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We investigate the Möbius gyrovector spaces which are open balls centered at the origin in a real Hilbert space with the Möbius
addition, the Möbius scalar multiplication, and the Poincaré metric introduced by Ungar. In particular, for an arbitrary point, we
can easily obtain the unique closest point in any closed gyrovector subspace, by using the ordinary orthogonal decomposition.
Further, we show that each element has the orthogonal gyroexpansion with respect to any orthogonal basis in a Möbius gyrovector
space, which is similar to each element in a Hilbert space having the orthogonal expansion with respect to any orthonormal basis.
Moreover, we present a concrete procedure to calculate the gyrocoefficients of the orthogonal gyroexpansion.

1. Introduction

A.Ungar initiated study on gyrogroups and gyrovector spaces
(cf. [1]). Gyrovector spaces are generalized vector spaces, with
which they share important analogies, just as gyrogroups are
analogous to groups. The first known gyrogroup was the ball
of Euclidean spaceR3 endowed with Einstein’s velocity addi-
tion associated with the special theory of relativity. Another
example of a gyrogroup is the open unit disc in the complex
plain endowed with the Möbius addition. Ungar extended
these gyroadditions to the ball of an arbitrary real inner prod-
uct space, introduced a common gyroscalar multiplication,
and observed that the ball endowed with gyrooperations are
gyrovector spaces (cf. [2, 3]). He describes that gyrovector
spaces provide the setting for hyperbolic geometry just as
vector spaces provide the setting for Euclidean geometry.
In particular, Möbius gyrovector spaces form the setting
for the Poincaré ball model of hyperbolic geometry, and
similarly, Einstein gyrovector spaces form the setting for the
Beltrami-Klein ballmodel. Readersmay consult [4, 5] and the
references therein for general information about gyrogroups
and gyrovector spaces.

Gyrooperations are generally not commutative, associa-
tive, or distributive. Thus the theory of gyrovector spaces
falls within the general area of nonlinear functional analysis.
They are enjoying algebraic rules such as left and right
gyroassociative, gyrocommutative, scalar distributive, and

scalar associative laws, so there exist rich symmetrical struc-
tures which we should clarify precisely. Many elementary
problems are still unsolved. We refer to [6–10] as examples
of recent papers for gyrovector spaces, their generalizations,
and related matters.

In [8], Abe and the author of the present article showed
that any finitely generated gyrovector subspace in theMöbius
gyrovector space coincides with the intersection of the linear
subspace generated by the same generators and the Möbius
ball. As an application, they presented a notion of orthogonal
gyrodecomposition and clarified the relation to the ordinary
orthogonal decomposition.

The importance of the orthogonal expansion of each
vector with respect to an orthonormal basis in aHilbert space
cannot be overemphasized in both theory and application of
functional analysis. In this paper we will introduce a concept
of orthogonal gyroexpansion of each element with respect to
an orthogonal basis in a Möbius gyrovector space and reveal
analogies that it shares with its classical counterpart. Such
problems seem to be quite fundamental and important for
developing pure and applied mathematics, since one of the
virtues of gyrovector spaces is that they have properties which
are fully analogous to vector space properties. Moreover,
the gyrocoefficients of the orthogonal gyroexpansion can be
concretely calculated by a procedure that is given here.

The paper is organized as follows. Section 2 is the pre-
liminaries. In Section 3, we introduce a notion of gyrolinear
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independency for finite sets in a gyrovector space and show
that it coincides with the notion of the linear independency.
In Section 4, we give a notion of orthogonal gyroexpansions
with respect to a complete orthogonal sequence in theMöbius
gyrovector space, and we present an explicit procedure to
obtain the orthogonal gyroexpansions.

2. Preliminaries

Let us briefly recall the definitions of two models of gyrovec-
tor spaces, that is, theMöbius and Einstein gyrovector spaces.
For precise definitions and basic results of gyrocommutative
gyrogroups and gyrovector spaces, see [4].

Let V = (V , +, ⋅) be a real inner product space with a
binary operation + and a positive definite inner product ⋅ and
let V𝑠 be the ball

V𝑠 = {a ∈ V : ‖a‖ < 𝑠} (1)

for any fixed 𝑠 > 0.
Definition 1 (see [4, Definitions 3.40 and 6.83]). TheMöbius
addition ⊕M and the Möbius scalar multiplication ⊗M are
given by the equations

a⊕Mb

= (1 + (2/𝑠2) a ⋅ b + (1/𝑠2) ‖b‖2) a + (1 − (1/𝑠2) ‖a‖2) b1 + (2/𝑠2) a ⋅ b + (1/𝑠4) ‖a‖2 ‖b‖2
𝑟⊗Ma = 𝑠 tanh(𝑟 tanh−1 ‖a‖𝑠 ) a‖a‖ (if a ̸= 0) , 𝑟⊗M0 = 0

(2)

for any a, b ∈ V𝑠, 𝑟 ∈ R. The addition ⊕M and scalar
multiplication ⊗M for the set ‖V𝑠‖ = {±‖a‖; a ∈ V𝑠} in the
axiom (VV) of gyrovector space are defined by the equations

𝑎⊕M𝑏 = 𝑎 + 𝑏1 + (1/𝑠2) 𝑎𝑏
𝑟⊗M𝑎 = 𝑠 tanh(𝑟 tanh−1 𝑎𝑠 )

(3)

for any 𝑎, 𝑏 ∈ ‖V𝑠‖, 𝑟 ∈ R.

We simply denote ⊕M, ⊗M by ⊕, ⊗, respectively. If several
kinds of operations appear in a formula simultaneously, we
always give priority by the following order: (i) ordinary
scalar multiplication; (ii) gyroscalar multiplication ⊗; (iii)
gyroaddition ⊕; that is,𝑟1 ⊗ 𝑤1a1 ⊕ 𝑟2 ⊗ 𝑤2a2 = {𝑟1 ⊗ (𝑤1a1)}⊕ {𝑟2 ⊗ (𝑤2a2)} , (4)

and the parentheses are omitted in such cases. In general,
we note that gyroaddition does not distribute with (both
ordinary and gyro) scalar multiplications:𝑡 (a ⊕ b) ̸= 𝑡a ⊕ 𝑡b,𝑟 ⊗ (a ⊕ b) ̸= 𝑟 ⊗ a ⊕ 𝑟 ⊗ b. (5)

In the limit of large 𝑠, 𝑠 → ∞, the ball V𝑠 expands to
the whole space V . The next proposition suggests that each
result in linear analysis can be restored from the counterpart
in gyrolinear analysis.

Proposition 2 (see [4, p. 78]). The Möbius addition (resp.,
Möbius scalar multiplication) reduces to the vector addition
(resp., scalar multiplication) as 𝑠 → ∞; that is,

a ⊕ b → a + b (𝑠 → ∞)𝑟 ⊗ a → 𝑟a (𝑠 → ∞) . (6)

Definition 3 (see [4, Definitions 3.45 and 6.86]). The Ein-
stein addition⊕E and the Einstein scalarmultiplication⊗E are
given by the equations

a⊕Eb = 11 + (a ⋅ b) /𝑠2 {a + 1𝛾a b + 1𝑠2 𝛾a1 + 𝛾a (a ⋅ b) a}
𝑟⊗Ea = 𝑠 tanh(𝑟 tanh−1 ‖a‖𝑠 ) a‖a‖ (if a ̸= 0) , 𝑟⊗E0 = 0

(7)

for any a, b ∈ V𝑠, 𝑟 ∈ R, where 𝛾a = 1/√1 − ‖a‖2/𝑠2.
Note that each of the Einstein scalar multiplication and

the operations on the set ‖V𝑠‖ is identical to the correspond-
ing operation for the Möbius gyrovector spaces.

Definition 4 (see [4, Definition 6.88]). An isomorphism
from a gyrovector space (𝐺1, ⊕1, ⊗1) to a gyrovector space(𝐺2, ⊕2, ⊗2) is a bijective map 𝜙 : 𝐺1 → 𝐺2 that preserves
gyrooperations and keeps the inner product of normalized
elements invariant; that is,𝜙 (a⊕1b) = 𝜙 (a) ⊕2𝜙 (b)𝜙 (𝑟⊗1a) = 𝑟⊗2𝜙 (a)𝜙 (a)𝜙 (a) ⋅ 𝜙 (b)𝜙 (b) = a‖a‖ ⋅ b‖b‖ (if a, b ̸= 0)

(8)

for any a, b ∈ 𝐺1, 𝑟 ∈ R.

Theorem 5 (see [4, Table 6.1]). Let 𝜙EM : V𝑠 → V𝑠 be the map
defined by the equation𝜙EM (a) = 2 ⊗ a (9)

for any a ∈ V𝑠. Then 𝜙EM is an isomorphism from the Möbius
gyrovector space to the Einstein gyrovector space.

Thus, most of results established for the Möbius gyrovec-
tor spaces in the sequel can be transformed to corresponding
results for the Einstein gyrovector spaces by the isomorphism
stated above.

3. Gyrolinear Independency

We begin with consideration of a counterpart in a gyrovector
space to the notion of linearly independent sets in a linear
space.
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Definition 6. A finite subset {a1, . . . , a𝑛} ⊂ V𝑠 is gyrolinearly
independent if, for any permutation (𝑖1, . . . , 𝑖𝑛) of {1, . . . , 𝑛}
and for any order of gyroaddition, the following implication
holds: 𝑟𝑖1 ⊗ a𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑖𝑛 ⊗ a𝑖𝑛 = 0 ⇒

𝑟1 = ⋅ ⋅ ⋅ = 𝑟𝑛 = 0. (10)

Example 7. Let V = R2 with the Euclidean inner product and𝑠 = 1. If we identify V1 with the open unit disc D = {𝑧 ∈
C; |𝑧| < 1} in the complex plain C by (𝑥, 𝑦) = 𝑥 + 𝑖𝑦, then it
is well-known that the Möbius addition reduces to

𝑎 ⊕ 𝑏 = 𝑎 + 𝑏1 + 𝑎𝑏 (11)

for any 𝑎, 𝑏 ∈ D (cf. [4, (3.127)]). If we take

𝑎 = 𝑖2 ,
𝑏 = −25 − 25 𝑖,
𝑐 = 12 ,

(12)

then 𝑎 ⊕ (𝑏 ⊕ 𝑐) = 0,
(𝑎 ⊕ 𝑏) ⊕ 𝑐 = 4 + 16𝑖53 − 8𝑖 . (13)

This means that {𝑎, 𝑏, 𝑐} is not gyrolinearly independent, and
if we put

𝑟1 = tanh−1 ((−33 + √689) /20)
tanh−1 (1/2) ,

𝑟2 = tanh−1 ((17 − √689) /20)
tanh−1 (1/2) ,

(14)

then it is readily checked that

𝑟1 ⊗ 𝑐 ⊕ 𝑟2 ⊗ 𝑎 = −33 + √68920 ⊕ 17 − √68920 𝑖
= ((−33 + √689) /20) + ((17 − √689) /20) 𝑖1 + ((−33 + √689) /20) ⋅ ((17 − √689) /20) 𝑖
= 𝑏.

(15)

It is immediate to see the following lemma by the fact that1 ⊗ a = a and 0 ⊗ a = 0 and Definition 6. We omit the proof.

Lemma 8. Let {a1, . . . , a𝑛} ⊂ V𝑠 be gyrolinearly independent.
Then

(i) each element is nonzero;
(ii) any subset is also gyrolinearly independent.

Lemma 9. Suppose that {a1, a2} is linearly independent in V𝑠
and 𝑟1 ⊗ a1 ⊕ 𝑟2 ⊗ a2 = 𝜆1 ⊗ a1 ⊕ 𝜆2 ⊗ a2 (16)

Then one has 𝑟1 = 𝜆1 and 𝑟2 = 𝜆2.
Proof. Without loss of generality, we may assume that 𝑠 = 1,𝑟𝑗 ̸= 0, and 𝜆𝑗 ̸= 0. If we put

𝛼 = a1a1 ⋅ a2a2 ,𝑐𝑗 = tanh (𝑟𝑗tanh−1 a𝑗) ,𝑑𝑗 = tanh (𝜆𝑗tanh−1 a𝑗)
(17)

for 𝑗 = 1, 2, then, from the definitions of ⊕, ⊗, it follows that−1 ≤ 𝛼 ≤ 1, 0 < |𝑐𝑗|, |𝑑𝑗| < 1, and𝑟1 ⊗ a1 ⊕ 𝑟2 ⊗ a2 = 𝜆1 ⊗ a1 ⊕ 𝜆2 ⊗ a2

= 𝑡1 a1a1 + 𝑡2 a2a2 , (18)

where we put

𝑡1 = (1 + 2𝑐1𝑐2𝛼 + 𝑐22) 𝑐11 + 2𝑐1𝑐2𝛼 + 𝑐12𝑐22 = (1 + 2𝑑1𝑑2𝛼 + 𝑑22) 𝑑11 + 2𝑑1𝑑2𝛼 + 𝑑12𝑑22
𝑡2 = (1 − 𝑐12) 𝑐21 + 2𝑐1𝑐2𝛼 + 𝑐12𝑐22 = (1 − 𝑑12) 𝑑21 + 2𝑑1𝑑2𝛼 + 𝑑12𝑑22 .

(19)

Thismeans that (𝑐1, 𝑐2) and (𝑑1, 𝑑2) are solutions to the system
of equations 𝑥2𝑦2 + (𝛾𝑥2 + 2𝛼𝑥 − 𝛾) 𝑦 + 1 = 0

𝑥𝑦2 + ((2𝛼 + 𝛽) 𝑥2 − 𝛽) 𝑦 + 𝑥 = 0, (20)

where we put 𝛽 = 𝑡1/𝑡2 and 𝛾 = 1/𝑡2. Then, we have 𝛽 ̸= 0
and 1+𝛽(2𝛼+𝛽) < 𝛾2 by [8, Lemma 2.2]. So we can apply [8,
Theorem 2.4] to obtain that 𝑐𝑗 = 𝑑𝑗, which yields that 𝑟𝑗 = 𝜆𝑗
for 𝑗 = 1, 2. This completes the proof.

Theorem 10. Let {a1, . . . , a𝑛} be a linearly independent set in
V𝑠. Suppose that two gyrolinear combinations 𝑟1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕𝑟𝑛 ⊗ a𝑛, 𝜆1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆𝑛 ⊗ a𝑛 are given the same order of
gyroaddition and𝑟1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ a𝑛 = 𝜆1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆𝑛 ⊗ a𝑛 (21)

Then one has 𝑟𝑗 = 𝜆𝑗 (𝑗 = 1, . . . , 𝑛).
Proof. Without loss of generality, we may assume that 𝑠 = 1.
Assume that the theorem is valid up to 𝑛. Let {a1, . . . , a𝑛+1} be
a linearly independent set in V1 and let the following formula(𝑟1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑚 ⊗ a𝑚)⊕ (𝑟𝑚+1 ⊗ a𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛+1 ⊗ a𝑛+1)= (𝜆1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆𝑚 ⊗ a𝑚)⊕ (𝜆𝑚+1 ⊗ a𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆𝑛+1 ⊗ a𝑛+1)

(22)
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show the latest gyroadditions. Put

a = 𝑟1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑚 ⊗ a𝑚
b = 𝑟𝑚+1 ⊗ a𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛+1 ⊗ a𝑛+1

a = 𝜆1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆𝑚 ⊗ a𝑚

b = 𝜆𝑚+1 ⊗ a𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜆𝑛+1 ⊗ a𝑛+1.
(23)

Then a, a (resp.,b, b) belong to the linear span of {a1, . . . , a𝑚}
(resp., {a𝑚+1, . . . , a𝑛+1}). If a = 0, then we have b = a ⊕ b. By
[8, Theorem 3.3], we can express b, a, b of the form

b = 𝑡𝑚+1 a𝑚+1a𝑚+1 + ⋅ ⋅ ⋅ + 𝑡𝑛+1 a𝑛+1a𝑛+1
a = 𝑡1 a1a1 + ⋅ ⋅ ⋅ + 𝑡𝑚 a𝑚a𝑚
b = 𝑡𝑚+1 a𝑚+1a𝑚+1 + ⋅ ⋅ ⋅ + 𝑡𝑛+1 a𝑛+1a𝑛+1 .

(24)

By the definition of ⊕, it follows that
𝑡𝑚+1 a𝑚+1a𝑚+1 + ⋅ ⋅ ⋅ + 𝑡𝑛+1 a𝑛+1a𝑛+1

= 𝑐1 a1a1 + ⋅ ⋅ ⋅ + 𝑐𝑛+1 a𝑛+1a𝑛+1 ,
(25)

where we put

𝑐𝑗
=
{{{{{{{{{{{{{

(1 + 2a ⋅ b + b2) 𝑡𝑗1 + 2a ⋅ b + a2 b2 (𝑗 = 1, . . . , 𝑚)
(1 − a2) 𝑡𝑗1 + 2a ⋅ b + a2 b2 (𝑗 = 𝑚 + 1, . . . , 𝑛 + 1) .

(26)

Since {a1, . . . , a𝑛+1} is linearly independent, we have 𝑐1 = ⋅ ⋅ ⋅ =𝑐𝑚 = 0, which implies that 𝑡1 = ⋅ ⋅ ⋅ = 𝑡𝑚 = 0; that is, a = 0.
By the assumption of our induction, it follows that 𝑟𝑗 = 𝜆𝑗 for
all 𝑗.

Similarly, we may assume that a, a, b, b ̸= 0, so {a, b} is
linearly independent. By the definition of ⊕, we can rewrite
the equation

a ⊕ b = a ⊕ b (27)

as

𝑡1 a‖a‖ + 𝑡2 b‖b‖ = 𝑡1 aa + 𝑡2 bb , (28)

so we obtain that

𝑡1 a‖a‖ = 𝑡1 aa ,
𝑡2 b‖b‖ = 𝑡2 bb .

(29)

Therefore, (27) can be changed to the following equation:

1 ⊗ a ⊕ 1 ⊗ b = 𝑟1 ⊗ a ⊕ 𝑟2 ⊗ b, (30)

where

𝑟1 = tanh−1 (𝑡1 a /𝑡1)
tanh−1 ‖a‖ ,

𝑟2 = tanh−1 (𝑡2 b /𝑡2)
tanh−1 ‖b‖ .

(31)

By the previous lemma, we can conclude that 1 = 𝑟1 = 𝑟2,
which implies that a = a, b = b. Then, the assumption of
our induction shows that 𝑟𝑗 = 𝜆𝑗 (𝑗 = 1, . . . , 𝑛 + 1). This
completes the proof.

Theorem 11. For any finite subset in V𝑠, two notions of linearly
independent and gyrolinearly independent coincide.

Proof. (⇒) It immediately follows from the previous theo-
rem.(⇐)Wemay assume that 𝑠 = 1. Assume that the theorem
is valid up to 𝑛, the number of elements of the finite set.
Suppose that {a1, . . . , a𝑛+1} ⊂ V1 is gyrolinearly independent
and

𝑡1 a1a1 + ⋅ ⋅ ⋅ + 𝑡𝑛+1 a𝑛+1a𝑛+1 = 0. (32)

By Lemma 8(ii) and the assumption of our induction, it
suffices to show that 𝑡𝑛+1 = 0. On the contrary, assume that𝑡𝑛+1 ̸= 0. Then, it is obvious that

𝑡1 a1a1 + ⋅ ⋅ ⋅ + 𝑡𝑛 a𝑛a𝑛 ̸= 0. (33)

Take a positive number𝑀 satisfying that𝑡1𝑀 a1a1 + ⋅ ⋅ ⋅ + 𝑡𝑛𝑀 a𝑛a𝑛 ∈ V1,
𝑡𝑛+1𝑀 a𝑛+1a𝑛+1 ∈ V1. (34)

Thus we have

‖a‖ a‖a‖ + 𝑡𝑛+1𝑀 a𝑛+1a𝑛+1 = 0, (35)

where we put

a = 𝑡1𝑀 a1a1 + ⋅ ⋅ ⋅ + 𝑡𝑛𝑀 a𝑛a𝑛 . (36)

From [8, Theorem 2.1], we can rewrite (35) in the form of

𝑟 ⊗ a ⊕ 𝑟𝑛+1 ⊗ a𝑛+1 = 0. (37)

We can also rewrite 𝑟 ⊗ a in the form of

𝑟 ⊗ a = 𝑟1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ a𝑛 (38)
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by using [8, Theorem 3.3], so we obtain the following equa-
tion:

(𝑟1 ⊗ a1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ a𝑛) ⊕ 𝑟𝑛+1 ⊗ a𝑛+1 = 0. (39)

Since {a1, . . . , a𝑛+1} is assumed to be gyrolinearly indepen-
dent, we can conclude that 𝑟1 = ⋅ ⋅ ⋅ = 𝑟𝑛+1 = 0, which
implies that 𝑡𝑛+1 = 0. This is a contradiction and completes
the proof.

Although the contents in the rest of this section are
actually known and used repeatedly in [4], we give their
proofs for the convenience of readers.

Lemma 12 (see also [10, Proposition 2.3]).

‖a ⊕ b‖2 = ‖a‖2 + 2a ⋅ b + ‖b‖21 + (2/𝑠2) a ⋅ b + (1/𝑠4) ‖a‖2 ‖b‖2 (40)

for any a, b ∈ V𝑠.

Proof. By using the definition of ⊕, one can easily calculate
the inner product of a ⊕ b with itself to obtain

‖a ⊕ b‖2 = ( 11 + (2/𝑠2) a ⋅ b + (1/𝑠4) ‖a‖2 ‖b‖2)
2

⋅ {(1 + 2𝑠2 a ⋅ b + 1𝑠2 ‖b‖2)2 ‖a‖2
+ 2 (1 + 2𝑠2 a ⋅ b + 1𝑠2 ‖b‖2)(1 − 1𝑠2 ‖a‖2) a ⋅ b
+ (1 − 1𝑠2 ‖a‖2)2 ‖b‖2} .

(41)

If we put u = a/𝑠, k = b/𝑠, then it is easy to factorize the
second factor as

(1 + 2u ⋅ k + ‖k‖2)2 ‖𝑠u‖2 + 2 (1 + 2u ⋅ k + ‖k‖2)
⋅ (1 − ‖u‖2) 𝑠2u ⋅ k + (1 − ‖u‖2)2 ‖𝑠k‖2
= 𝑠2 (‖u‖2 + 2u ⋅ k + ‖k‖2) (1 + 2u ⋅ k + ‖u‖2 ‖k‖2)
= (‖a‖2 + 2a ⋅ b + ‖b‖2)
⋅ (1 + 2𝑠2 a ⋅ b + 1𝑠4 ‖a‖2 ‖b‖2) ;

(42)

hence we can conclude identity (40).

Definition 13 (see [4, Definition 2.7, (2.1)]). Recall that the
inverse element of a is denoted by ⊖a in a gyrogroup, and one
uses the notation

a ⊖ b = a ⊕ (⊖b) (43)

as in group theory.

Lemma 14. The following formulae hold:

(i) (a/𝑠) ⊕ (b/𝑠) = (a ⊕ b)/𝑠.
(ii) 0 < 1 − (2/𝑠2)a ⋅ b + (1/𝑠4)‖a‖2‖b‖2 < 22.
(iii) ‖a − b‖ ≤ 2‖a ⊖ b‖,

for any a, b ∈ V𝑠, where ⊕ in the left-hand side of (i) is in the
space V1.

Proof. (i) It immediately follows from the definition of ⊕.
(ii) By the Cauchy-Schwarz inequality, we have

0 < (1 − 1𝑠2 ‖a‖ ‖b‖)2 ≤ 1 − 2𝑠2 a ⋅ b + 1𝑠4 ‖a‖2 ‖b‖2
≤ 1 + 2𝑠2 ‖a‖ ‖b‖ + 1𝑠4 ‖a‖2 ‖b‖2
= (1 + 1𝑠2 ‖a‖ ‖b‖)2 < 22.

(44)

(iii) From (ii) just established, identity (40) in Lemma 12, and
the fact that ⊖a = −a in V𝑠, we have

‖a − b‖222 ≤ ‖a‖2 − 2a ⋅ b + ‖b‖21 − (2/𝑠2) a ⋅ b + (1/𝑠4) ‖a‖2 ‖b‖2
= ‖a ⊖ b‖2 . (45)

This completes the proof.

Lemma 15 (see [4, Theorem 8.33]). Let {c𝑗}𝑛𝑗=1 be an orthog-
onal set in V𝑠. Then, for any permutation (𝑖1, . . . , 𝑖𝑛) of the
numbers {1, . . . , 𝑛} and any order of gyroaddition for c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕
c𝑖𝑛 , the following equality holds:c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛

2𝑠 = c𝑖12𝑠 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛2𝑠 . (46)

Here, ⊕ in the right-hand side are in the space ‖V𝑠‖.
Proof. The previous lemma (i) shows thata𝑠 ⊕ b𝑠 2 = a ⊕ b𝑠 2 = ‖a ⊕ b‖2𝑠2 . (47)

for any a, b in V𝑠. On the other hand, if {a, b} is orthogonal,
then it follows from identity (40) in Lemma 12 thata𝑠 ⊕ b

s

2 = ‖a/𝑠‖2 + ‖b/𝑠‖21 + ‖a/𝑠‖2 ‖b/𝑠‖2
= 1𝑠 ⋅ ‖a‖2 /𝑠 + ‖b‖2 /𝑠1 + (1/𝑠2) (‖a‖2 /𝑠) (‖b‖2 /𝑠)
= 1𝑠 (‖a‖2𝑠 ⊕ ‖b‖2𝑠 ) .

(48)

Thus the theorem holds for 𝑛 = 2.
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Assume that the theorem is valid up to 𝑛. Let {c𝑗}𝑛+1𝑗=1 be an
orthogonal set in V𝑠 and let the following equation

c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛+1 = (c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑚)⊕ (c𝑖𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛+1) (49)

show the latest gyroaddition ⊕. If we put
a = c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑚 ,
b = c𝑖𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛+1 , (50)

then {a, b} is orthogonal. From the case of 𝑛 = 2, it follows
that c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛+1

2𝑠 = ‖a ⊕ b‖2𝑠 = ‖a‖2𝑠 ⊕ ‖b‖2𝑠
= c𝑖1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑚

2𝑠
⊕ c𝑖𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛+1

2𝑠 .
(51)

Due to the assumption of our induction, we can conclude that

= (c𝑖12𝑠 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑚2𝑠 )
⊕ (c𝑖𝑚+12𝑠 ⊕ ⋅ ⋅ ⋅ ⊕ c𝑖𝑛+12𝑠 ) .

(52)

This completes the proof.

4. The Poincaré Metric and
Orthogonal Gyroexpansion in the Möbius
Gyrovector Space

In this section, we give a notion of orthogonal gyroexpan-
sions with respect to a complete orthogonal sequence in
the Möbius gyrovector space, which is fully analogous to
the notion of the orthogonal expansions with respect to a
complete orthonormal sequence in a Hilbert space. It is an
application of the orthogonal gyrodecomposition which was
established in [8, Theorem 4.2], and we present an explicit
procedure to obtain the orthogonal gyroexpansions in the
Möbius gyrovector space.

Definition 16 (see [4, Definition 6.8, 6.17 (6.286) and
(6.293)]). The Möbius gyrodistance function 𝑑 on a Möbius
gyrovector space (V𝑠, ⊕, ⊗) is defined by the equation𝑑 (a, b) = ‖b ⊖ a‖ . (53)

Moreover, the Poincaré distance function ℎ on the ball V𝑠 is
introduced by the equation

ℎ (a, b) = tanh−1 𝑑 (a, b)𝑠 (54)

for any a, b ∈ V𝑠. Then ℎ satisfies the triangle inequality [4,
(6.294)], so that (V𝑠, ℎ) is a metric space.

Remark 17. As pointed out in [4, 6.17, p.217], the distance
function ℎ(a, b) is the obvious generalization into the ball V𝑠
of the well-known Poincaré distance function on the disc D.
There are a number of literatures dealing with relationship
between hyperbolic geometry and Hilbert spaces. In partic-
ular, Goebel and Reich [11] introduced the hyperbolic metric𝜌 on the open unit ball of a complex Hilbert space, from a
viewpoint of holomorphic function theory. They developed
the study of the Hilbert ball, which leads to research on 𝜌-
convexity, nonexpansivemappings, fixed point theorems, and
so forth, and [11] is cited in many bibliography such as [12].
The definition of 𝜌 is equivalent to

𝜌 (𝑥, 𝑦) = tanh−1 (1 − 𝜎 (𝑥, 𝑦))1/2 , (55)

where

𝜎 (𝑥, 𝑦) = (1 − ‖𝑥‖2) (1 − 𝑦2)1 − ⟨𝑥, 𝑦⟩2 (56)

for any elements𝑥, 𝑦 in theHilbert ball. If we identifyR2 with
C, then it is easy to see that ℎ and 𝜌 coincide with the Poincaré
metric on D. In general, however, ℎ and 𝜌 do not coincide
for higher dimensional spaces. We clarify the relationship
between ℎ and 𝜌 below.
Lemma 18. Let V be a real inner product space.Then the norm
of the Einstein addition of two elements is given by the equation

a⊕Eb
2 = 1(1 + (a ⋅ b) /𝑠2)2 {‖a‖2 + ‖b‖2 + 2a ⋅ b

− 1𝑠2 ‖a‖2 ‖b‖2 + 1𝑠2 (a ⋅ b)2}
(57)

for any a, b ∈ V𝑠.

Proof. At first, consider the case 𝑠 = 1. From the definition of⊕E, it is easy to calculate the inner product of a⊕Eb with itself
as follows:

(1 + a ⋅ b)2 a⊕Eb
2 = ⟨a + 1𝛾a b + 𝛾a1 + 𝛾a (a ⋅ b) a, a

+ 1𝛾a b + 𝛾a1 + 𝛾a (a ⋅ b) a⟩ = ‖a‖2 + 1𝛾2a ‖b‖2
+ ( 𝛾a1 + 𝛾a)

2 (a ⋅ b)2 ‖a‖2 + 2𝛾a (a ⋅ b) + 2𝛾a1 + 𝛾a (a
⋅ b) ‖a‖2 + 21 + 𝛾a (a ⋅ b)2 = ‖a‖2 + (1 − ‖a‖2) ‖b‖2
+( 1/√1 − ‖a‖2

1 + 1/√1 − ‖a‖2)
2

(a ⋅ b)2 ‖a‖2
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+ 2√1 − ‖a‖2 (a ⋅ b) + 2 ⋅ (1/√1 − ‖a‖2)
1 + 1/√1 − ‖a‖2 (a ⋅ b)

⋅ ‖a‖2 + 21 + 1/√1 − ‖a‖2 (a ⋅ b)2 = ‖a‖2 + (1
− ‖a‖2) ‖b‖2 +( 1√1 − ‖a‖2 + 1)

2

(a ⋅ b)2 ‖a‖2
+ 2√1 − ‖a‖2 (a ⋅ b) + 2√1 − ‖a‖2 + 1 (a ⋅ b) ‖a‖2
+ 2√1 − ‖a‖2√1 − ‖a‖2 + 1 (a ⋅ b)2 = ‖a‖2 + (1 − ‖a‖2) ‖b‖2

+(1 − √1 − ‖a‖2‖a‖2 )
2

(a ⋅ b)2 ‖a‖2

+ 2√1 − ‖a‖2 (a ⋅ b) + 2 (1 − √1 − ‖a‖2)‖a‖2 (a ⋅ b)
⋅ ‖a‖2 + 2√1 − ‖a‖2 (1 − √1 − ‖a‖2)‖a‖2 (a ⋅ b)2
= ‖a‖2 + ‖b‖2 + 2a ⋅ b − ‖a‖2 ‖b‖2 + (a ⋅ b)2 .

(58)

Thus the lemma holds for 𝑠 = 1. For general 𝑠 > 0, let a, b ∈
V𝑠. If we put u = a/𝑠 and k = b/𝑠, then it is immediate to see
that

u⊕Ek = a⊕Eb𝑠 , (59)

and we can easily deduce identity (57) by applying the case𝑠 = 1 to u, k. This completes the proof.

Theorem 19. Let one use the notations 𝜌 and 𝜎 in V𝑠 by

𝜌 (a, b) = tanh−1 (1 − 𝜎 (a, b))1/2 , (60)

where

𝜎 (a, b) = (𝑠2 − ‖a‖2) (𝑠2 − ‖b‖2)(𝑠2 − a ⋅ b)2 (61)

for a, b ∈ V𝑠. Then the following identities hold:

(i) ‖a⊖Eb‖/𝑠 = (1 − 𝜎(a, b))1/2.
(ii) ℎE(a, b) = tanh−1(‖a⊖Eb‖/𝑠) = 𝜌(a, b).
(iii) 2ℎ(a, b) = 2tanh−1(‖a ⊖ b‖/𝑠) = 𝜌(2 ⊗ a, 2 ⊗ b).

Proof. (i) and (ii) immediately follow from the previous
lemma. (iii) It is not difficult to see that we may assume 𝑠 = 1.
By (ii) just established, it suffices to show that

2 ⊗ ‖a ⊖ b‖ = 2 ⊗ a⊖E2 ⊗ b . (62)
Note that

2 ⊗ 𝑎 = (1 + 𝑎)2 − (1 − 𝑎)2(1 + 𝑎)2 + (1 − 𝑎)2 = 2𝑎1 + 𝑎2 (63)

for real number 0 ≤ 𝑎 < 1. For any a, b ∈ V1, if we put 𝑎 = ‖a‖,𝑏 = ‖b‖, and 𝛼 = (a/‖a‖) ⋅ (b/‖b‖), then, by the definition or
the axioms of gyrovector spaces, we have

‖2 ⊗ a‖ = 2 ⊗ ‖a‖ = 2𝑎1 + 𝑎2 ,
(2 ⊗ a) ⋅ (2 ⊗ b) = 2𝑎1 + 𝑎2 ⋅ 2𝑏1 + 𝑏2 ⋅ 𝛼.

(64)

By identity (40) in Lemma 12,

2 ⊗ ‖a ⊖ b‖ = 2 ⊗ √ ‖a‖2 − 2a ⋅ b + ‖b‖21 − 2a ⋅ b + ‖a‖2 ‖b‖2
= 2√(𝑎2 − 2𝑎𝑏𝛼 + 𝑏2) / (1 − 2𝑎𝑏𝛼 + 𝑎2𝑏2)1 + (𝑎2 − 2𝑎𝑏𝛼 + 𝑏2) / (1 − 2𝑎𝑏𝛼 + 𝑎2𝑏2)
= 2√(𝑎2 − 2𝑎𝑏𝛼 + 𝑏2) (1 − 2𝑎𝑏𝛼 + 𝑎2𝑏2)(1 − 2𝑎𝑏𝛼 + 𝑎2𝑏2) + (𝑎2 − 2𝑎𝑏𝛼 + 𝑏2) .

(65)

On the other hand, identity (57) in the previous lemma shows
that

2 ⊗ a⊖E2 ⊗ b = √ ‖2 ⊗ a‖2 + ‖2 ⊗ b‖2 − 2 (2 ⊗ a) ⋅ (2 ⊗ b) − ‖2 ⊗ a‖2 ‖2 ⊗ b‖2 + {(2 ⊗ a) ⋅ (2 ⊗ b)}2{1 − (2 ⊗ a) ⋅ (2 ⊗ b)}2
= √(2𝑎/ (1 + 𝑎2))2 + (2𝑏/ (1 + 𝑏2))2 − 2 ⋅ (2𝑎/ (1 + 𝑎2)) ⋅ (2𝑏/ (1 + 𝑏2)) ⋅ 𝛼 − (2𝑎/ (1 + 𝑎2))2 (2𝑏/ (1 + 𝑏2))2 + {(2𝑎/ (1 + 𝑎2)) ⋅ (2𝑏/ (1 + 𝑏2)) ⋅ 𝛼}21 − (2𝑎/ (1 + 𝑎2)) ⋅ (2𝑏/ (1 + 𝑏2)) ⋅ 𝛼
= 2√(𝑎2 − 2𝑎𝑏𝛼 + 𝑏2) (1 − 2𝑎𝑏𝛼 + 𝑎2𝑏2)(1 + 𝑎2) (1 + 𝑏2) − 4𝑎𝑏𝛼 .

(66)

This completes the proof.
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In the rest of the paper, we should concentrate to inves-
tigate the Möbius ball endowed with the Poincaré metric ℎ
introduced by Ungar. We can perform gyrolinear algebraic
operations which behave quite well for orthogonal sequences
in the Möbius gyrovector spaces, like as linear algebraic ones
in Hilbert spaces.

Lemma 20. For any sequence {a𝑛}∞𝑛=1 and any element a in V𝑠,

(i) ℎ(a𝑛, a) → 0 (𝑛 → ∞) ⇔ 𝑑(a𝑛, a) → 0 (𝑛 → ∞),
(ii) ℎ(a𝑛, a𝑚) → 0 (𝑛,𝑚 → ∞) ⇔ 𝑑(a𝑛, a𝑚) →0 (𝑛,𝑚 → ∞).

Proof. It is obvious, because both tanh and tanh−1 are
uniformly continuous on a neighborhood of 0.
Lemma 21. For any fixed a ∈ V𝑠, the map V𝑠 ∋ x → x ⋅ a ∈(−𝑠2, 𝑠2) is continuous, where one considers themetric ℎ on both
sets.

Proof. Suppose that ℎ(x𝑛, x) → 0. Then, from the previous
lemma and Lemma 14(iii), it follows that ‖x𝑛 − x‖ ≤ 2‖x𝑛 ⊖
x‖ → 0. Therefore, we have

x𝑛 ⋅ a ⊖ x ⋅ a =  x𝑛 ⋅ a − x ⋅ a1 − (1/𝑠4) (x𝑛 ⋅ a) (x ⋅ a)
 → 0
(𝑛 → ∞) . (67)

This implies that ℎ(x𝑛 ⋅ a, x ⋅ a) → 0.
We shouldmake sure of two definitions here. One of them

is quite usual; another is very natural.
For any nonempty subset 𝐴 of V𝑠, we denote 𝐴⊥ as the

orthogonal complement of 𝐴 in V ; that is,

𝐴⊥ = {x ∈ V ; x ⋅ a = 0 ∀a ∈ 𝐴} . (68)

A nonempty subset𝑀 of V𝑠 is a gyrovector subspace if𝑀
is closed under gyroaddition and gyroscalar multiplication;
that is, a, b ∈ 𝑀 and 𝑟 ∈ R imply that a⊕b ∈ 𝑀 and 𝑟⊗a ∈ 𝑀.

Lemma 22. 𝐴⊥ ∩ V𝑠 is an ℎ-closed gyrovector subspace.
Proof. From the definitions of ⊕ and ⊗, it is immediate to see
that𝐴⊥ ∩ V𝑠 forms a gyrovector subspace. Moreover,𝐴⊥ ∩ V𝑠
is obviously ℎ-closed by the previous lemma.

Lemma 23. If a𝑛, a ∈ V𝑠 and ‖a𝑛 − a‖ → 0, then ℎ(a𝑛, a) → 0.
Proof. It suffices to show that𝑑(a𝑛, a) → 0. By the assumption‖a‖ < 𝑠, we can obtain

𝑑 (a𝑛, a)2 = a𝑛 ⊖ a2
= a𝑛2 − 2a𝑛 ⋅ a + ‖a‖21 − (2/𝑠2) a𝑛 ⋅ a + (1/𝑠4) a𝑛2 ‖a‖2→ 0 (𝑛 → ∞) ,

(69)

where we used identity (40) in Lemma 12.

Proposition 24. Let 𝑀 be a gyrovector subspace of V𝑠. Then
the closure𝑀ℎ with respect to the metric ℎ is also a gyrovector
subspace.

Proof. Suppose that a, b ∈ 𝑀ℎ. There exist sequences{a𝑛}, {b𝑛} ⊂ 𝑀 such that ℎ(a𝑛, a), ℎ(b𝑛, b) → 0. By Lemmas
20 and 14(iii), we have ‖a𝑛 − a‖, ‖b𝑛 − b‖ → 0. From the
definitions of⊕, ⊗, it is easy to see that ‖(a𝑛⊕b𝑛)−(a⊕b)‖ → 0
and ‖𝑟 ⊗ a𝑛 − 𝑟 ⊗ a‖ → 0. By Lemma 23, it follows thatℎ(a𝑛 ⊕ b𝑛, a ⊕ b) → 0 and ℎ(𝑟 ⊗ a𝑛, 𝑟 ⊗ a) → 0. Since
a𝑛 ⊕ b𝑛, 𝑟 ⊗ a𝑛 ∈ 𝑀, we can conclude that a ⊕ b, 𝑟 ⊗ a ∈ 𝑀ℎ.
This completes the proof.

Lemma 25. Any finitely generated gyrovector subspace is ℎ-
closed.

Proof. Let𝑀 be a gyrovector subspace generated by nonzero
elements {a1, . . . , a𝑛} in V𝑠. For an arbitrary element x ∈ 𝑀ℎ,
there exists a sequence {x𝑘}∞𝑘=1 ⊂ 𝑀 such that ℎ(x𝑘, x) → 0.
Then, fromLemmas 20(i) and 14(iii), it follows that ‖x𝑘−x‖ →0. By [8, Theorem 3.3], we have

𝑀 = {𝑡1 a1a1 + ⋅ ⋅ ⋅ + 𝑡𝑛 a𝑛a𝑛 ; 𝑡1, . . . , 𝑡𝑛 ∈ R} ∩ V𝑠. (70)

Since {𝑡1(a1/‖a1‖)+⋅ ⋅ ⋅+𝑡𝑛(a𝑛/‖a𝑛‖); 𝑡1, . . . , 𝑡𝑛 ∈ R} is a finite
dimensional linear subspace, it is closed with respect to the
norm topology. Therefore x ∈ 𝑀. This completes the proof.

From now on, we assume that the carrier V of theMöbius
gyrovector space V𝑠 is complete as ametric space with respect
to the norm induced by the inner product. Thus, V is a real
Hilbert space.

Theorem 26. Let V be a real Hilbert space. Then (V𝑠, ℎ) is a
complete metric space.

Although this fact is well-known and it can be deduced
by existing results and Theorem 19, we give a direct proof
here in order to show how gyrovector space approach is fully
analogous to vector space approach.

Proof. Without loss of generality, we may assume that 𝑠 = 1.
Suppose that {a𝑛}∞𝑛=1 is a Cauchy sequence in (V1, ℎ). From
Lemmas 14(iii) and 20(ii), it follows thata𝑛 − a𝑚

 ≤ 2 a𝑛 ⊖ a𝑚
 = 2𝑑 (a𝑛, a𝑚) → 0(𝑛,𝑚 → ∞) , (71)

which implies that {a𝑛} is a Cauchy sequence with respect to
the norm of V . Hence there exists a unique element a ∈ V

such that ‖a‖ ≤ 1, ‖a𝑛−a‖ → 0. In order to show that ‖a‖ < 1,
on the contrary, we assume that ‖a‖ = 1. By the assumption
that {a𝑛} is a Cauchy sequence in (V1, ℎ), there exists a natural
number𝑚0 such that

𝑑 (a𝑚+𝑝, a𝑚)2 < 12 (72)
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for any 𝑚 ≥ 𝑚0 and any 𝑝. On the other hand, from identity
(40) in Lemma 12, we have

𝑑 (a𝑚+𝑝, a𝑚)2 = a𝑚+𝑝2 − 2a𝑚+𝑝 ⋅ a𝑚 + a𝑚21 − 2a𝑚+𝑝 ⋅ a𝑚 + a𝑚+𝑝2 a𝑚2 . (73)

Now we fix𝑚 ≥ 𝑚0 and let 𝑝 → ∞. Then, from the fact that
a𝑚+𝑝 → a and the assumption ‖a‖ = 1, we can obtain

12 ≥ ‖a‖2 − 2a ⋅ a𝑚 + a𝑚21 − 2a ⋅ a𝑚 + ‖a‖2 a𝑚2 = 1, (74)

which is a contradiction. This implies that ‖a‖ < 1. By
Lemma 23, the proof is complete.

Theorem 27. Let V be a real Hilbert space. If 𝐴 is a closed
subset in (V𝑠, ℎ), then 𝐴 is relatively closed in (V𝑠, ‖ ⋅ ‖).
Therefore, the orthogonal gyrodecomposition is applicable to ℎ-
closed gyrovector subspaces in the sense of [8, Theorem 4.2].

Proof. Denote by𝐴 the closure of𝐴with respect to the norm
topology. It suffices to show that 𝐴 = 𝐴 ∩ V𝑠. One of the
inclusions (⊂) is trivial. If x ∈ 𝐴 ∩ V𝑠, then there exists a
sequence {x𝑛} ⊂ 𝐴 such that ‖x𝑛 − x‖ → 0. So we can apply
Lemma 23 to obtain that ℎ(x𝑛, x) → 0. Hence x ∈ 𝐴 and this
completes the proof.

Theorem28. Let𝑀 be a gyrovector subspace of V𝑠 and x ∈ V𝑠.
Then one has

x ∈ 𝑀⊥ ⇐⇒ ‖x ⊖m‖ ≥ ‖x‖ (m ∈ 𝑀) . (75)

Proof. (⇒) Suppose that x ∈ 𝑀⊥ ∩ V𝑠,m ∈ 𝑀. By identity
(40) in Lemma 12, we obtain

‖x ⊖m‖2 = ‖x‖2 + ‖m‖21 + (1/𝑠4) ‖x‖2 ‖m‖2 ≥ ‖x‖2 . (76)

(⇐) Suppose that m ∈ 𝑀. For an arbitrary positive real
number 𝑡, take

𝑟 = 𝑡 |x ⋅m|
x ⋅m . (77)

Since 𝑟 ⊗ m ∈ 𝑀, it follows from identity (40) in Lemma 12
that

‖x‖2 ≤ ‖x ⊖ (𝑟 ⊗m)‖2
= ‖x‖2 − 2x ⋅ (𝑟 ⊗m) + ‖𝑟 ⊗m‖21 − (2/𝑠2) x ⋅ (𝑟 ⊗m) + (1/𝑠4) ‖x‖2 ‖𝑟 ⊗m‖2 . (78)

By the axiom (V7), we have ‖𝑟 ⊗ m‖ = |𝑟| ⊗ ‖m‖ = 𝑡 ⊗ ‖m‖
and the inequality

‖x‖2 {1 − 2𝑠2 x ⋅ (𝑟 ⊗m) + 1𝑠4 ‖x‖2 (𝑡 ⊗ ‖m‖)2}≤ ‖x‖2 − 2x ⋅ (𝑟 ⊗m) + (𝑡 ⊗ ‖m‖)2 , (79)

which yields the following inequality:

2x ⋅ (𝑟 ⊗m) ≤ (1 + 1𝑠2 ‖x‖2) (𝑡 ⊗ ‖m‖)2 ; (80)

namely,

2𝑠 tanh(𝑟tanh−1 ‖m‖𝑠 ) x ⋅m‖m‖
≤ (1 + 1𝑠2 ‖x‖2)(𝑠 tanh(𝑡tanh−1 ‖m‖𝑠 ))2 . (81)

Note that x ⋅m and 𝑟 have the same signature, so we have

tanh(𝑟 tanh−1 ‖m‖𝑠 ) x ⋅m
= tanh(𝑡 tanh−1 ‖m‖𝑠 ) |x ⋅m| . (82)

Therefore, we can obtain the inequality

2 |x ⋅m|‖m‖ ≤ (1 + 1𝑠2 ‖x‖2) 𝑠 tanh(𝑡 tanh−1 ‖m‖𝑠 ) . (83)

Since 𝑡 > 0 is arbitrary, we can let 𝑡 → +0 and conclude that
x ⋅m = 0. This completes the proof.

Lemma 29. In a gyrocommutative gyrogroup, one has

a ⊖ (b ⊕ c) = gyr [a, ⊖b] {(⊖b ⊕ a) ⊖ c} . (84)

This lemma can be obtained if we put 𝑎, 𝑏 and 𝑐 as⊖b, a and ⊖c, respectively, in [4, Theorem 3.9]. However,
we give a proof for the convenience of readers by using
gyroautomorphic inverse property ⊖(a ⊕ b) = ⊖a ⊖ b,
left gyroassociative law (G3), gyrocommutativity (G6), and
gyroautomorphism (G4).

Proof.

a ⊖ (b ⊕ c) = a ⊕ (⊖b ⊖ c)
= (a ⊕ (⊖b)) ⊕ gyr [a, ⊖b] (⊖c)
= gyr [a, ⊖b] (⊖b ⊕ a) ⊕ gyr [a, ⊖b] (⊖c)
= gyr [a, ⊖b] {(⊖b ⊕ a) ⊕ (⊖c)} .

(85)

Theorem 30. Let𝑀 be an ℎ-closed gyrovector subspace of V𝑠
and x ∈ V𝑠.

(i) Let

x = y ⊕ z, y ∈ 𝑀, z ∈ 𝑀⊥ ∩ V𝑠 (86)

be the orthogonal gyrodecomposition of x ∈ V𝑠 by
Theorem 27 and [8, Theorem 4.2]. Then y is the closest
point to x in𝑀. Thus y satisfies the identity

ℎ (x, y) = inf
m∈𝑀

ℎ (x,m) . (87)
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(ii) Conversely, let y be the closest point to x in𝑀; namely,
y is an element in𝑀 satisfying identity (87). Then

x = y ⊕ (⊖y ⊕ x) (88)

is the orthogonal gyrodecomposition. Thus ⊖y ⊕ x ∈𝑀⊥ ∩ V𝑠.

Proof. Note that ℎ(a1, a2) ≤ ℎ(b1, b2) if and only if ‖a1⊖a2‖ ≤‖b1 ⊖ b2‖.
(i) Suppose that x = y ⊕ z, y ∈ 𝑀, z ∈ 𝑀⊥ ∩ V𝑠. For any

m ∈ 𝑀, we have

x ⊖m = x ⊖ (y ⊕ (⊖y ⊕m))
= gyr [x, ⊖y] {(⊖y ⊕ x) ⊖ (⊖y ⊕m)}
= gyr [x, ⊖y] {z ⊖ (⊖y ⊕m)}

(89)

by the previous lemma. From ⊖y⊕x = z ∈ 𝑀⊥ ∩V𝑠, ⊖y⊕m ∈𝑀 andTheorem 28, it follows thatx ⊖ y = ‖z‖ ≤ z ⊖ (⊖y ⊕m)= gyr [x, ⊖y] (z ⊖ (⊖y ⊕m)) = ‖x ⊖m‖ , (90)

because each gyroautomorphism preserves the norm. Since
m ∈ 𝑀 is arbitrary, we can conclude ‖x ⊖ y‖ ≤ infm∈𝑀‖x ⊖
m‖, and the opposite inequality trivially holds.Thus y satisfies
identity (87).

(ii) Put z = ⊖y ⊕ x. For anym ∈ 𝑀, we have

x ⊖ (y ⊕m) = gyr [x, ⊖y] {(⊖y ⊕ x) ⊖m}
= gyr [x, ⊖y] (z ⊖m) (91)

by the previous lemma. From y ⊕m ∈ 𝑀 and identity (87), it
follows that

‖z‖ = ⊖y ⊕ x = x ⊖ y ≤ x ⊖ (y ⊕m)= gyr [x, ⊖y] (z ⊖m) = ‖z ⊖m‖ , (92)

because each gyroautomorphism preserves the norm. Thus
we can apply Theorem 28 and obtain that z ∈ 𝑀⊥. This
completes the proof.

The following lemma plays a key role in our orthogonal
gyroexpansion.

Lemma 31. If {u, k,w} is an orthogonal set in V𝑠, then the
associative law holds; that is,

u ⊕ (k ⊕ w) = (u ⊕ k) ⊕ w. (93)

Proof. By [4, (3.147), (3.148)], the gyration in the Möbius
gyrovector spaces V𝑠 can be expressed by the equation

gyr [u, k]w = w + 2𝐴u + 𝐵k𝐷 , (94)

where

𝐴 = − 1𝑠4 u ⋅ w ‖k‖2 + 1𝑠2 k ⋅ w + 2𝑠4 (u ⋅ k) (k ⋅ w)
𝐵 = − 1𝑠4 k ⋅ w ‖u‖2 − 1𝑠2 u ⋅ w
𝐷 = 1 + 2𝑠2 u ⋅ k + 1𝑠4 ‖u‖2 ‖k‖2

(95)

for all u, k,w ∈ V𝑠. See also [10, Proposition 2.14] for a proof
by hand calculation. If {u, k,w} is orthogonal, then we have
A = 𝐵 = 0, so that gyr[u, k]w = w. This completes the proof.

Definition 32. (i) Let {a𝑛}𝑛 be a sequence in V𝑠. One says that
a series

(((a1 ⊕ a2) ⊕ a3) ⊕ ⋅ ⋅ ⋅ ⊕ a𝑛) ⊕ ⋅ ⋅ ⋅ (96)

converges if there exists an element x ∈ V𝑠 such thatℎ(x, x𝑛) → 0 (𝑛 → ∞), where the sequence {x𝑛}𝑛 is defined
recursively by x1 = a1 and x𝑛 = x𝑛−1 ⊕ a𝑛. In this case, we say
the series converges to x and denote

x = (((a1 ⊕ a2) ⊕ a3) ⊕ ⋅ ⋅ ⋅ ⊕ a𝑛) ⊕ ⋅ ⋅ ⋅ . (97)

(ii) Let {𝑎𝑛}𝑛 be a sequence inR with |𝑎𝑛| < 𝑠 for all 𝑛. We say
that a series

∞∑
𝑛=1

⊕𝑎𝑛 = 𝑎1 ⊕ 𝑎2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎𝑛 ⊕ ⋅ ⋅ ⋅ (98)

converges if there exists 𝑥 ∈ R with |𝑥| < 𝑠 such that 𝑥𝑛 → 𝑥,
where the sequence {𝑥𝑛}𝑛 is defined recursively by 𝑥1 = 𝑎1
and 𝑥𝑛 = 𝑥𝑛−1 ⊕ 𝑎𝑛. In this case, we say the series converges
to 𝑥 and denote

𝑥 = ∞∑
𝑛=1

⊕𝑎𝑛. (99)

Theorem 33. Let {e𝑛}∞𝑛=1 be an orthonormal sequence in a real
Hilbert space V . Let {𝑤𝑛}∞𝑛=1 be a sequence in R such that 0 <𝑤𝑛 < 𝑠 for all 𝑛. For any sequence {𝑟𝑛}∞𝑛=1 in R, the following
are equivalent:

(i) The series

𝑟1 ⊗ 𝑤1e1 ⊕ 𝑟2 ⊗ 𝑤2e2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ ⋅ ⋅ ⋅ (100)

converges to an element x ∈ V𝑠.
(ii) The series ∑∞𝑛=1⊕(𝑟𝑛 ⊗ 𝑤𝑛)2/𝑠 converges to 𝑥 ∈ R with|𝑥| < 𝑠.
Note that parentheses are not necessary in the formula in

(i) above by Lemma 31.

Proof. (i) ⇒ (ii). Put
x𝑛 = 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛
x = 𝑟1 ⊗ 𝑤1e1 ⊕ 𝑟2 ⊗ 𝑤2e2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ ⋅ ⋅ ⋅ . (101)
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From Lemma 15, it follows thatx𝑛2𝑠 = 𝑟1 ⊗ 𝑤1e12𝑠 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛2𝑠
= (𝑟1 ⊗ 𝑤1)2𝑠 ⊕ ⋅ ⋅ ⋅ ⊕ (𝑟𝑛 ⊗ 𝑤𝑛)2𝑠 . (102)

By the assumption, we have ℎ(x, x𝑛) → 0. It follows from
Lemma 20(i) and Lemma 14(iii) that ‖x𝑛‖ → ‖x‖. Thus we
have

lim
𝑛→∞

𝑛∑
𝑗=1

⊕ (𝑟𝑗 ⊗ 𝑤𝑗)2𝑠 = ‖x‖2𝑠 < 𝑠. (103)

(ii) ⇒ (i). Suppose 𝑥 = ∑∞𝑛=1⊕(𝑟𝑛 ⊗ 𝑤𝑛)2/𝑠 < 𝑠. We put

x𝑛 = 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛,
𝑐𝑛 = 𝑛∑
𝑗=1

⊕ (𝑟𝑗 ⊗ 𝑤𝑗)2𝑠 . (104)

By the assumption, for any 𝜀 > 0, there exists a number 𝑛0
such that 𝑛 ≥ 𝑛0 ⇒ 0 ≤ 𝑥 ⊖ 𝑐𝑛 < 𝜀. (105)

The last inequality implies that (𝑥 − 𝑐𝑛)/(1 − (1/𝑠2)𝑥𝑐𝑛) < 𝜀.
For 𝑛0 ≤ 𝑚 < 𝑛, by Lemma 15,

𝑑 (x𝑛, x𝑚)2 = ⊖x𝑚 ⊕ x𝑛
2= 𝑟𝑚+1 ⊗ 𝑤𝑚+1e𝑚+1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛2

= 𝑐𝑛 ⊖ 𝑐𝑚 = 𝑐𝑛 − 𝑐𝑚1 − (1/𝑠2) 𝑐𝑛𝑐𝑚
≤ 𝑥 − 𝑐𝑚1 − (1/𝑠2) 𝑥𝑐𝑚 < 𝜀.

(106)

Note that the strict inequality 𝑥 < 𝑠 is crucial in the argument
above. This implies that {x𝑛}𝑛 is a Cauchy sequence with
respect to the metric ℎ by Lemma 20(ii). Since (V𝑠, ℎ) is
complete byTheorem 26, there exists a unique element x ∈ V𝑠
such that ℎ(x, x𝑛) → 0. This completes the proof.

Example 34. Consider the sequence {𝑎𝑛}∞𝑛=1 in R defined by𝑎𝑛 = 1/2𝑛. For 𝑠 = 1, it is easy to see that
𝑥𝑛 = 𝑎1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎𝑛 = 1 − 1𝑛 + 1 (𝑛 = 1, 2, . . .) . (107)

Put 𝑟𝑛 = tanh−1(1/√2𝑛)/tanh−1(1/2). Then, we have 𝑟𝑛 ⊗(1/2) = tanh(𝑟𝑛tanh−1(1/2)) = 1/√2𝑛. It follows that
𝑛∑
𝑗=1

⊕ (𝑟𝑗 ⊗ 12)2 = 𝑛∑
𝑗=1

⊕ 12𝑗 = 1 − 1𝑛 + 1 , (108)

which does not converge to an element 𝑥 ∈ R with |𝑥| <1. This example can be considered as a counterpart in the
Möbius gyrovector space to the series ∑∞𝑛=1(1/2𝑛).

Theorem 35. Let {e𝑛}∞𝑛=1 be a complete orthonormal sequence
in a real Hilbert space V . Let {𝑤𝑛}∞𝑛=1 be a sequence in R such
that 0 < 𝑤𝑛 < 𝑠 for all 𝑛. Then, for any x ∈ V𝑠, we have the
orthogonal gyroexpansion

x = 𝑟1 ⊗ 𝑤1e1 ⊕ 𝑟2 ⊗ 𝑤2e2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ ⋅ ⋅ ⋅ , (109)

where the sequence of gyrocoefficients {𝑟𝑛}∞𝑛=1 is determined by
the following equations:

𝑥𝑛 = x ⋅ e𝑛,
x(1)𝑛 = 𝑛∑

𝑗=1

𝑥𝑗e𝑗,
x(2)𝑛 = ∞∑

𝑗=𝑛+1

𝑥𝑗e𝑗
u𝑗 = 𝜇(2)𝑗−1 ⋅ ⋅ ⋅ 𝜇(2)1 𝑥𝑗e𝑗 (𝑗 = 2, 3, . . .)
u1 = 𝑥1e1 = x(1)1

k𝑗 = 𝜇(2)𝑗−1 ⋅ ⋅ ⋅ 𝜇(2)1 x(2)𝑗 (𝑗 = 2, 3, . . .)
k1 = x(2)1𝜇(1)𝑗
= u𝑗2 + k𝑗2 + 𝑠2 − √(u𝑗2 + k𝑗2 + 𝑠2)2 − 4𝑠2 u𝑗22 u𝑗2𝜇(2)𝑗
= u𝑗2 + k𝑗2 − 𝑠2 + √(u𝑗2 + k𝑗2 + 𝑠2)2 − 4𝑠2 u𝑗22 k𝑗2
𝑟𝑗 = tanh−1 (𝜇(1)𝑗 𝜇(2)𝑗−1 ⋅ ⋅ ⋅ 𝜇(2)1 𝑥𝑗/𝑠)

tanh−1 (𝑤𝑗/𝑠)

(110)

for all 𝑗, 𝑛 = 1, 2, . . .. If 𝑥𝑗 = 0, then we do not define 𝜇(1)𝑗 but
define as 𝑟𝑗 = 0 and continue the procedure. If k𝑛 = 0, then we
do not define 𝜇(2)𝑛 but define as 𝑟𝑗 = 0 for all 𝑗 ≥ 𝑛 + 1 and
finish the procedure.

Proof. It is not difficult to see that we may assume 𝑠 = 1. It is
obvious that the series ∑∞𝑛=1 𝑥𝑛e𝑛 converges to x in the norm
topology and that

x = x(1)𝑛 + x(2)𝑛 (111)

is the orthogonal decomposition with respect to the closed
linear subspace generated by {e1, . . . , e𝑛}. Let

x = y𝑛 ⊕ z𝑛, y𝑛 ∈ 𝑀𝑛, z𝑛 ∈ 𝑀𝑛⊥ ∩ V1 (112)
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be the orthogonal gyrodecomposition with respect to 𝑀𝑛
by Theorem 27 and [8, Theorem 4.2], where 𝑀𝑛 is an ℎ-
closed gyrovector subspace generated by {𝑤1e1, . . . , 𝑤𝑛e𝑛}.
Then, y𝑛, z𝑛 are given by the equations

y𝑛 = 𝜆(1)𝑛 x(1)𝑛 ,
z𝑛 = 𝜆(2)𝑛 x(2)𝑛 , (113)

where

𝜆(1)𝑛 = ‖x‖2 + 1 − √(‖x‖2 + 1)2 − 4 x(1)𝑛 22 x(1)𝑛 2
𝜆(2)𝑛 = ‖x‖2 − 1 + √(‖x‖2 + 1)2 − 4 x(1)𝑛 22 x(2)𝑛 2 .

(114)

Since ‖x(1)𝑛 − x‖ → 0,
𝜆(1)𝑛 → ‖x‖2 + 1 − √(‖x‖2 + 1)2 − 4 ‖x‖22 ‖x‖2 = 1, (115)

so that we have

y𝑛 = 𝜆(1)𝑛 x(1)𝑛 → x (116)

in the norm topology, which implies that ℎ(y𝑛, x) → 0.
Next, we express y𝑛 in the form of a gyrolinear combina-

tion

y𝑛 = 𝑟1 ⊗ 𝑤1e1 ⊕ 𝑟2 ⊗ 𝑤2e2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 (117)

and present a concrete procedure to seek the gyrocoeffi-
cients 𝑟𝑛.

For 𝑛 = 1, by using the above decomposition, we take𝑟1 = tanh−1𝜆(1)1 𝑥1/tanh−1𝑤1. It follows that
𝑟1 ⊗ 𝑤1e1 = tanh (𝑟1tanh−1 𝑤1e1) 𝑤1e1𝑤1e1= 𝜆(1)1 𝑥1e1 = 𝜆(1)1 x(1)1 = y1,

x = 𝑟1 ⊗ 𝑤1e1 ⊕ z1.
(118)

Suppose that we proceed up to the 𝑛-th step and obtain
the quantities, identities (110) for 𝑗 = 1, . . . , 𝑛, and

x = 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ 𝜇(2)𝑛 k𝑛. (119)

Now,

𝜇(2)𝑛 k𝑛 = 𝜇(2)𝑛 ⋅ ⋅ ⋅ 𝜇(2)1 𝑥𝑛+1e𝑛+1 + 𝜇(2)𝑛 ⋅ ⋅ ⋅ 𝜇(2)1 ∞∑
𝑗=𝑛+2

𝑥𝑗e𝑗
= u𝑛+1 + k𝑛+1

(120)

is the orthogonal decomposition with respect to the finite
dimensional linear subspace generated by {e1, . . . , e𝑛+1}. Let
𝜇(2)𝑛 k𝑛 = y𝑛+1 ⊕ z𝑛+1,

y𝑛+1 ∈ 𝑀𝑛+1, z𝑛+1 ∈ 𝑀𝑛+1⊥ ∩ V1

(121)

be the orthogonal gyrodecomposition with respect to𝑀𝑛+1.
Then, y𝑛+1, z𝑛+1 are given by the equations

y𝑛+1 = 𝜇(1)𝑛+1u𝑛+1,
z𝑛+1 = 𝜇(2)𝑛+1k𝑛+1, (122)

where

𝜇(1)𝑛+1 = u𝑛+12 + k𝑛+12 + 1 − √(u𝑛+12 + k𝑛+12 + 1)2 − 4 u𝑛+122 u𝑛+12
𝜇(2)𝑛+1 = u𝑛+12 + k𝑛+12 − 1 + √(u𝑛+12 + k𝑛+12 + 1)2 − 4 u𝑛+122 k𝑛+12 .

(123)

By taking

𝑟𝑛+1 = tanh−1 (𝜇(1)𝑛+1𝜇(2)𝑛 ⋅ ⋅ ⋅ 𝜇(2)1 𝑥𝑛+1)
tanh−1𝑤𝑛+1 , (124)

we have

x = 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ (y𝑛+1 ⊕ z𝑛+1)= 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛

⊕ (𝜇(1)𝑛+1u𝑛+1 ⊕ 𝜇(2)𝑛+1k𝑛+1)= 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ 𝑟𝑛+1 ⊗ 𝑤𝑛+1e𝑛+1⊕ 𝜇(2)𝑛+1k𝑛+1.
(125)

Thus, we can inductively take a sequence {𝑟𝑛}∞𝑛=1 by the
procedure above.
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Finally, from the uniqueness of the orthogonal gyrode-
compositionwith respect to the ℎ-closed gyrovector subspace𝑀𝑛, it follows that

y𝑛 = 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 (126)

and the series converges as follows:

x = 𝑟1 ⊗ 𝑤1e1 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑟𝑛 ⊗ 𝑤𝑛e𝑛 ⊕ ⋅ ⋅ ⋅ . (127)

This completes the proof.

Theorem 36. Let {e𝑛}∞𝑛=1 be an orthonormal sequence in a real
Hilbert space V . Let {𝑤𝑛}∞𝑛=1 be a sequence in R such that 0 <𝑤𝑛 < 𝑠 for all 𝑛. Then the following are equivalent:

(i) {e𝑛}∞𝑛=1 is complete.
(ii) The ℎ-closed gyrovector subspace generated by{𝑤𝑛e𝑛}∞𝑛=1 coincides with V𝑠.
(iii) ‖x‖2 = ∑∞𝑛=1⊕(𝑟𝑛 ⊗ 𝑤𝑛)2/𝑠 for all x ∈ V𝑠,

where {𝑟𝑛}∞𝑛=1 is the sequence determined by identities (110).

Proof. It is easy to deduce implications (i) ⇒ (ii) and (i) ⇒(iii) from the previous theorem.(iii) ⇒ (i) Suppose that there exists an element x ̸= 0 such
that x ⋅ e𝑛 = 0 for all 𝑛. By multiplying nonzero scalar, we may
assume that x ∈ V𝑠. Then we have 𝑥𝑛 = 0, hence 𝑟𝑛 = 0 for all𝑛. Thus (iii) is violated.(ii) ⇒ (i) Suppose that there exists an element x such
that x ⋅ e𝑛 = 0 for all 𝑛. We may assume that x ∈ V𝑠. Then{x}⊥ ∩ V𝑠 is an ℎ-closed gyrovector subspace by Lemma 22.
Since it contains 𝑤𝑛e𝑛 for all 𝑛, it coincides with V𝑠 by the
assumption. Therefore, we have x ∈ {x}⊥ ∩ V𝑠, which implies
that x = 0. This completes the proof.
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