)If , then there exists a  such that (28) has a solution for .(B)If , , then, for any , (28) has a positive solution.(C)If , , then (28) has two positive solutions for all sufficient small .
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