Research Article

Busemann-Petty Problems for Quasi L_p Intersection Bodies

Yanping Zhou and Shanhe Wu

1Department of Mathematics, Shanghai University, Shanghai 200444, China
2Department of Mathematics, Longyan University, Longyan 364012, China

Correspondence should be addressed to Shanhe Wu; shanhewu@gmail.com

Received 8 July 2017; Accepted 18 September 2017; Published 31 October 2017

Academic Editor: Alberto Fiorenza

Copyright © 2017 Yanping Zhou and Shanhe Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the L_p dual geominimal surface area and volume forms of Busemann-Petty problems for the quasi L_p intersection bodies and establish some new geometric inequalities. Our results provide a significant complement to the researches on Busemann-Petty problems for intersection bodies.

1. Introduction and Main Results

Let S^{n-1} denote the unit sphere in Euclidean space \mathbb{R}^n. If K is a compact star-shaped (about the origin) set in \mathbb{R}^n, then its radial function, $\rho_K: \mathbb{R}^n \setminus \{0\} \rightarrow [0, \infty)$, is defined by (see [1, 2])

$$\rho_K(\mathbf{u}) = \max \{ \lambda \geq 0 : \lambda \mathbf{u} \in K \}, \quad \mathbf{u} \in S^{n-1}. \quad (1)$$

If ρ_K is positive and continuous, then K will be called a star body (about the origin), and \mathcal{S}^n denotes the set of star bodies in \mathbb{R}^n. We use \mathcal{S}_o^n and \mathcal{S}_e^n to denote the subset of star bodies in \mathcal{S}^n containing the origin in their interiors and origin-symmetric star bodies, respectively. Two star bodies K and L are said to be the dilation of one another if $\rho_K(\mathbf{u})/\rho_L(\mathbf{u})$ is independent of $\mathbf{u} \in S^{n-1}$.

Let \mathcal{K}^n denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean \mathbb{R}^n. For $u \in S^{n-1}$, u^\perp denotes the $(n-1)$-dimensional subspace orthogonal to u. We use $V_k(M)$ to denote the k-dimensional volume of a k-dimensional compact convex set M. Instead of V_n we usually write V. For the standard unit ball B in \mathbb{R}^n, we write $\omega_n = V(B)$ for its volume.

Busemann and Petty posed a problem [3]: let K and L be origin-symmetric convex bodies in \mathbb{R}^n. Is it true that, for any $u \in S^{n-1}$,

$$V_{n-1}(K \cap u^\perp) \leq V_{n-1}(L \cap u^\perp) \quad \Rightarrow \quad V(K) \leq V(L)? \quad (2)$$

A long list of authors contributed to the solution of this famous problem over a period of 40 years; see [4–18]. The question has a negative answer for $n \geq 5$ and an affirmative answer for $n = 3, 4$. For a detailed account of the interesting history of the Busemann-Petty problem, see the books by Gardner [1, Chapter 8] and Koldobsky [19, Chapter 5].

The crucial idea in the solution of the problem was to define new convex body which was called intersection body. This was done by Lutwak [15] whose work is considered the starting point of the solution of the Busemann-Petty problem in all dimensions. For $K \in \mathcal{S}_o^n$, the intersection body, IK, of K is a star body whose radial function in the direction $u \in S^{n-1}$ is equal to the $(n-1)$-dimensional volume of the section of K by u^\perp; that is,

$$\rho(IK, u) = V_{n-1}(K \cap u^\perp). \quad (3)$$

The intersection bodies have been intensively studied in recent years (see [20–28] and the books [19, 29]). From (3) and the fact that star bodies K and L satisfy $K \subseteq L$ if and only if $\rho(K, \cdot) \leq \rho(L, \cdot)$, we see that the Busemann-Petty problem can be rephrased in the following way: for $K, L \in \mathcal{S}_o^n$, is it true that

$$IK \subseteq IL \quad \Rightarrow \quad V(K) \leq V(L)? \quad (4)$$

Lutwak [15] showed that the problem has an affirmative answer if the body K is restricted to the class of intersection
bodies. In addition, Lutwak proved that if \(L \) is a sufficiently smooth origin-symmetric star body with positive radial function which is not an intersection body, then there exists an origin-symmetric star body \(K \) such that \(IK \subseteq IL \) but \(V(K) > V(L) \). Further, Busemann-Petty problems have been considered in the context of \(L_p \) Brunn-Minkowski Theory (see [30–41]). In particular, Haberl and Ludwig [42] generalized the intersection body to \(L_p \) form and introduced the notion of \(L_p \) intersection body: let \(L \) be a star body and nonzero \(p < 1 \). The \(L_p \) intersection body of \(L \), \(I_p L \), is the symmetric star body whose radial function is defined by

\[
\rho(I_p L, u)^p = \int_L |u \cdot x|^{-p} \, dx. \tag{5}
\]

After that, associated with \(L_p \) intersection bodies, Yuan and Cheung [41] gave an affirmative form of Busemann-Petty problem for the \(L_p \) intersection bodies.

Theorem 1. Let \(K \) be \(L_p \) intersection body and \(L \) be a star body in \(\mathbb{R}^n \). If \(I_p K \subseteq I_p L \), then

\[
V(K) \leq V(L), \quad \text{for } 0 < p < 1, \tag{6}
\]

\[
V(K) \geq V(L), \quad \text{for } p < 0.
\]

In both cases equality holds if and only if \(K = L \).

In 2007, Yu et al. [40] defined the quasi \(L_p \) intersection body as follows: let \(K \) be a star body and \(p \geq 1 \). The quasi \(L_p \) intersection body, \(I_p K \), of \(K \) is defined by

\[
\rho(I_p K, u) = \left(\frac{V_p(K, B \cap u^\perp)}{V_p(B, B \cap u^\perp)} \right)^{1/p}, \tag{7}
\]

for \(u \in S^{n-1} \), where \(V_p \) denotes the \(L_p \) dual mixed volume (see (22)).

Suppose that \(f \) is a Borel function on \(S^{n-1} \). The spherical Radon transform \(Rf \) [43] of \(f \) is defined by

\[
(Rf)(u) = \int_{S^{n-1} \cap u^\perp} f(v) \, dS_{n-2}(v), \tag{8}
\]

for \(u \in S^{n-1} \). Using the spherical Radon transform, the definition of \(I_p K \) is rewritten by

\[
\rho(I_p K, u) = \left(\frac{\tilde{V}_p(K, B \cap u^\perp)}{\tilde{V}_p(B, B \cap u^\perp)} \right)^{1/p},
\]

\[
= \left(\frac{1}{(n-1) \omega_{n-1}} R(\rho_K)^{n-p}(u) \right)^{1/p}, \tag{9}
\]

\[
= \left(\frac{1}{(n-1) \omega_{n-1}} \int_{S^{n-1} \cap u^\perp} \rho(K, v)^{n-p} \, dS_{n-2}(v) \right)^{1/p},
\]

for \(u \in S^{n-1} \).

One aim of this paper is to establish the volume forms of the Busemann-Petty problems for the quasi \(L_p \) intersection bodies. For convenience, let \(I_p \) denote the set of quasi \(L_p \) intersection bodies.

Theorem 2. Let \(K, L \in \delta^n_o \) and \(p \geq 1 \). If \(1 \leq p < n \) and \(K \in I_p \), then

\[
I_p K \subseteq I_p L \implies V(K) \leq V(L). \tag{10}
\]

If \(p > n \) and \(L \in I_p \), then

\[
I_p K \subseteq I_p L \implies V(K) \geq V(L). \tag{11}
\]

And \(V(K) = V(L) \) if and only if \(K = L \).

Remark 3. Theorem 2 can be found in [40]. However, what should be noted is that we give a new method of proof in this paper.

Theorem 4. For \(1 \leq p < n \), if \(K \notin \delta^n_o \), then there exists \(L \in \delta^n_e \) such that

\[
I_p K \subset I_p L, \tag{12}
\]

but

\[
V(K) > V(L). \tag{13}
\]

Recall the definition of \(L_p \) dual geominimal surface area, \(\overline{G}_p(K) \), of \(K \in \delta^n_o \) for \(p > 0 \) in [44]:

\[
\omega_n^{p/n} \overline{G}_p(K) = \sup \left\{ n\tilde{V}_p(K, Q) V(Q^*)^{p/n} : Q \in \delta^n_e \right\}. \tag{14}
\]

Another aim of this paper is to give the \(L_p \) dual geominimal surface area forms of Busemann-Petty problems for the quasi \(L_p \) intersection bodies. If \(M \in I_p \), then we rewrite the definition of \(L_p \) dual geominimal surface area by

\[
\omega_n^{p/n} \overline{G}_p(K) = \sup \left\{ n\tilde{V}_p(K, M) V(M^*)^{p/n} : M \in I_p \right\}. \tag{15}
\]

Theorem 5. If \(p \geq 1 \) and \(K, L \in \delta^n_o \), then

\[
I_p K \subseteq I_p L, \tag{16}
\]

implying

\[
\overline{G}_p(K) \leq \overline{G}_p(L). \tag{17}
\]

And \(\overline{G}_p(K) = \overline{G}_p(L) \) if and only if \(K = L \).

Theorem 6. For \(1 \leq p < n \), if \(K \notin \delta^n_o \), then there exists \(L \in \delta^n_e \) such that

\[
I_p K \subset I_p L, \tag{18}
\]

but

\[
\overline{G}_p(K) > \overline{G}_p(L). \tag{19}
\]
2. Preliminaries

2.1. L_p Dual Mixed Volume. For $K, L \in \mathcal{D}^n_\omega$, $p > 0$, and $\lambda, \mu \geq 0$ ($\lambda + \mu \neq 0$), the L_p radial combination, $\lambda \ast K + \mu \ast L \in \mathcal{D}^n_\omega$, of K and L is defined by (see [40])

$$\rho \left(\lambda \ast K + \mu \ast L, \cdot \right)^p = \lambda \rho(K, \cdot)^p + \mu \rho(L, \cdot)^p. \quad (20)$$

The polar coordinate formula for the volume of a body $K \in \mathcal{D}^n_\omega$ is

$$V(K) = \frac{1}{n} \int_{S^{n-1}} \rho_K(u)^p dS(u). \quad (21)$$

For $p \geq 1$, the L_p dual mixed volume, $\overline{V}_p(K, L)$, of $K, L \in \mathcal{D}^n_\omega$ was defined by (see [40])

$$\overline{V}_p(K, L) = \frac{n}{p} \lim_{\varepsilon \to 0^+} \frac{V((K + \varepsilon L, \cdot)^p) - V(K)}{\varepsilon}. \quad (22)$$

From definition (22), the following integral representation of L_p dual mixed volume was given (see [40]): if $K, L \in \mathcal{D}^n_\omega$ and $p \geq 1$, then

$$\overline{V}_p(K, L) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-p} \rho(L, u)^p dS(u). \quad (23)$$

Obviously,

$$\overline{V}_p(K, K) = V(K). \quad (24)$$

The Minkowski inequality for the L_p dual mixed volume was established in [40]: if $K, L \in \mathcal{D}^n_\omega$, then, for $1 \leq p < n$,

$$\overline{V}_p(K, L) \leq V(K)^{(n-p)/n} V(L)^{p/n}; \quad (25)$$

for $p > n$,

$$\overline{V}_p(K, L) \geq V(K)^{(n-p)/n} V(L)^{p/n}. \quad (26)$$

In every case, equality holds if and only if K is a dilation of L.

2.2. L_p Dual Blaschke Body. For $K, L \in \mathcal{D}^n_\omega$, $0 < p < n$, and $\lambda, \mu \geq 0$ ($\lambda + \mu \neq 0$), the L_p dual Blaschke combination, $\lambda \ast K + \mu \ast L \in \mathcal{D}^n_\omega$, of K and L is defined by (see [28])

$$\rho \left(\lambda \ast K + \mu \ast L, \cdot \right)^p = \lambda \rho(K, \cdot)^p + \mu \rho(L, \cdot)^p. \quad (27)$$

Taking $\lambda = \mu = 1/2$, $L = -K$ in (27), the L_p dual Blaschke body, \overline{V}_pK, of K is given by (see [28])

$$\overline{V}_pK = \frac{1}{2} \ast \frac{1}{2} \ast (-K). \quad (28)$$

Obviously, the L_p dual Blaschke body is origin-symmetric.

3. Proofs of Theorems 2–6

The proof of Theorem 2 needs the following Lemma.

Lemma 7 (see [40]). If $K, L \in \mathcal{D}^n_\omega$, then, for $p \geq 1$,

$$\overline{V}_p(K, I_pL) = \overline{V}_p(L, I_pK). \quad (29)$$

Proof of Theorem 2. For a star body \overline{K} with $I_p\overline{K} = K$, it follows from Lemma 7 that

$$V(K) = \overline{V}_p(K, K) = \overline{V}_p(K, I_pK) = \overline{V}_p(\overline{K}, I_p\overline{K}); \quad (30)$$

$$\overline{V}_p(L, K) = \overline{V}_p(L, I_p\overline{K}) = \overline{V}_p(\overline{K}, I_pL).$$

Since

$$\overline{V}_p(K, I_pK) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-p} \rho(I_pK, u)^p \rho(I_pL, u)^p \rho(I_pL, u)^p dS(u) \leq \max_{u \in S^{n-1}} \left(\frac{\rho(I_pK, u)}{\rho(I_pL, u)} \right)^p \cdot \overline{V}_p(\overline{K}, I_pL), \quad (31)$$

we have

$$V(K) \leq \overline{V}_p(K, I_pL) \leq \overline{V}_p(\overline{K}, I_pL) \leq V(L)^{(n-p)/n} V(K)^{p/n}; \quad (32)$$

that is,

$$V(K) \leq V(L). \quad (34)$$

From the inequality condition of (25), we know that $V(K) = V(L)$ if and only if $K = L$.

From a star body \overline{K} with $I_p\overline{K} = K$, By Lemma 7, we have

$$V(K) = \overline{V}_p(I_pK); \quad (35)$$

Thus

$$\overline{V}_p(I_pK) = \frac{1}{n} \int_{S^{n-1}} \rho(I_pK, u)^{n-p} \rho(I_pK, u)^p \rho(I_pL, u)^p \rho(I_pL, u)^p dS(u) \leq \max_{u \in S^{n-1}} \left(\frac{\rho(I_pK, u)}{\rho(I_pL, u)} \right)^p \cdot \overline{V}_p(I_pK), \quad (36)$$

$$\overline{V}_p(I_pL) = \overline{V}_p(I_pK).$$
that is,
\[
\frac{V_p(K, L)}{V(L)} \leq \max_{u \in \mathbb{S}^{n-1}} \left(\frac{\rho(I_p K, u)}{\rho(I_p L, u)} \right)^p. \tag{37}
\]
For \(p > n\), it follows from \(I_p K \subseteq I_p L\) that
\[
V(K) \geq V_p(K, L) \geq V(K)^{(n-p)/n} V(L)^{p/n}, \tag{38}
\]
namely,
\[
V(K) \geq V(L). \tag{39}
\]

Lemma 8 (see [28]). If \(K, L \in \mathcal{S}_o^n\) and \(\lambda, \mu \geq 0, (\lambda + \mu) \neq 0\), then, for \(0 < p < n\),
\[
V\left(\lambda K + \mu L\right)^{(n-p)/n} \leq \lambda V(K)^{(n-p)/n} + \mu V(L)^{(n-p)/n},
\]
with equality if and only if \(K\) is a dilation of \(L\).

Let \(\lambda = \mu = 1/2, L = -K\) in (40), the following is an immediate result of Lemma 8.

Corollary 9. If \(K \in \mathcal{S}_o^n\), then, for \(0 < p < n\),
\[
V\left(\tilde{V}_p K\right) \leq V(K),
\]
with equality if and only if \(K\) is origin-symmetric.

Lemma 10. If \(K \in \mathcal{S}_o^n\), then, for \(p \geq 1\),
\[
I_p\left(\tilde{V}_p K\right) = I_p K.
\]

Proof. From (9), (27), and (28), we have
\[
\rho\left(I_p\left(\tilde{V}_p K\right), u\right)^p = \frac{1}{(n-1) \omega_{n-1}} \int_{S^{n-1}} \rho\left(\frac{1}{2}, K + \mu \frac{1}{2} (-K), v\right)^{n-p} dS_{n-2}(v)
\]
\[
+ \frac{1}{2} \rho\left(-K, v\right)^{n-p} dS_{n-2}(v) = \frac{1}{2} \rho\left(I_p K, u\right)^p + \frac{1}{2} \rho\left(I_p(-K), u\right)^p.
\]
Since \(I_p(-K) = I_p K\), we have
\[
\rho\left(I_p\left(\tilde{V}_p K\right), u\right)^p = \rho\left(I_p K, u\right)^p; \tag{44}
\]
that is,
\[
I_p\left(\tilde{V}_p K\right) = I_p K. \tag{45}
\]

Proof of Theorem 4. Since \(K \notin \mathcal{S}_r^n\), Corollary 9 implies
\[
V\left(\tilde{V}_p K\right) < V(K). \tag{46}
\]
Let \(\varepsilon > 0\) such that \(V((1 + \varepsilon)\tilde{V}_p K) < V(K)\). Taking \(L = (1 + \varepsilon)\tilde{V}_p K\) we have
\[
V(K) > V(L). \tag{47}
\]
Combining with Lemma 10 we get
\[
I_p L = I_p\left(1 + \varepsilon\right) \tilde{V}_p K = (1 + \varepsilon)^{(n-p)/p} I_p\left(\tilde{V}_p K\right)
\]
\[
= (1 + \varepsilon)^{(n-p)/p} I_p K \geq I_p K.
\]

Proof of Theorem 5. From the condition \(I_p K \subseteq I_p L\), we have, for arbitrary \(N \in \mathcal{S}_o^n\),
\[
\tilde{V}_p\left(N, I_p K\right) \leq \tilde{V}_p\left(N, I_p L\right). \tag{49}
\]
By Lemma 7, we obtain
\[
\tilde{V}_p\left(K, I_p N\right) \leq \tilde{V}_p\left(L, I_p N\right). \tag{50}
\]
Let \(M = I_p N\) in (50). Together with (15), it follows that
\[
\overline{G}_p(K) \leq \overline{G}_p(L),
\]
with equality if and only if \(K = L\).

Lemma 11. If \(K \in \mathcal{S}_r^n\) and \(1 \leq p < n\), then
\[
\overline{G}_p\left(\tilde{V}_p K\right) \leq \overline{G}_p(K),
\]
with equality if and only if \(K\) is origin-symmetric.

Proof. From (14), (27), and (28), we get
\[
\omega_n^{p/n} \overline{G}_p\left(\tilde{V}_p K\right) = \sup \left\{ \int_{S^{n-1}} \rho\left(\frac{1}{2}, K + \mu \frac{1}{2} (-K), Q\right)^{n-p} dS(u) \cdot V(Q)^{p/n} : Q \in \mathcal{S}_r^n\right\}
\]
\[
= \sup \left\{ \int_{S^{n-1}} \rho\left(\frac{1}{2}, K + \mu \frac{1}{2} (-K), u\right)^{n-p} \cdot \rho(L, u)^p dS(u) V(Q)^{p/n} : Q \in \mathcal{S}_r^n\right\}
\]
\[
= \sup \left\{ \int_{S^{n-1}} \left[\frac{1}{2} \rho(K, u)^{n-p} + \frac{1}{2} \rho(-K, u)^{n-p} \right] \cdot \rho(L, u)^p dS(u) V(Q)^{p/n} : Q \in \mathcal{S}_r^n\right\}
\]
\[
\leq \frac{1}{2} \left[\omega_n^{p/n} \overline{G}_p(K), Q\right) V(Q)^{p/n} + \frac{n}{2} \right.
\]
\[
\cdot \overline{V}_p(-K, Q) V(Q)^{p/n} : Q \in \mathcal{S}_r^n \leq \frac{1}{2}.
\]
\[
\cdot \sup \left\{ nV_p(K, Q) V(Q^*)^{p/n} : Q \in S^n \right\} + \frac{1}{2} \\
\cdot \sup \left\{ nV_p(-K, Q) V(Q^*)^{p/n} : Q \in S^n \right\}
\]

(53)

Note that \(Q \in S^n \); thus we have \(V_p(-K, Q) = V_p(K, Q) \). Together with (53), this yields

\[
\overline{G}_p \left(\overline{V}_p K \right) \leq \overline{G}_p \left(K \right).
\]

Equality holds in (53) if and only if \(K \) is a dilation of \(-K\). This gives \(K = -K \). Namely, \(K \) is origin-symmetric. Hence, equality holds in (54) if and only if \(K \) is origin-symmetric. \(\square \)

Proof of Theorem 6. Since \(K \notin S^n \), from Lemma 11 we have

\[
\overline{G}_p \left(\overline{V}_p K \right) < \overline{G}_p \left(K \right).
\]

Choose \(\varepsilon > 0 \) such that \(\overline{G}_p \left((1 + \varepsilon)\overline{V}_p K \right) < \overline{G}_p \left(K \right) \). Taking \(L = (1 + \varepsilon)\overline{V}_p K \) we obtain

\[
\overline{G}_p \left(K \right) > \overline{G}_p \left(L \right).
\]

It follows from Lemma 10 that

\[
I_p L = I_p \left((1 + \varepsilon)\overline{V}_p K \right) = (1 + \varepsilon)^{(n-p)/p} I_p \left(\overline{V}_p K \right) \\
= (1 + \varepsilon)^{(n-p)/p} I_p K \supset I_p K.
\]

(57)

\(\square \)

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors read and approved the final manuscript.

Acknowledgments

This work was supported by the Natural Science Foundation of China (no. 11371239) and the Natural Science Foundation of Fujian Province of China (no. 2016J01023).

References

