Research Article
Existence of Solutions to a Class of Semilinear Elliptic Problem with Nonlinear Singular Terms and Variable Exponent

Ying Chu,1 Yanchao Gao,1 and Wenjie Gao2

1 School of Science, Changchun University of Science and Technology, Changchun 130022, China
2 Institute of Mathematics, Jilin University, Changchun 130012, China

Correspondence should be addressed to Yanchao Gao; ychaogao@163.com

Received 1 April 2016; Accepted 12 May 2016

The authors of this paper prove the existence and regularity results for the homogeneous Dirichlet boundary value problem to the equation

\[- \text{div} (M(x) \nabla u) = \frac{f(x)}{u^{\alpha(x)}}, \quad x \in \Omega,\]

\[u = 0, \quad x \in \partial \Omega,\]

where \(\Omega\) is a bounded domain in \(\mathbb{R}^N (N \geq 2)\) with smooth boundary \(\partial \Omega\), \(\alpha(x)\) is a continuous function on \(\Omega\), \(\alpha(x) > 0\), \(\alpha^+ = \sup_{x \in \Omega} \alpha(x)\), \(\alpha^- = \inf_{x \in \Omega} \alpha(x)\), \(f\) is a nonnegative function belonging to the Lebesgue space \(L^m(\Omega)\), for some suitable \(m > 1\), and \(M\) is a bounded positive definite matrix; that is, there exist \(0 < \gamma < \beta\) such that

\[\gamma |\eta|^2 \leq (M(x) \eta) \cdot \eta,\]

\[|M(x)| \leq \beta,\]

for every \(\eta \in \mathbb{R}^N\), for almost every \(x\) in \(\Omega\).

Problem (1) has been extensively studied in the past. In [5], Lazer and Mckenna dealt with model (1) with \(f\), a continuous function; they proved that the solution was in \(H^1_0(\Omega)\) if and only if \(\alpha < 3\), while it was not in \(C^1(\Omega)\) if \(\alpha > 1\).

Later, Lair and Shaker in [6] studied the existence of solutions to the elliptic equation

\[- \Delta u = f(x) u^{-\alpha}, \quad x \in \Omega,\]

\[u = 0, \quad x \in \partial \Omega,\]

They proved that problem (3) with \(0 < \alpha < 1\) has a unique weak positive solution in \(H^1_0(\Omega)\) if \(f(x)\) is a nonnegative nontrivial function in \(L^2(\Omega)\).

Moreover, the results of Lair and Shaker were generalized by Shi and Yao (see [7]); they studied the following problem:

\[- \Delta u = f(x, u), \quad x \in \Omega,\]

\[u = \varphi, \quad x \in \partial \Omega,\]

where \(\Omega\) is a bounded domain in \(\mathbb{R}^N, N \geq 2\), \(\varphi \geq 0\) may take the value 0 on \(\partial \Omega\), and \(f(x, s)\) is possibly singular near \(s = 0\). They proved the existence and the uniqueness of positive solutions without assuming monotonicity or strict positivity on \(f(x, s)\).
Recently, Boccardo and Orsina in [8] studied the existence, regularity, and nonexistence of solutions for the following problem:

\[- \text{div} (M(x) \nabla u) = \frac{f(x)}{u^\alpha}, \quad x \in \Omega, \quad u = 0, \quad x \in \partial \Omega. \tag{5}\]

They discussed the dependence of the results on the summability of f and the values of α. For the other results of singular elliptic equations, see [9, 10]. In this paper, we generalize the results in [8] to the case when α is a variable exponent by applying the method of regularization, Schauder fixed point theorem, the integrability of solution to the approximate problem with $n = 1$, and a necessary compactness argument to overcome some difficulties arising from the singular terms with variable exponent.

2. Preliminaries

Firstly, we give the definition of weak solutions to problem (1).

Definition 1. A function $u \in H^1_0(\Omega)$ is called a weak solution of problem (1), if the following identity holds:

\[
\int_\Omega M(x) \nabla u \cdot \nabla \varphi \, dx = \int_\Omega \frac{f}{u^{\alpha(x)}} \varphi \, dx, \quad \forall \varphi \in C_0^1(\Omega). \tag{6}
\]

In order to prove our results, we will consider the following approximation problem:

\[- \text{div} (M(x) \nabla u_n) = \frac{f_n}{(u_n + 1/n)^{\alpha(x)}}, \quad x \in \Omega, \quad u_n = 0, \quad x \in \partial \Omega, \tag{7}\]

where $n \in \mathbb{N}$, $f_n(x) = \min\{f(x), n\}$.

Lemma 2. Problem (7) has a nonnegative solution u_n in $H^1_0(\Omega) \cap L^{\infty}(\Omega)$.

Proof. Let $n \in \mathbb{N}$ be fixed and ω a function in $L^2(\Omega)$. It is not difficult to prove that the following problem has a unique solution $v \in H^1_0(\Omega) \cap L^{\infty}(\Omega)$ (see [11, 12]):

\[- \text{div} (M(x) \nabla v) = \frac{f_n}{(|\omega| + 1/n)^{\alpha(x)}}, \quad x \in \Omega, \quad v = 0, \quad x \in \partial \Omega. \tag{8}\]

So, for any $\omega \in L^2(\Omega)$, we define the mapping $\Gamma : L^2(\Omega) \to H^1_0(\Omega) \cap L^{\infty}(\Omega)$ as $\Gamma(\omega) = v$. Taking v as a test function, we have, using (2),

\[
y \int_\Omega |\nabla v|^2 \, dx \leq \int_\Omega (M(x) \nabla v) \cdot \nabla v \, dx = \int_\Omega \frac{f_n v}{(|\omega| + 1/n)^{\alpha(x)}} \, dx \leq n^{1+\alpha} \int_\Omega |v|^2 \, dx.
\]

By Poincaré inequality (on the left hand side) and Hölder’s inequality (on the right hand side), we get that

\[
\int_\Omega |v|^2 \, dx \leq C n^{1+\alpha} \left(\int_\Omega |v|^2 \, dx \right)^{1/2}, \tag{10}
\]

for some constant C independent of ω. This implies that

\[
\|v\|_{L^2(\Omega)} \leq C n^{1+\alpha}. \tag{11}
\]

Therefore, the ball of $L^2(\Omega)$ of radius $C n^{1+\alpha}$ is invariant under the mapping Γ. Since the embedding $H^1_0(\Omega) \hookrightarrow L^2(\Omega)$ is compact, we obtain that Γ is a compact operator and $\|\cdot\|_{L^2(\Omega)} \leq C$. It is also easy to prove that Γ is continuous on $L^2(\Omega)$, by Schauder’s fixed point theorem, we get that there exists a function $u_n \in H^1_0(\Omega)$, for every fixed $n \in \mathbb{N}$, such that $u_n = S(u_n)$; that is, problem (7) has a solution. Since $f_n/(u_n + 1/n)^{\alpha(x)} > 0$, the maximum principle implies that $u_n > 0$. Since the right hand side of (7) belongs to $L^{\infty}(\Omega)$, the result of Theorem 4.2 in [13] implies that $u_n \in L^{\infty}(\Omega)$.

Lemma 3. The sequence u_n is increasing with respect to n, $u_n > 0$ in Ω, and for every $\Omega \subset \subset \Omega$ there exists $C_{\Omega'} > 0$ (independent of n) such that

\[
u(x) \geq C_{\Omega'} > 0 \tag{12}
\]

for every $x \in \Omega'$, for every $n \in \mathbb{N}$.

Proof. Due to $0 \leq f_n \leq f_{n+1}$ and $\alpha(x) > 0$, we have that

\[- \text{div} (M(x) \nabla u_n) = \frac{f_n}{(u_n + 1/n)^{\alpha(x)}} \leq \frac{f_{n+1}}{(u_n + 1/(n+1))^{\alpha(x)}}, \tag{13}\]

\[- \text{div} (M(x) \nabla u_{n+1}) = \frac{f_{n+1}}{(u_{n+1} + 1/(n+1))^{\alpha(x)}}, \tag{14}\]

so that

\[- \text{div} (M(x) \nabla (u_n - u_{n+1})) \leq \frac{1}{(u_n + 1/(n+1))^{\alpha(x)}} - \frac{1}{(u_{n+1} + 1/(n+1))^{\alpha(x)}} \tag{15}\]

Choosing $(u_n - u_{n+1})_+ = \max\{u_n - u_{n+1}, 0\}$ as a test function, observing that

\[
\left(\frac{1}{u_n + 1} \right)^{\alpha(x)}_+ - \left(\frac{1}{u_{n+1} + 1} \right)^{\alpha(x)}_+ \leq 0,
\]

we get

\[
\left(\int_\Omega |v|^2 \, dx \right)^{1/2} \leq C n^{1+\alpha} \left(\int_\Omega |v|^2 \, dx \right)^{1/2}.
\]
and applying (2), we get that
\[
0 \leq \gamma \int_{\Omega} |\nabla (u_n - u_{n+1})|_2^2 \, dx \leq 0. \tag{16}
\]
This implies that \((u_n - u_{n+1})_+ = 0\) a.e. in \(\Omega\); that is, \(u_n \leq u_{n+1}\) for every \(n \in N\). Since the sequence \(\{u_n\}\) is increasing with respect to \(n\), we only need to prove that (12) holds for \(u_1\).

Applying Lemma 2, we know that \(u_1 \in L^\infty(\Omega)\); that is, there exists a constant \(C\) (depending only on \(\Omega\) and \(N\)) such that
\[
\|u_1\|_{L^\infty(\Omega)} \leq C \|f\|_{L^\infty(\Omega)} \leq C, \tag{17}
\]
and then
\[
- \text{div} \left(M(x) \nabla u_1 \right) = \frac{f_1}{(u_1 + 1)\alpha(x)} \geq \frac{f_1}{(C + 1)\alpha(x)}. \tag{18}
\]
Due to \(f_1/(C + 1)^{\alpha(x)} \geq 0, f_1/(C + 1)^{\alpha(x)} \not\equiv 0\), the strong maximum principle implies that \(u_1 > 0\) in \(\Omega\) and (12) holds for \(u_1\). The monotonicity of \(u_n\) implies that (12) holds for \(u_n\).

\begin{proof}
Choosing \(u_n\) as a test function in (7), by Hölder’s inequality, (2), and the fact that \(f_n \leq f\), we get
\[
y \int_{\Omega} |\nabla u_n|^2 \, dx \leq \int_{\Omega} \frac{f_n u_n}{(u_n + 1/n)^{\alpha(x)}} \, dx
\]
\[
\leq \int_{\Omega} f_{u_n}^{1-\alpha(x)} \, dx \leq \int_{\Omega} f_{u_n}^{1-\alpha} \, dx + \int_{\Omega} f_{u_n}^{1-\alpha} \, dx
\]
\[
\leq \|f\|_{L^n(\Omega)} \left(\int_{\Omega} u_n^{(1-\alpha)m'} \, dx \right)^{1/m'} + \|f\|_{L^n(\Omega)}
\]
\[
\left(\int_{\Omega} u_n^{(1-\alpha)m'} \, dx \right)^{1/m'} \leq \|f\|_{L^n(\Omega)}
\]
\[
\left(\int_{\Omega} \left(1-(1-\alpha)/(1-\alpha)' \right)^{1/m'} \right) \left(\int_{\Omega} u_n^{(1-\alpha)m'} \, dx \right)^{1/m'} + |\Omega|^{(\alpha-\alpha')/(1-\alpha)m'}
\]
\[
\|f\|_{L^n(\Omega)} \left(\int_{\Omega} u_n^{(1-\alpha)m'} \, dx \right)^{(1-\alpha')/(1-\alpha)m'}.
\]
By the assumption of \(m, \) we have \((1-\alpha)m' = 2\), and using Sobolev Embedding Theorem (on the left hand side), we have that
\[
yS \left(\int_{\Omega} u_n^{2/m} \, dx \right)^{2/m} \leq y \int_{\Omega} |\nabla u_n|^2 \, dx \leq \|f\|_{L^n(\Omega)}
\]
\[
\left(\int_{\Omega} u_n^{2/m} \, dx \right)^{1/m'} + |\Omega|^{(\alpha-\alpha')/(1-\alpha)m'} \|f\|_{L^n(\Omega)}
\]
\[
\left(\int_{\Omega} \left(1-(1-\alpha)/(1-\alpha)' \right)^{1/m'} \right) \left(\int_{\Omega} u_n^{(1-\alpha)m'} \, dx \right)^{1/m'}
\]
that is,
\[
yS \left(\int_{\Omega} u_n^{2/m} \, dx \right)^{2/m} \leq \|f\|_{L^n(\Omega)} \left(\int_{\Omega} u_n^{2/m} \, dx \right)^{(1-\alpha')/2}
\]
\[
+ |\Omega|^{(\alpha-\alpha')/(1-\alpha)m'} \|f\|_{L^n(\Omega)} \left(\int_{\Omega} u_n^{2/m} \, dx \right)^{(1-\alpha')/2'}.
\]
Since \(1-\alpha' < 1 - \alpha < 2\), (22) yields the boundedness of \(u_n\) in \(L^2(\Omega)\). By this estimate and (22), the conclusion follows.
\end{proof}

Once we have the boundedness of \(u_n\), we can prove an existence result for (1).

\begin{theorem}
Suppose that \(f\) is a nonnegative function in \(L^n(\Omega)\) \((f \not\equiv 0)\), with \(m = 2N/(N+2)\) \((N-2)\alpha) = (2^*/(1-\alpha)'\), and let \(0 < \alpha \leq \alpha(x) \leq \alpha^+ < 1\). Then problem (1) has a solution \(u \in H^1_0(\Omega)\) satisfying (6).
\end{theorem}
Proof. Since \(u_n \) is bounded in \(H^1_0(\Omega) \) by Lemma 6 and \(u_n \) converges to \(u \) pointwise in \(\Omega \) (by Lemma 3), then we know that there exists \(u \in H^1_0(\Omega) \) such that

\[
\begin{align*}
\lim_{n \to \infty} u_n & \to u \\
& \quad \text{weakly in } H^1_0(\Omega) \quad \text{and strongly in } L^2(\Omega), \quad (24) \\
\n\n\end{align*}
\]

\(\nabla u_n \to \nabla u \) weakly in \(L^2(\Omega) \).

So we have that

\[
\begin{align*}
\lim_{n \to \infty} \int_{\Omega} (M(x) \nabla u_n) \cdot \nabla \varphi \, dx &= \int_{\Omega} (M(x) \nabla u) \cdot \nabla \varphi \, dx, \quad \forall \varphi \in C^1_0(\Omega). \
\end{align*}
\]

(25)

Since \(u_n \) satisfies (12), we get that

\[
0 \leq \frac{\int_{\Omega} f_n \varphi \, dx}{(u_n + 1/n)^{\alpha(x)}} \leq \frac{\|\varphi\|_{L^\infty(\Omega)} f_{\min} \{C^{\alpha}, C^{\alpha'}\}}, \quad (26)
\]

where \(\Omega^f = \{x : \varphi \neq 0\} \). Then by Lebesgue Dominated Convergence Theorem, we have that

\[
\begin{align*}
\lim_{n \to \infty} \int_{\Omega} \frac{f_n \varphi}{(u_n + 1/n)^{\alpha(x)}} \, dx &= \int_{\Omega} \frac{f \varphi}{u^{\alpha(x)}} \, dx, \quad \forall \varphi \in C^1_0(\Omega). \
\end{align*}
\]

(27)

Since \(u_n \) is a solution of (7), this implies that

\[
\begin{align*}
\int_{\Omega} (M(x) \nabla u_n) \cdot \nabla \varphi \, dx &= \int_{\Omega} \frac{f_n \varphi}{(u_n + 1/n)^{\alpha(x)}} \, dx, \quad \forall \varphi \in C^1_0(\Omega). \
\end{align*}
\]

(28)

Letting \(n \to \infty \), combining (25) with (27), we get that

\[
\int_{\Omega} (M(x) \nabla u) \cdot \nabla \varphi \, dx = \int_{\Omega} \frac{f \varphi}{u^{\alpha(x)}} \, dx,
\]

which proves that (1) has a solution \(u \) in \(H^1_0(\Omega) \).

The summability of \(u \) depends on the summability of \(f \), which is proved in the next Lemma.

Lemma 8. Suppose that \(f \in L^m(\Omega) \), \(m \geq 2N/(N + 2 + (N - 2)\alpha^\star) \), and let \(0 < \alpha^\star \leq \alpha(x) \leq \alpha^\star < 1 \). Then the solution \(u \) of (1) given by Theorem 7 is such that

(i) if \(m > N/2 \), then \(u \in L^\infty(\Omega) \);

(ii) if \(2N/(N + 2 + (N - 2)\alpha^\star) \leq m < N/2 \), then \(u \in L^m(\Omega) \), \(s = Nm(1 + \alpha^\star)/(N - 2m) \).

Proof. To prove (i), let \(k > 1 \) and define \(G_k(s) = (s - k)_+ \). Taking \(G_k(u_n) \) as a test function in (7), using (2), we get

\[
\begin{align*}
\gamma \int_{\Omega} \|\nabla G_k(u_n)\|^2 \, dx & \leq \int_{\Omega} (M(x) \nabla G_k(u_n)) \cdot \nabla G_k(u_n) \, dx \\
& = \int_{\Omega} \frac{f_n G_k(u_n)}{(u_n + 1/n)^{\alpha(x)}} \, dx.
\end{align*}
\]

(30)

Since \(G_k(u_n) \neq 0 \), it follows that

\[
\begin{align*}
\gamma \int_{\Omega} \|\nabla G_k(u_n)\|^2 \, dx & \leq \int_{\Omega} f G_k(u_n) \, dx. \
\end{align*}
\]

(31)

Starting from inequality (31), Theorem 4.2 in [13] shows that there exists a constant \(C \) (independent of \(n \)), such that

\[
\|u_n\|_{L^\infty(\Omega)} \leq C \|f\|_{L^m(\Omega)},
\]

(32)

which implies that \(u \) belongs to \(L^\infty(\Omega) \).

To prove (ii), noting that if \(m = 2N/(N + 2 + (N - 2)\alpha^\star) \), \(s = 2N/(N - 2) = 2^\star \), since \(u \in H^1_0(\Omega) \), the result when \(m = 2N/(N + 2 + (N - 2)\alpha^\star) \) is true by Sobolev Embedding Theorem. If \(2N/(N + 2 + (N - 2)\alpha^\star) < m < N/2 \), letting \(\delta > 1 \) and choosing \(u_n^{2\delta - 1} \) as a test function in (7), using Hölder’s inequality, we get

\[
\begin{align*}
\gamma (2\delta - 1) \int_{\Omega} \|\nabla u_n\|^2 u_n^{2\delta - 2} \, dx & \leq \int_{\Omega} \frac{f u_n^{2\delta - 1}}{(u_n + 1/n)^{\alpha(x)}} \, dx \\
& \leq \int_{\{x \in \Omega \alpha(x) \geq 1\}} \frac{f u_n^{2\delta - 1}}{u_n^{\alpha(x)}} \, dx + \int_{\{x \in \Omega \alpha(x) < 1\}} \frac{f u_n^{2\delta - 1}}{u_n^{\alpha(x)}} \, dx \\
& \leq \int_{\Omega} \frac{f u_n^{2\delta - 1 - \alpha} \, dx}{u_n^{\alpha(x)}} + \int_{\Omega} \frac{f u_n^{2\delta - 1 - \alpha} \, dx}{u_n^{\alpha(x)}} \\
& \leq \left(\int_{\Omega} \frac{(2\delta - 1 - \alpha)^m \, dx}{u_n^{(2\delta - 1 - \alpha)\, dx}} \right)^{1/m} + \|f\|_{L^m(\Omega)} \\
& \leq \left(\int_{\Omega} \frac{(2\delta - 1 - \alpha)^m \, dx}{u_n^{(2\delta - 1 - \alpha)\, dx}} \right)^{1/m} \\
& \leq \left(\int_{\Omega} \frac{(2\delta - 1 - \alpha)^m \, dx}{u_n^{(2\delta - 1 - \alpha)\, dx}} \right)^{1/m} \\
& \leq |\Omega|^{(\alpha^\star - \alpha)/(2\delta - 1 - \alpha)}\, m^{1/m}
\end{align*}
\]

(33)

By Sobolev inequality (on the left hand side), we have that

\[
\begin{align*}
\int_{\Omega} \|\nabla u_n\|^2 u_n^{2\delta - 2} \, dx & \leq \frac{1}{\delta^2} \int_{\Omega} \|\nabla u_n\|^2 \, dx \\
& \geq \frac{S}{\delta^2} \left(\int_{\Omega} u_n^{2\delta} \, dx \right)^{2\delta - 1},
\end{align*}
\]
where S is the constant of the Sobolev embedding; combining with (33) and (34), we have that

$$
\frac{Sy(2\delta - 1)}{\delta^2} \left(\int_{\Omega} \left(u_n^{*(2\delta - 1)} \right)^{1/m'} \right)^{2/2'} \leq \left\| f \right\|_{L^{m}(\Omega)}
$$

\begin{align}
+ \left| \Omega \right|^{(\alpha' - \alpha)/(2\delta - 1)} \left(\int_{\Omega} \left(u_n^{(2\delta - 1 - \alpha')/(2\delta - 1 - \alpha')} \right)^{1/m'} \right)^{2/2'}
\end{align}

which implies that

\begin{align}
\left(\int_{\Omega} \left(u_n \right)^{1/\alpha'} \left(2^* \delta - 1 \right) \right)^{2/2'} \leq \frac{\delta^2}{Sy(2\delta - 1)} \left\| f \right\|_{L^{m}(\Omega)}
\end{align}

where $\epsilon = Sy(2\delta - 1)/2\delta^2 \| f \|_{L^{m}(\Omega)}$. Thus, we get that

\begin{align}
\left(\int_{\Omega} \left(u_n \right)^{1/\alpha'} \left(2^* \delta - 1 \right) \right)^{2/2'} \leq \frac{2\delta^2}{Sy(2\delta - 1)} \left(\int_{\Omega} \left(u_n \right)^{\alpha' - \alpha'} \left(2^* \delta - 1 \right) \right)^{2/2'}
\end{align}

Therefore, we know that u_n is bounded in $L^q(\Omega)$, and so does $u \in L^q(\Omega)$.

Theorem 9. Suppose that $f \in L^m(\Omega)$, $(1 + \alpha')N/(1 + \alpha')((N - 2)\alpha') \leq m < 2N/(N + 2 + (N - 2)\alpha')$, and $0 < \alpha' \leq \alpha(x) < \alpha' < 1$. Then problem (1) has a solution $u \in W_0^{1,q}(\Omega)$, $q = Nm(1 + \alpha')/(N - m(1 - \alpha'))$.

Proof. The lines of our proof are that we can prove that u_n is bounded in $L^q(\Omega)$ (with q as in the statement), the existence of a solution u in $W_0^{1,q}(\Omega)$ of (1) will be proved by passing to the limit in (7) as in the proof of Theorem 7. To prove that u_n is bounded in $W_0^{1,q}(\Omega)$, we begin by proving that it is bounded in $L^q(\Omega)$, with $s = Nm(1 + \alpha')/(N - 2m)$. To attain this goal, we choose $u_n^{2^* - 1}$ as a test function in (7) as in the statement of Lemma 8, where $(1 + \alpha')/2 \leq \delta < 1$; however, $Vu_n^{2^* - 1}$ will be singular at $u_n = 0$, and therefore, we choose $(u_n + \epsilon)^{2^* - 1} - \epsilon^{2^* - 1}$ as a test function in (7), where $\epsilon < 1/n$ for n fixed; by (2) and $f_n \leq f$, we have that

\begin{align}
\gamma(2\delta - 1) \int_{\Omega} \left| Vu_n \right|^2 (u_n + \epsilon)^{2^* - 2} dx
\end{align}

By Sobolev Embedding Theorem ($H^1_0(\Omega) \hookrightarrow L^{2^*}(\Omega)$) on the left hand side, it follows that

\begin{align}
\int_{\Omega} \left| Vu_n \right|^2 (u_n + \epsilon)^{2^* - 2} dx = \int_{\Omega} \left| \frac{\gamma}{(u_n + \epsilon)^{2^* - 2}} dx \right|^2 dx
\end{align}

\begin{align}
\leq \int_{\Omega} \gamma(2\delta - 1) \frac{Sy}{(2\delta - 1)} \left| Vu_n \right|^2 (u_n + \epsilon)^{2^* - 2} dx
\end{align}

\begin{align}
\leq \int_{\Omega} \left(u_n + \epsilon \right)^{2^* - 2} dx
\end{align}

\begin{align}
\geq S \frac{Sy}{(2\delta - 1)} \left(\left(u_n + \epsilon \right)^2 \right)^{2/2'} dx
\end{align}
where S is the best constant of the Sobolev Embedding Theorem. Combining (41) with (42), we have that

$$
\frac{S \gamma (2\delta - 1)}{\delta^2} \left(\int_{\Omega} f \left(u_n^\delta - e^{\delta} \right)^{2*} \, dx \right)^{2/2*} \\
\leq \int_{\Omega} f \left(u_n + e \right)^{2\delta - 1 - \alpha} \, dx \\
+ \int_{\Omega} f \left(u_n + e \right)^{2\delta - 1 - \alpha^*} \, dx.
$$

(43)

Using Hölder’s inequality on the right hand side, we get

$$
\frac{S \gamma (2\delta - 1)}{\delta^2} \left(\int_{\Omega} f \left(u_n + e \right)^{2\delta - 1 - \alpha} \, dx \right)^{2/2*} \\
\leq \|f\|_{L^m(\Omega)} \left(\int_{\Omega} \left(u_n + e \right)^{2\delta - 1 - \alpha^*} \, dx \right)^{1/m'} \\
+ |\Omega|^{(\alpha - \alpha^*)/(2\delta - 1 - \alpha^*)} \|f\|_{L^m(\Omega)}^{1/m'} \\
\cdot \left(\int_{\Omega} \left(u_n + e \right)^{2\delta - 1 - \alpha^*} \, dx \right)^{(2\delta - 1 - \alpha^*)/(2\delta - 1 - \alpha^*)}.
$$

(44)

Letting $\varepsilon \to 0$, we get (35); that is,

$$
\left(\int_{\Omega} u_n^{2*\delta} \, dx \right)^{2/2*} \leq \frac{\delta^2}{S \gamma (2\delta - 1)} \|f\|_{L^m(\Omega)} \\
\cdot \left(\int_{\Omega} u_n^{2\delta - 1 - \alpha^*} \, dx \right)^{1/m'} \\
+ |\Omega|^{(\alpha - \alpha^*)/(2\delta - 1 - \alpha^*)} \|f\|_{L^m(\Omega)}^{1/m'} \\
\cdot \left(\int_{\Omega} u_n^{2\delta - 1 - \alpha^*} \, dx \right)^{(2\delta - 1 - \alpha^*)/(2\delta - 1 - \alpha^*)},
$$

(45)

where δ is chosen in such a way that $2*\delta = (2\delta - 1 - \alpha^*)m'$; that is,

$$
\delta = \frac{(1 + \alpha^-) (N - 2) m}{2 (N - 2m)}.
$$

(46)

If $m = (1 + \alpha^-)N/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^*))$, choosing $\delta = (1 + \alpha^-)/2$ in (43), and letting $\varepsilon \to 0$, we have that

$$
\left(\int_{\Omega} u_n^{2*\delta} \, dx \right)^{2/2*} \leq \frac{\delta^2}{S \gamma (2\delta - 1)} \left(\int_{\Omega} f u_n^{2\delta - 1 - \alpha} \, dx + \int_{\Omega} f \, dx \right).
$$

(47)

Using Hölder’s inequality and Young’s inequality, we get

$$
\left(\int_{\Omega} u_n^{2*\delta} \, dx \right)^{2/2*} \leq \frac{\delta^2}{S \gamma (2\delta - 1)} \left(\int_{\Omega} f \, dx \right)^{1/m'} \\
\cdot \left(\int_{\Omega} u_n^{2\delta - 1 - \alpha^*} \, dx \right)^{1/m'} \\
\leq \frac{\delta^2}{S \gamma (2\delta - 1)} \left(\int_{\Omega} f \, dx \right)^{2/2*} + \left(\int_{\Omega} u_n^{2\delta - 1 - \alpha^*} \, dx \right)^{1/m'} \\
\cdot \left(\int_{\Omega} \left(u_n + e \right)^{2\delta - 1 - \alpha^*} \, dx \right)^{(2\delta - 1 - \alpha^*)/(2\delta - 1 - \alpha^*)}.
$$

(48)

where $\varepsilon = S \gamma (2\delta - 1)/2\delta^2 \|f\|_{L^m(\Omega)}$. Thus we have that

$$
\left(\int_{\Omega} u_n^{2*\delta} \, dx \right)^{2/2*} \leq \frac{2\delta^2}{S \gamma (2\delta - 1)} \left(\|f\|_{L^m(\Omega)} \right)^{1/m'} \\
\cdot \left(\int_{\Omega} u_n^{2\delta - 1 - \alpha^*} \, dx \right)^{2/2*} + \left(\int_{\Omega} \left(u_n + e \right)^{2\delta - 1 - \alpha^*} \, dx \right)^{1/m'}.
$$

(49)

Therefore we obtain that u_n is bounded in $L^{N(1+\alpha^-)/(N-2)}(\Omega)$, where $N(1+\alpha^-)/(N-2)$ is the value of s for $m = (1 + \alpha^-)N/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^*))$.

If $(1 + \alpha^-)N/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^*)) < m < 2N/(N + 2 + (N - 2)\alpha^-)$, it is clear that the inequality on m holds true if and only if $(1 + \alpha^-)/2 < \delta < 1$, starting from (35) and arguing as in the proof of Lemma 8, we also get that u_n is bounded in $L^s(\Omega)$ with $s =Nm(1+\alpha^-)/(N-2m)$.

The right hand side of (41) is bounded with respect to n (and ε, which we take smaller than 1) by using the estimate on u_n in $L^s(\Omega)$ and the choice of δ.

Since $\delta < 1$,

$$
\int_{\Omega} \frac{|\nabla u_n|^2}{(u_n + \varepsilon)^{2-2\delta}} \, dx \leq \int_{\Omega} |\nabla u_n|^2 \left(u_n + \varepsilon \right)^{2\delta - 2} \, dx \leq C.
$$

(50)

If $q = Nm(1 + \alpha^-)/(N - m(1 + \alpha^-)) < 2$, by Hölder’s inequality, we have that

$$
\int_{\Omega} |\nabla u_n|^q \, dx = \int_{\Omega} \frac{|\nabla u_n|^q}{(u_n + \varepsilon)^{(1-\delta)q}} \left(u_n + \varepsilon \right)^{(1-\delta)q} \, dx \\
\leq \left(\int_{\Omega} \frac{|\nabla u_n|^q}{(u_n + \varepsilon)^{(1-\delta)q}} \, dx \right)^{q/2} \\
\cdot \left(\int_{\Omega} \left(u_n + \varepsilon \right)^{2(1-\delta)(2-q)/2} \, dx \right)^{1-q/2}.
$$
\[
\left(\frac{\|u_n\|^2_{H^1 \Omega}}{(u_n + \epsilon)^{2(1-\delta)}} \right)^{q/2} \cdot \left(\int_{\Omega} (u_n + \epsilon)^{2(1-\delta)(1/2-q)} \, dx \right)^{1-q/2} \leq C \left(\int_{\Omega} (u_n + \epsilon)^{2(1-\delta)(1/2-q)} \, dx \right)^{1-q/2}.
\]

(51)

The choice of \(\delta \) and the value of \(q \) are such that \(2(1-\delta)q/(2-q) = s \), so that the right hand side of (51) is bounded with respect to \(n \) and \(\epsilon \). Hence, \(u_n \) is bounded in \(W^{1,q}_0(\Omega) \).

Theorem 10. Suppose that \(f \in L^m(\Omega) \), \(1/(2\delta - \alpha^-) < m < ((1 + \alpha^+)
/N/(1 + \alpha^-))(N - 2) + 2(1 + \alpha^+) \) with \((1 + \alpha^-)/2 < \delta < (1 + \alpha^+)/2, \) and \(0 < \alpha^- \leq \alpha(x) \leq \alpha^+ < 1 \). Then problem (1) has a solution \(u \in W^{1,q}_0(\Omega), q = Nm(1 + \alpha^-)/(N-m(1-\alpha^-)) \).

Proof. The lines of our proof are similar to that in the proof of Theorem 9. We also begin by proving that \(u_n \) is bounded in \(L^s(\Omega) \), with \(s = Nm(1 + \alpha^+)/(N - 2m) \). To this aim, we also choose \((u_n + \epsilon)^{2\delta-1-\epsilon^{2\delta-1}} \) as a test function in (7), where \((1 + \alpha^-)/2 < \delta < (1 + \alpha^+)/2, \) \(\epsilon < 1/n \) for \(n \) fixed. Since \(f_n \leq f \) and (2), we have that

\[
y(2\delta - 1) \int_{\Omega} (u_n + \epsilon)^{2\delta-2} \, dx \leq \int_{\Omega} f(u_n + \epsilon)^{2\delta-1-\alpha^-} \, dx + \int_{\Omega} f(u_n + \epsilon)^{2\delta-1-\alpha^+} \, dx.
\]

(52)

Using Sobolev Embedding Theorem \((H^1_0(\Omega) \hookrightarrow L^{2\gamma}(\Omega))\) on the left hand side, it follows that

\[
\frac{Sy}{\delta^2} \left(\int_{\Omega} (u_n + \epsilon)^{2\delta-2} \, dx \right)^{2/\gamma} \leq \int_{\Omega} f(u_n + \epsilon)^{2\delta-1-\alpha^-} \, dx + \int_{\Omega} f(u_n + \epsilon)^{2\delta-1-\alpha^+} \, dx.
\]

(53)

where \(S \) is the constant of the Sobolev Embedding Theorem. Using Hölder's inequality and Lemma 5 on the right hand side, we get

\[
\frac{Sy}{\delta^2} \left(\int_{\Omega} (u_n + \epsilon)^{2\delta-2} \, dx \right)^{2/\gamma} \leq \int_{\Omega} f(u_n + \epsilon)^{2\delta-1-\alpha^-} \, dx + \int_{\Omega} \frac{f}{(u_n + \epsilon)^{2\delta+\alpha^-+1}} \, dx
\]

\[
\leq \int_{\Omega} f(u_n + \epsilon)^{2\delta-1-\alpha^-} \, dx + \int_{\Omega} \frac{f}{u_n^{2\delta+\alpha^-+1}} \, dx
\]

\[
\leq \|f\|_{L^m(\Omega)} \left(\int_{\Omega} (u_n + \epsilon)^{2\delta-1-\alpha^-} \, dx \right)^{1/m'} + \|f\|_{L^m(\Omega)} \left(\int_{\Omega} (u_n + \epsilon)^{2\delta-1-\alpha^+} \, dx \right)^{1/m'} + C\|f\|_{L^m(\Omega)}.
\]

(54)

Letting \(\epsilon \to 0 \), we obtain that

\[
\left(\int_{\Omega} u_n^{2\gamma} \, dx \right)^{2/\gamma} \leq \frac{\delta^2}{S_y(2\delta - 1)} \|f\|_{L^m(\Omega)} + C
\]

(55)

where \(\delta \) is chosen in such a way that \(2^\gamma \delta = (2\delta - 1 - \alpha^-)m' \); that is

\[
\delta = \frac{(1 + \alpha^-)(N - 2) m}{2(N - 2m)}.
\]

(56)

If \(1 < m < (1 + \alpha^+)N/((1 + \alpha^-)(N-2) + 2(1 + \alpha^+)) \), it is clear that the inequality on \(m \) holds true if and only if \((1 + \alpha^-)/2 < \delta < (1 + \alpha^+)/2 \), and arguing as to the case \(m = (1 + \alpha^+)N/((1 + \alpha^-)(N-2) + 2(1 + \alpha^+)) \) in the proof of Theorem 9, we also obtain that \(u_n \) is bounded in \(L^s(\Omega) \), with \(s = Nm(1 + \alpha^-)/(N - 2m) \). Since \(\delta < 1 \),

\[
\int_{\Omega} \frac{\|u_n\|^2}{(u_n + \epsilon)^{2\delta-2}} \, dx = \int_{\Omega} \|u_n\|^2 (u_n + \epsilon)^{2\delta-2} \, dx \leq C.
\]

(57)

If \(q = Nm(1 + \alpha^-)/(N - m(1 - \alpha^-)) < 2 \), similarly to the proof of Theorem 9, we have by Hölder's inequality that

\[
\int_{\Omega} \|u_n\|^q \, dx \leq C \left(\int_{\Omega} (u_n + \epsilon)^{2(1-\delta)(1/2-q)} \, dx \right)^{1-q/2}.
\]

(58)

Since the choice of \(\delta \) and the value of \(q \), the right hand side of the above inequality is bounded with respect to \(n \) and \(\epsilon \). Hence, \(u_n \) is bounded in \(W^{1,q}_0(\Omega) \).

4. The Case \(1 < \alpha^- \leq \alpha(x) \leq \alpha^+ \)

The case \(1 < \alpha^- \leq \alpha(x) \leq \alpha^+ \) has many analogies with the case \(0 < \alpha^- < \alpha^+ < 1 \). In this case, we can also prove that \(u_n \) is bounded in \(H^1_0(\Omega) \) only if \(f \) is more regular than \(L^2(\Omega) \) and \(\alpha^- \) and \(\alpha^+ \) are close to 1.

Lemma 11. Suppose that \(f \in L^m(\Omega) \) \((m > 1) \), and let \(u_n \) be the solution of (7) with \(1 < \alpha^- < \alpha^+ < 2 - 1/m \). Then \(u_n \) is bounded in \(H^1_0(\Omega) \).
Proof. Taking u_n as a test function in (7), by (2), we obtain that
\[
\gamma \int_{\Omega} |\nabla u_n|^2 \, dx \leq \int_{\Omega} \frac{f}{u_n^{\gamma(x)-1}} \, dx.
\]
(59)

Using Lemmas 2 and 3, we know that $u_n \geq u_1$ and there exists a constant $M > 0$ s.t. $u_1 \leq M$. Hence $(M/u_1)^{\alpha(x)-1} \leq (M/u_1)^{\alpha-1}$, and we have
\[
\gamma \int_{\Omega} |\nabla u_n|^2 \, dx \leq \int_{\Omega} \frac{f}{u_n^{\alpha-1}} \, dx \leq \int_{\Omega} \frac{f}{u_1^{\alpha-1}} \, dx \leq \left(1 + M^{\alpha-\alpha} \right) \int_{\Omega} \frac{f}{u_1^{\alpha-1}} \, dx.
\]
(60)

Using Hölder’s inequality on the right hand side, and Lemma 5, we obtain
\[
\gamma \int_{\Omega} |\nabla u_n|^2 \, dx \leq \left(1 + M^{\alpha-\alpha} \right) \int_{\Omega} \frac{f}{u_1^{\alpha-1}} \, dx \leq \left(1 + M^{\alpha-\alpha} \right) \|f\|_{L^m(\Omega)} \left(\int_{\Omega} u_1^{\alpha(x) - 1} \, dx \right)^{1/m'} \leq C \left(1 + M^{\alpha-\alpha} \right) \|f\|_{L^m(\Omega)}.
\]
(61)

Therefore, u_n is bounded in $H^1_0(\Omega)$. \hfill \Box

Once we have the boundedness of u_n, we can prove the following existence theorem along the lines of Theorem 7.

Theorem 12. Suppose that $f \in L^m(\Omega)$ $(m > 1)$ and $1 < \alpha^- < \alpha^+ < 2 - 1/m$. Then problem (1) has a solution u in $H^1_0(\Omega)$.

The summability of u can be proved along the lines of Lemma 8 with little changes.

Lemma 13. Suppose that $f \in L^m(\Omega)$ $(m > 1)$ and $1 < \alpha^- < \alpha^+ < 2 - 1/m$. Then the solution u of (1) given by Theorem 12 is such that

(i) if $m > N/2$, then $u \in L^\infty(\Omega)$;

(ii) if $N(1 + \alpha^+)/(1 + \alpha^-)(N - 2) + 2(1 + \alpha^+) < m < N/2$, then $u \in L^1(\Omega)$, $s = Nm(1 + \alpha^-)/(N - 2m)$.

Proof. The proof of (i) is similar to the proof of Lemma 8(i); we omit the details here.

To prove (ii) we choose $u_n^{\delta - 1}$ as a test function with $\delta \geq (1 + \alpha^+)/2$ in (7); similarly to the proof of Lemma 8, we obtain that
\[
\frac{S\gamma (2\delta - 1)}{\delta^2} \left(\int_{\Omega} u_n^{2\delta} \, dx \right)^{2/\delta^2} \leq \int_{\Omega} f u_n^{2\delta - 1 - \alpha^+} \, dx + \int_{\Omega} f u_n^{\delta - 1 + \alpha^-} \, dx.
\]
(62)

If $m = N(1 + \alpha^+)/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^+))$, choosing $\delta = (1 + \alpha^+)/2$ in (62), by Hölder’s inequality, we get
\[
\frac{S\gamma (2\delta - 1)}{\delta^2} \left(\int_{\Omega} u_n^{2\delta} \, dx \right)^{2/\delta^2} \leq \|f\|_{L^m(\Omega)} \left(\int_{\Omega} u_n^{(2\delta - 1 - \alpha^+)/m'} \, dx \right)^{1/m'} + |\Omega|^{1/m} \|f\|_{L^m(\Omega)}.
\]
(63)

We choose δ in such a way that $2\delta = (2\delta - 1 - \alpha^+)/m'$; that is, $\delta = (1 + \alpha^-)m/(N - 2)/2(1 + \alpha^-)$. Since $m = N(1 + \alpha^+)/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^-))$ being $2/2^+ > 1/m'$, it follows that u_δ is bounded in $L^{(1 + \alpha^-)}/(N - 2, (\Omega))$.

If $N(1 + \alpha^+)/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^-)) < m < N/2$, starting from inequality (62) and Hölder’s inequality, we have that
\[
\frac{S\gamma (2\delta - 1)}{\delta^2} \left(\int_{\Omega} u_n^{2\delta} \, dx \right)^{2/\delta^2} \leq \|f\|_{L^m(\Omega)} \cdot \left(\int_{\Omega} u_n^{(2\delta - 1 - \alpha^-)/m'} \, dx \right)^{1/m'} \cdot \left(\int_{\Omega} u_n^{(2\delta - 1 - \alpha^-)/m'} \, dx \right)^{(2\delta - 1 - \alpha^-)/(2\delta - 1 - \alpha^-)}
\]
(64)

We also choose δ in such a way that $2\delta = (2\delta - 1 - \alpha^-)/m'$, which yields that $\delta > (1 + \alpha^-)/2$, if and only if $m > N(1 + \alpha^+)/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^-))$, and that $2\delta = s$. So, since $2/2^+ > 1/m'$ being $m < N/2$, we have the boundedness of u_δ in $L^1(\Omega)$, and so does $u \in L^1(\Omega)$. \hfill \Box

Moreover, we can only prove that a positive power of u_n is bounded in $H^1_0(\Omega)$ only if f is more regular than $L^1(\Omega)$ and α^+ is close to α^- and we only have the boundedness of u_n in $H^1_{loc}(\Omega)$.

Lemma 14. Suppose that $f \in L^m(\Omega)$ $(m > 1)$, and let u_n be the solution of (7) with $1 < \alpha^- < \alpha(x) < \alpha^+ < 1 + 1/m$. Then $u_n^{(1+m)/2}$ is bounded in $H^1_{loc}(\Omega)$, and u_n is bounded in $H^1_{loc}(\Omega)$ and in $L^1(\Omega)$, with $s = N(1 + \alpha^-)/(N - 2)$.

Proof. Taking u_n^{-1} as a test function in (7), since $u_n^{\alpha^-}/(u_n + 1/n)^{\alpha^-} \leq 1$ and $f_n \leq f$, by Lemma 5 and (2), we get that
\[
\gamma \int_{\Omega} |\nabla u_n|^{2\alpha^-} \, dx \leq \int_{\Omega} \frac{f u_n^{\alpha^-}}{(u_n + 1/n)^{\alpha^-}} \, dx + \int_{\Omega} f u_n^{\alpha^-} \, dx \leq |\Omega|^{1/m} \|f\|_{L^m(\Omega)} + \|f\|_{L^m(\Omega)} \int_{\Omega} \frac{1}{u_n^{\alpha^-} \, dx} \leq |\Omega|^{1/m} \|f\|_{L^m(\Omega)} + C \|f\|_{L^m(\Omega)}.
\]
(65)
Since
\[\int_{\Omega} |\nabla u_n|^2 u_n^{\alpha-1} dx = \frac{4}{(1 + \alpha)^2} \int_{\Omega} |\nabla u_n^{(1+\alpha)/2}|^2 dx, \] (66)
we have that
\[\frac{4\alpha - \gamma}{(1 + \alpha)^2} \int_{\Omega} |\nabla u_n^{(1+\alpha)/2}|^2 dx \leq (C + |\Omega|^{1-1/m}) \|\nabla u_n\|_{L^m(\Omega)}. \] (67)

Thus, we have that \(u_n^{(1+\alpha)/2} \) is bounded in \(H_0^1(\Omega) \).

Applying Sobolev Embedding Theorem to \(u_n^{(1+\alpha)/2} (H_0^1(\Omega) \hookrightarrow L^2(\Omega)) \), we have that
\[S \left(\int_{\Omega} |u_n^{(1+\alpha)/2}|^2 dx \right)^{2/2'} \leq \int_{\Omega} |\nabla u_n^{(1+\alpha)/2}|^2 dx, \] (68)
where \(S \) is the best constant of the Sobolev embedding. Since the boundedness of \(u_n^{(1+\alpha)/2} \) in \(H_0^1(\Omega) \), we thus have the boundedness of \(u_n \) in \(L^{2'}(\Omega) \).

To prove the boundedness of \(u_n \) in \(H_0^1(\Omega) \), we choose \(u_n\varphi^2 \) as a test function in (7), where \(\varphi \in C_0^1(\Omega), \Omega' = \{ x \in \Omega, \varphi \neq 0 \} \). By (2) and (12), we have that
\[\frac{\gamma}{2} \int_{\Omega} |\nabla u_n| ^2 \varphi^2 dx + 2 \int_{\Omega} (M(x) \nabla u_n) \cdot \nabla u_n \varphi dx \leq \frac{1}{\min \left\{ C_\Omega^\alpha, C_\Omega^{\alpha - 1} \right\}} \int_{\Omega} f \varphi^2 dx \] (69)

By Young's inequality, we get that
\[2\beta \int_{\Omega} \nabla u_n \cdot \nabla u_n \varphi \varphi dx \leq \frac{\gamma}{2} \int_{\Omega} |\nabla u_n|^2 \varphi^2 dx + \frac{2\beta^2}{\gamma} \int_{\Omega} |\nabla \varphi|^2 u_n^2 dx. \] (70)

Since \(u_n \) is bounded in \(L'(\Omega) \) (where \(s \geq 2 \)), by Hölder inequality, we obtain that
\[\frac{\gamma}{2} \int_{\Omega} |\nabla u_n| ^2 \varphi^2 dx \leq \frac{1}{\min \left\{ C_\Omega^\alpha, C_\Omega^{\alpha - 1} \right\}} \int_{\Omega} f \varphi^2 dx \] (71)
\[\int_{\Omega} f \varphi^2 dx \leq \frac{2\beta^2}{\gamma} \int_{\Omega} |\nabla \varphi|^2 u_n^2 dx \]
and hence \(u_n \) is bounded in \(H_0^1(\Omega) \).

Once we have the boundedness of \(u_n \), we can prove the following existence theorem along the lines of Theorem 7.

Theorem 15. Suppose that \(f \) is a nonnegative function in \(L^m(\Omega) \) (\(m > 1 \)), \(f \neq 0 \), \(1 < \alpha^- \leq \alpha(x) \leq \alpha^+ \) and \(\alpha^- - \alpha^+ < 1 - 1/m \). Then problem (1) has a solution \(u \) in \(H_0^1(\Omega) \).

Furthermore, \(u^{(1+\alpha)/2} \) belongs to \(H_0^1(\Omega) \).

The summability of \(u \) can be proved along the lines of Lemma 8 with little changes.

Lemma 16. Suppose that \(f \in L^m(\Omega) \), \(1 < \alpha^- \leq \alpha(x) \leq \alpha^+ \), and \(\alpha^- - \alpha^+ < 1 - 1/m \). Then the solution \(u \) of (1) given by Theorem 15 is such that

(i) if \(m > N/2 \), then \(u \in L^{\infty}(\Omega) \);

(ii) if \(N(1 + \alpha^-)/(1 + \alpha^+)(N - 2) + 2(1 + \alpha^+) \leq m < N/2 \), then \(u \in L^s(\Omega), s = Nm(1 + \alpha^+)/((N - 2)m) \).

Proof. The proof of (i) is similar to the proof of Lemma 8(i); we omit the details here.

To prove (ii), we choose \(u_n^{(1+\alpha)/2} (\delta \geq (1 + \alpha^+)/2) \) as a test function in (7); applying (2) and Sobolev Embedding Theorem, we have that
\[\frac{2\beta^2}{\gamma} \int_{\Omega} |\nabla \varphi|^2 u_n^2 dx \leq \int_{\Omega} f u_n^{2\alpha - 1} dx + \int_{\Omega} f u_n^{2\alpha - 1} \varphi^2 dx. \] (72)
If $m = N(1 + \alpha^+)/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^+))$, we choose $\delta = (1 + \alpha^+)/2$; using Hölder inequality, we have that
\[
\frac{S y (2\delta - 1)}{\delta^2} \left(\int_\Omega u_n^{2\delta-1} dx \right)^{2/2'} \leq \|f\|_{L^m(\Omega)} \left(\int_\Omega u_n^{(2\delta-1-2\alpha^-)m'} dx \right)^{1/m'} + |\Omega|^{1-1/m} \|f\|_{L^m(\Omega)}.
\] (73)

We also choose δ in such a way that $2\delta = (2\delta - 1 - \alpha^-)m'$, since $m = N(1+\alpha^+)/((1+\alpha^-)(N-2)+2(1+\alpha^+))$ being $2/2' > 1/m'$, and we have the boundedness of u_n in $L^{N(1+\alpha^+)/((N-2)+2(1+\alpha^+))}(\Omega)$ which is the value of s for $m = N(1+\alpha^+)/((1+\alpha^-)(N-2)+2(1+\alpha^+))$. If $N(1+\alpha^+)/((1+\alpha^-)(N-2)+2(1+\alpha^+)) < m < N/2$, starting from (72) using Hölder inequality, we get that
\[
\frac{S y (2\delta - 1)}{\delta^2} \left(\int_\Omega u_n^{2\delta-1} dx \right)^{2/2'} \leq \|f\|_{L^m(\Omega)} \left(\int_\Omega u_n^{(2\delta-1-2\alpha^-)m'} dx \right)^{1/m'} + \|f\|_{L^m(\Omega)} (\int_\Omega u_n^{(2\delta-1-2\alpha^-)m'} dx)^{1/m'}.
\] (74)

We also choose δ in such a way that $2\delta = (2\delta - 1 - \alpha^-)m'$, which yields that $\delta > (1 + \alpha^+)/2$, if and only if $m > N(1 + \alpha^+)/((1 + \alpha^-)(N - 2) + 2(1 + \alpha^+))$, and we have the boundedness of u_n in $L^{1}(\Omega)$, and so does $u \in L^{1}(\Omega)$. \(\square\)

5. The Case $0 < \alpha^- < 1 < \alpha^+$

If $\alpha^- < 1 < \alpha^+$, the boundedness of u_n in $H_0^1(\Omega)$ can also be obtained only if f is more regular than $L^1(\Omega)$, and the proof has many analogies with the case $0 < \alpha^- < \alpha^+ < 1$. We have the following results.

Lemma 17. Suppose that $f \in L^m(\Omega)$, with $m = 2N/(N + 2 + (N - 2)\alpha^-)$, and let u_n be the solution of (7) with $0 < \alpha^- < 1 < \alpha^+ < 2 - 1/m$. Then the sequence $\{u_n\}$ is bounded in $H_0^1(\Omega)$.

Proof. We choose u_n as a test function in (7), by Hölder’s inequality, (2), and Lemma 5, since $f_n \leq f$, we have that
\[
\int_\Omega |\nabla u_n|^2 dx \leq \|f\|_{L^m(\Omega)} \left(\int_\Omega u_n^{1-\alpha^-m'} dx \right)^{1/m'} + \|f\|_{L^m(\Omega)} \left(\int_\Omega u_n^{1-\alpha^-m'} dx \right)^{1/m'}.
\] (80)

So the boundedness of u_n in $L^2(\Omega)$ is obtained; using the estimate and (75) again, we have the estimate of u_n in $H_0^1(\Omega)$. \(\square\)

Once the boundedness of u_n in $H_0^1(\Omega)$ is obtained, we can prove the following existence theorem.

Theorem 18. Suppose that $f \in L^m(\Omega)$ with $m = 2N/(N + 2 + (N - 2)\alpha^-)$, and $0 < \alpha^- < 1 < \alpha^+ < 2 - 1/m$. Then problem (1) has a solution u in $H_0^1(\Omega)$.

Lemma 19. Suppose that $f \in L^m(\Omega)$ with $m \geq 2N/(N + 2 + (N - 2)\alpha^-)$, and $\alpha^- < 1 < \alpha^+ < 2 - 1/m$. Then the solution u of (1) given by Theorem 18 is such that
(i) if $m > N/2$, then $u \in L^\infty(\Omega)$;
(ii) if $2N/(N+2+(N-2)\alpha^-) \leq m < N/2$, then $u \in L^s(\Omega),
\quad s = Nm(1+\alpha^-)/(N-2m).

Proof. The proof of (i) is similar to that for Lemma 8(i), and we also omit the details here.
To prove (ii), if $N(1+\alpha^+)/(1+\alpha^-)(N-2)+2(1+\alpha^+) < m < N/2$, the proof is identical to that for Lemma 13, and we also omit it here.
If $m = 2N/(N+2+(N-2)\alpha^-)$, we can prove the results by Sobolev Embedding Theorem.
If $2N/(N+2+(N-2)\alpha^-) < m < N(1+\alpha^+)/(1+\alpha^-)(N-2)+2(1+\alpha^+)$, we choose $1 < \delta < (1+\alpha^+)/2$, and we use once again $u_n^{(\delta-1)}$ as a test function in (7). Using $\delta > 1 > (1+\alpha^-)/2$, as well as Hölder’s inequality, Sobolev Embedding Theorem, Lemma 5, and (2), we get
\[
\frac{\delta^2}{2} \left(\int_\Omega ^{2/\delta} \left(\int_\Omega ^{2\delta-1} \| f \|_{L^m(\Omega)}^{1/m} + C \left\| f \|_{L^m(\Omega)} \right. \right)
\]
\[
\leq \left\| f \right\|_{L^m(\Omega)}^{1/m} \left(\int_\Omega ^{2\delta-1} \| u_n \|_{L^\infty(\Omega)} dx \right) \quad (81)
\]
The choice of δ in such a way that $2^\delta \delta = (2\delta - 1 - \alpha^-)m$ yields that $1 < \delta < (1+\alpha^+)/2$, if and only if $2N/(N+2+(N-2)\alpha^-) < m < N(1+\alpha^+)/(1+\alpha^-)(N-2)+2(1+\alpha^+)$, and that $2^\delta \delta = s$. The choice of $m < N/2$ implies that $2^\delta \delta > 1/m^\delta$. Thus we have the boundedness of $u_n \in L^\delta(\Omega)$, and do so limit it in $L^\delta(\Omega)$.

\[\square\]

Competing Interests
The authors declare that they have no competing interests.

Acknowledgments
The project is supported by NSFC (11271154), by Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Education, and by the 985 Program of Jilin University.

References

Submit your manuscripts at
http://www.hindawi.com