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Abstract. 
The purpose of this paper is to provide and study a best proximity point theorem for generalized non-self-Kannan-type and Chatterjea-type mappings and Lipschitzian mappings in complete metric spaces. The significant mapping in a unified form which related to contractive mappings, Kannan-type mappings, and Chatterjea-type mappings is established. We also provide some examples to illustrate the situation corresponding to the main theorem. The main result of this paper can be viewed as a general and unified form of several previously existing results.



1. Introduction
Fixed point theory can be looked upon as an important model that can be used in several real world problems and it is in close relationship with other branches of mathematics. It furnishes unified treatment and is a vital tool for solving equations of form , where  is a self-mapping defined on a subset of some suitable spaces such as a metric space, a normed linear space, or a topological vector space. However, in case the mapping  is not a self-mapping, the fixed point theorems are not specified to provide the existence of a solution for the equation . On the other hand, the best approximation theorems and the best proximity point theorems play an important rule to solve an approximate solution to the equation  when  is a non-self-mapping, in which case a solution does not necessarily exist. For some interesting best approximation theorems, let us refer to [1–6]. For a non-self-mapping , a best proximity point theorem investigates the situations which lead to the existence of an element  nearest to . It can be said on the other hand that a best proximity point theorem explores an element  for which the value  is minimum in the setting of metric spaces. This means that it is to study the global minimization of the real valued function . A best proximity point theorem succeeds in finding the global minimum of  by constraining an approximate solution  of the equation  to satisfy the condition that . The solutions of the equation  are called best proximity points of the mapping . Furthermore, if  is a self-mapping, then all best proximity points turn into the fixed points of . With all these reasons, the study on best proximity point theorems is interesting and will cover the fixed point theorems implicitly.
For the previous research involving best proximity point theorems for several types of some mappings and contractions, one can refer to [7–17]. Best proximity point theorems for set valued mappings have been found in [18–28]. Moreover, in case of common best proximity point theorems, there are some interesting results in [29–32].
In 2013, Sadiq Basha et al. [33] established some best proximity point theorems for non-self-nonexpansive mappings, non-self-Kannan-type mappings, and non-self-Chatterjea-type mappings. Their results are quite interesting and there are examples to illustrate the main results.
Motivated and inspired by the research mentioned above, we are interested in studying a best proximity point theorem for generalized non-self-Kannan-type and Chatterjea-type mappings and Lipschitzian mappings in complete metric spaces with the way of an optimal approximate solution for  and , where  is a generalized non-self-Kannan-type and Chatterjea-type mapping and  is a Lipschitzian mapping, respectively. The results obtained in this paper can be viewed as some extensions of the corresponding ones announced by Sadiq Basha et al. [33], Kannan [34], Chatterjea [35], and many others.
2. Non-Self-Lipschitzian Mappings and Generalized Non-Self-Kannan-Type and Chatterjea-Type Mappings
In this section, some definitions related to Lipschitzian mappings and their special forms are given and will be used in the sequel. The new mappings called generalized non-self-Kannan and Chatterjea mappings are established which are wider than non-self-Kannan mappings and non-self-Chatterjea mappings. Some other notions are provided and will be used in the next section.
Definition 1. Let  and  be nonempty subsets of a metric space . An element  in  is said to be a best proximity point of a mapping  if .
It is noticed that best proximity becomes a fixed point if the underlying mapping is a self-mapping. Moreover, in light of the fact that  for all  in , the function  attains its global minimum at a best proximity point.
Definition 2. Let  and  be two metric spaces. A mapping  is said to be a non-self-Lipschitzian mapping if there exists a constant  such thatfor all .
The smallest number  for which (1) holds is called the Lipschitz constant of .
Definition 3. Let  and  be two metric spaces. A Lipschitzian mapping  with the Lipschitz constant  is said to be a non-self-nonexpansive mapping.
Definition 4. Let  and  be two metric spaces. A Lipschitzian mapping  with the Lipschitz constant  is said to be a non-self-contractive mapping.
Definition 5. Let  and  be nonempty subsets of a metric space . A mapping  is said to be (1)a non-self-Kannan mapping (see [34] for the self-mapping case) if there exists a constant  such that for all ;(2)a non-self-Chatterjea mapping (see [35] for the self-mapping case) if there exists a constant  such that for all .
Definition 6. Let  and  be nonempty subsets of a metric space . A mapping  is said to be a generalized non-self-Kannan and Chatterjea mapping if there exist nonnegative constants  such that  andfor all .
It is obvious that (4) is in a generalized form of (2) and (3).
Definition 7. Let  and  be nonempty subsets of a metric space  and let  be a mapping. A mapping  is said to be (1)a non-self-Kannan mapping with respect to the mapping  if there exists a constant  such that for all ;(2)a non-self-Chatterjea mapping with respect to the mapping  if there exists a constant  such that for all .
Definition 8. Let  and  be nonempty subsets of a metric space  and let  be a mapping. A mapping  is said to be a generalized non-self-Kannan and Chatterjea mapping with respect to the mapping  if there exist nonnegative constants  such that  andfor all .
It is clear that (7) is in a generalized form of (5) and (6).
Definition 9 (see [33]). Let  and  be nonempty subsets of a metric space . Given mappings  and , the pair  is said to form a weak -cyclic contraction if there exists a nonnegative real number  such that  for all  and .
Definition 10 (see [33]). Let  and  be nonempty subsets of a metric space. Given mappings  and , the pair  is said to form a -cyclic contraction if there exists a nonnegative real number  such that  for all  and .
It is easy to observe that every -cyclic contraction is a weak -cyclic contraction.
3. Main Results
In this section, we establish and prove a best proximity point theorem for generalized non-self-Kannan-type and Chatterjea-type mappings and Lipschitzian mappings in complete metric spaces. Before going into the main theorem, it is useful to know the following observation.
Remark 11. Let , and  be nonnegative real numbers with  and satisfyThen the following hold: (i).(ii).(iii).(iv) and .
Proof. Notice that (i) is directly obtained from (10). For (ii), we observe that (iii) and (iv) are not hard to verify from (ii).
Theorem 12.  Let  and  be nonempty closed subsets of a complete metric space. Let  and  satisfy the following conditions: (a) is a Lipschitzian mapping with Lipschitz constant .(b)There exist nonnegative constants  such that (c) for all (d)The pair  forms a weak -cyclic contraction.Then, there exist elements  and  such thatIf  is any fixed element in , , and , then the sequences  and  converge to some best proximity points of  and , respectively. Further, if  is another best proximity point of , then 
Proof. Let  be any fixed element in . Then, it can generate the sequences  and  by  for all  and  for all , respectively. It is observed thatIt follows from (14) and Remark 11(i) that By mathematical induction, we obtain By using (b), it is not hard to verify that  is a Cauchy sequence in  and hence converges to some element  in . Similarly, we observe thatIt follows from (17) and Remark 11(i) that Therefore, mathematical induction yields It follows from (b) that  is a Cauchy sequence in  and hence converges to some element  in . Furthermore, it can be observed thatLetting  in (20), it yields Notice that ; it is not hard to verify that  and then .
On the other hand, we also found thatLetting  in (22), it yields This implies that  and hence . Since the pair  forms a weak -cyclic contraction, it follows that there exists  such that Hence This shows that  is a best proximity point of  and  is a best proximity point of . Similarly, if we suppose that  is another best proximity point of , it can be proved that Consequently, it can be observed thatIt follows from (29) and Remark 11(iii) that This completes the proof of the theorem.
To achieve a better understanding of the situation of the main theorem even more, let us consider the following example to illustrate.
Example 13. Let  with supremum norm. Define the following two sets:It is not hard to verify that  and . Define the mappings  and  by for all  as shown in Figure 1.
Then, (1)All the conditions are consistent with all of the assumptions in Theorem 12.(2)The mapping  is a non-self-Lipschitzian mapping with constant  which is not a non-self-nonexpansive mapping.(3)There exist  such that . That is, the mapping  is not a non-self-Kannan-type mapping with respect to the mapping .(4)There exist  such that . That is, the mapping  is not a non-self-Chatterjea-type mapping with respect to the mapping .




	
	
		
		
		
			
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
		
			
		
			
		
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
		
		
			
				
			
				
			
				
		
		
			
		
			
	


Figure 1:  and  in the function space .


Solution 1. () It is found thatOn the other hand, let us considerFor convenience for writing, we will let  and . From (29), (34), and (35), it is sufficient to show thatfor all . Now, we let (1).(2) +  for all . The two surfaces  and  can be illustrated as in Figure 2.
The idea to prove (36) is to divide the unit square  of -plane into six parts as shown in Figure 3.
() We will show that (36) is true on the area . It is clear that , , and  for all . Since , then . It implies that , , and  and then , , and . Thus, we haveThus it is sufficient to show that  or equivalently to show thatDefine for all . It is not hard to compute that for all . Thus  is an increasing function on . This implies thatfor all . On the other hand,for all . It is found that  is the critical point of  providing the absolute maximum valueon . It is not hard to see that  is an increasing function on  and  is a decreasing function on . Notice that the starting point  provides the value  and then it implies that the end point  provides the absolute minimum value on . Therefore,  for all . Thus, we have for all .
() For the area , one can study from the proof of the area  to verify that (36) holds for all .
() For the area , one can study from the proof of the area  to conclude that (36) is true for all .
Notice that the graph of the two surfaces  and  has symmetry. Therefore, (36) is also true for the areasHence we can conclude that (36) holds for all . This shows that  is a generalized non-self-Kannan and Chatterjea mapping with respect to the mapping  with constants , .
Further, it can be verified thatWe observe that the pair  is a weak -cyclic contraction. For this fact, let us consider and then Therefore, for any  it can be seen that It can be observed that the mapping  is a non-self-Lipschitzian mapping with constant  but it is not a non-self-nonexpansive mapping as follows: Therefore,  is a non-self-Lipschitzian mapping with constant . We note that the mapping  is not a non-self-nonexpansive mapping. Indeed, if we let  and , then() The mapping  is not a non-self-Kannan-type mapping with respect to the mapping .
To guarantee this truth, we let  and , and it follows from (33) thatand by using (34), we haveComparing (53) and (54), we obtain for all . Therefore,  is not a non-self-Kannan-type mapping with respect to the mapping .
() The mapping  is not a non-self-Chatterjea-type mapping with respect to the mapping .
In order to guarantee this fact, we let  and ; it follows from (35) thatComparing (53) and (56), we obtainfor all . Therefore,  is not a non-self-Chatterjea-type mapping with respect to the mapping .




	
	
		
			
		
		
			
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
			
			
		
			
				
			
				
		
		
			
				
			
				
		
	


Figure 2: Two surfaces  in the unit cube.






	
	
		
			
		
			
		
			
		
			
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
				
					
				
			
		
		
			
		
			
	


Figure 3: , and  on the unit square.


If the mapping  in Example 13 is a nonexpansive mapping, then the mapping  in the following example still cannot be both a non-self-Kannan-type mapping with respect to the mapping  and a non-self-Chatterjea-type mapping with respect to the mapping . However, the mapping  is still to maintain its general property; that is,  is a generalized non-self-Kannan and Chatterjea mapping with respect to the mapping .
Example 14. Let , , and  be as in Example 13. Define  by for all . Then, (i) All the conditions are consistent with all of the assumptions in Theorem 12.(ii) The mapping  is a non-self-nonexpansive mapping.(ii) There exist  such that . That is, the mapping  is not a non-self-Kannan-type mapping with respect to the mapping .(iv) There exist  such that . That is, the mapping  is not a non-self-Chatterjea-type mapping with respect to the mapping .
Solution 2. By Example 13, it can be verified analogously that (i) and (ii) hold. For the proof of (iii) and (iv), we considerLet  and  in (59). Then, we obtain respectively. Comparing (53) and (60), we obtainfor all . Therefore,  is not a non-self-Kannan-type mapping with respect to the mapping . Similarly, comparing (53) and (61), we obtain for all . Therefore,  is not a non-self-Chatterjea-type mapping with respect to the mapping .
Corollary 15 (see [33, Theorem ]).  Let  and  be nonempty closed subsets of a complete metric space. Let  and  satisfy the following conditions for some nonnegative number : (iK) is nonexpansive.(iiK) for all .(iiiK)The pair  forms a weak -cyclic contraction. Then, there exist elements  and  such that If  is any fixed element in , , and , then the sequences  and  converge to some best proximity points of  and , respectively. Further, if  is another best proximity point of , then
Proof. Letting , , and  in Theorem 12, then we have the desired result.
Corollary 16 (see [33, Theorem ]).  Let  and  be nonempty closed subsets of a complete metric space. Let  and  satisfy the following conditions for some nonnegative number : (iC) is nonexpansive.(iiC) for all .(iiiC)The pair  forms a weak -cyclic contraction. Then, there exist elements  and  such that If  is any fixed element in , , and , then the sequences  and  converge to some best proximity points of  and , respectively. Further, if  is another best proximity point of , then
Proof. Letting , , and  in Theorem 12, then we have the desired result.
Remark 17. From the discovery of Examples 13 and 14, they are something beyond some assumptions and conditions of Corollaries 15 and 16. For this reason, the situations appearing above are important in causing Theorem 12.
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