Research Article

General Holmstedt’s Formulae for the K-Functional

Irshaad Ahmed,1 Georgi E. Karadzhov,2 and Ali Raza3

1Department of Mathematics, Government College University, Faisalabad, Pakistan
2Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
3Abdus Salam School of Mathematical Sciences, GC University Lahore, Lahore, Pakistan

Correspondence should be addressed to Georgi E. Karadzhov; georgikaradzhov46@gmail.com

Received 15 November 2016; Accepted 13 December 2016; Published 14 February 2017

Academic Editor: Alberto Fiorenza

Copyright © 2017 Irshaad Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In recent papers [1–11] the classical Holmstedt formula for the K-functional [12] was extended to more general cases. See also [13] for more results about generalized Holmstedt’s formula and reiteration theorems not only for the K-method, but for the J-method as well. Here we consider the K-method in the most general case for quasi-normed spaces. Namely, let \((A_0, A_1)\) be a compatible couple of quasi-normed spaces, that is, both \(A_0\) and \(A_1\) are linearly and continuously embedded in some Hausdorff topological vector space. By definition, the K-interpolation space \((A_0, A_1)_\varphi\) has a quasi-norm

\[\|a\|_{(A_0, A_1)_\varphi} = \|K(t, a)\|_\varphi,\]

where \(K(t, a) = K(t, a; A_0, A_1)\) is the K-functional of Peetre [13, 14], defined for \(0 < t < \infty\), \(a \in A_0 + A_1\) as follows:

\[K(t, a) = \inf_{\alpha_0, \alpha_1} \left\{ \|a_0\|_{A_0} + t \|a_1\|_{A_1} \right\},\]

and \(\varphi\) is a quasi-normed space of Lebesgue measurable functions, defined on \((0, \infty)\), with monotone quasi norm as follows: \(|g| \leq |h|\) implies \(\|g\|_\varphi \leq \|h\|_\varphi\) such that \(\min(1, t) \in \varphi\). If \(\varphi = L^q_k(w)\), that is,

\[\|g\|_\varphi = \left(\int_0^\infty |w(t)|g(t)\frac{dt}{t}\right)^{1/q}, \quad 0 < q \leq \infty,\]

we write \((A_0, A_1)_{\varphi(t)}\) instead of \((A_0, A_1)_\varphi\); if \(q = \infty\), the above integral has to be replaced by \(\sup |w(t)|g(t)|\). Here \(w\) is a nonnegative Lebesgue measurable function defined on \((0, \infty)\) and called weight.

In [1, 2] the case when \(w(t) = t^{-\theta}v(t), 0 < \theta < 1\), and \(v\)-repeated logarithms was considered and this was extended to \(v\)-slowly varying in [3]. Certain limiting cases (when \(\theta = 0\)) are treated in [5, 8–10]. The case \(\varphi = L^1_k(w)\) with arbitrary \(w\) was investigated in [6]. In [4, 7, 11] the case when \(\varphi = E(t^{-\theta})\) and \(E\) is rearrangement invariant Banach space on \((0, \infty)\) with the Haar measure \(dt/t\) is treated in detail. Note that in the case \(w(t) = t^{-\theta}v(t), 0 < \theta < 1\), \(v\)-slowly varying, the K- and J-methods are equivalent, but this is not true in the limiting cases \(\theta = 0\) or \(\theta = 1\). The problem of the relation between both real interpolation methods for Banach couples is treated in [13], where general theorems are proven and certain applications are given. More results about the relation between K- and J-methods in the limiting cases are obtained in [15, 16].

We use the notations \(a_1 \leq a_2\) or \(a_2 \geq a_1\) for nonnegative functions or functionals to mean that the quotient \(a_1/a_2\) is bounded; also, \(a_1 \approx a_2\) means that \(a_1 \leq a_2\) and \(a_1 \geq a_2\). We say that \(a_1\) is equivalent to \(a_2\) if \(a_1 \approx a_2\). Recall that the weight \(w\) is called slowly varying if for every \(\varepsilon > 0\) the function \(t^{\varepsilon}w(t)\) is equivalent to a nondecreasing one and the function \(t^{-\varepsilon}w(t)\) is equivalent to a nonincreasing one.

The main results are announced in [17].
2. Formulae for the K-Functional

Using the Holmstedt argument, we can prove general formulae for the K-functional. Let $K(t, a) = K(t, a; A_0, A_1)$ and let

$$I(t, a) := \|\chi_{(0,t)}(u) K(u, a)\|_{\Phi_0},$$

$$g_0(t) := t \|\chi_{(0,\infty)}(u)\|_{\Phi_0},$$

(4)

$$h_0(t) := \|u\chi_{(0,t)}(u)\|_{\Phi_0}.$$

\textbf{Theorem 1} (case $((A_0, A_1)_{\Phi_0}, A_1))$. If $a \in (A_0, A_1)_{\Phi_0} + A_1$, then

$$K(\rho(t), a; (A_0, A_1)_{\Phi_0}, A_1) = I(t, a) + \rho(t) \frac{K(t, a)}{t},$$

(5)

where $\rho(t) \equiv g_0(t) + h_0(t)$.

\textbf{Proof.} Let $w = g_0(t) + h_0(t)$, and $B_0 := (A_0, A_1)_{\Phi_0}$, and $B_1 := A_1$. Using monotonicity of K, we get

$$I(t, a) \geq h_0(t) \frac{K(t, a)}{t},$$

(6)

$$\|a\|_{B_0} \geq (g_0(t) + h_0(t)) \frac{K(t, a)}{t}.$$

(7)

Let $a = a_0 + a_1, a_j \in A_j$, and $j = 0, 1$. Then

$$K(t, a) \leq K(t, a_0) + K(t, a_1) \leq \frac{t}{w(t)} \|a_0\|_{B_0} + \frac{t}{w(t)} \|a_1\|_{B_1},$$

whence

$$w(t) \frac{K(t, a)}{t} \leq K(w(t); a; B_0, B_1).$$

(9)

Also,

$$I(t, a) \leq \|\chi_{(0,t)}(u) K(u, a_0)\|_{\Phi_0} + \|\chi_{(0,t)}(u) K(u, a_1)\|_{\Phi_0} \leq \|a_0\|_{B_0} + h_0(t) \|a_1\|_{B_1}.$$

(10)

Hence

$$I(t, a) \leq K(w(t); a; B_0, B_1).$$

(11)

Now we estimate $K(w(t), a; B_0, B_1)$ from above. To this end, following Holmstedt, we choose decomposition $a = a_0 + a_1$ such that $K(t, a) \approx \|a_0\|_{A_0} + t \|a_1\|_{A_1}$. Then

$$K(u, a_0) \leq \|a_0\|_{A_0} \leq K(t, a),$$

(12)

$$K(u, a_1) \leq u \|a_1\|_{A_1} \leq u \frac{K(t, a)}{t}.$$

Further,

$$\|a_0\|_{B_0} = \|K(u, a_0)\|_{\Phi_0} \leq \|\chi_{(0,t)}(u) K(u, a_0)\|_{\Phi_0} + \|\chi_{(0,\infty)}(u) K(u, a_0)\|_{\Phi_0},$$

(13)

Denote by C the first term on the right-hand side and by D the second one. We have

$$C \leq I(t, a) + \|\chi_{(0,t)}(u) K(u, a)\|_{\Phi_0},$$

$$\leq I(t, a) + h_0(t) \frac{K(t, a)}{t},$$

(14)

$$D \leq g_0(t) \frac{K(t, a)}{t},$$

whence

$$\|a_0\|_{B_0} \leq I(t, a) + w(t) \frac{K(t, a)}{t}.$$

(15)

Also,

$$w(t) \|a_1\|_{B_1} = w(t) \|a_1\|_{A_1} \leq w(t) \frac{K(t, a)}{t}.$$

Thus

$$K(w(t); a; B_0, B_1) \leq I(t, a) + w(t) \frac{K(t, a)}{t}.$$

(17)

\Box

\textbf{Remark 2.} If the spaces $(A_0, A_1)_{\Phi_0}$ and A_1 are too close, then formula (5) might be useless. For example, if $\Phi_0 = L^\infty(1/t)$, then $g_0(t) = 1 = h_0(t)$. In applications we require ρ to be increasing (strictly).

Let

$$J(t, a) := \|\chi_{(0,t)}(u) K(u, a)\|_{\Phi_1},$$

$$g_1(t) := t \|\chi_{(0,\infty)}(u)\|_{\Phi_1},$$

(18)

$$h_1(t) := \|u\chi_{(0,t)}(u)\|_{\Phi_1}.$$

\textbf{Theorem 3} (case $((A_0, A_0, A_1)_{\Phi_0}, A_1))$. If $a \in A_0 + (A_0, A_1)_{\Phi_0}$, then

$$K(\rho(t), a; (A_0, A_0, A_1)_{\Phi_0}, A_1) = \rho(t) J(t, a) + K(t, a),$$

(19)

where $\rho(t) = t/g_1(t) + h_1(t)$.

\textbf{Proof.} Let $w(t) := t(g_1(t) + h_1(t))$, $B_0 := A_0$, and $B_1 := (A_0, A_1)_{\Phi_0}$. Using monotonicity of K, we get

$$J(t, a) \geq \rho(t) \frac{K(t, a)}{t},$$

(20)

$$\|a\|_{B_0} \geq \left(\frac{g_1(t) + h_1(t)}{t} \right) \frac{K(t, a)}{t}.$$

(21)

Let $a = a_0 + a_1, a_j \in A_j$, and $j = 0, 1$. Then

$$K(t, a) \leq K(t, a_0) + K(t, a_1) \leq \|a_0\|_{B_0} + w(t) \|a_1\|_{B_1},$$

whence

$$K(t, a) \leq K(w(t); a; B_0, B_1).$$

(23)
Also,
\[
J(t, a) \leq \|x(t, \infty) (u) K(u, a_0)\|_{\Phi_1} + \|x(t, \infty) (u) K(u, a_1)\|_{\Phi_1} \leq \frac{g_1(t)}{t} \|a_0\|_{B_0} + \|a_1\|_{B_1}.
\]

Hence
\[
w(t) J(t, a) \leq K(w(t), a; B_0, B_1).
\] (25)

Now we estimate \(K(w(t), a; B_0, B_1)\) from above using decomposition \(a = a_0 + a_1\) such that (12) are satisfied. Then
\[
\|a_0\|_{B_0} = \|a_0\|_{A_0} \leq K(t, a).
\] (26)

We have
\[
\|a_1\|_{B_1} \leq \|x(0, \infty) (u) K(u, a_1)\|_{\Phi_1} + \|x(t, \infty) (u) K(u, a_1)\|_{\Phi_1} = C + D,
\]
\[
C \leq h_1(t) \frac{K(t, a)}{t},
\] (27)
\[
D \leq J(t, a) + g_1(t) \frac{K(t, a)}{t},
\]
whence
\[
w(t) \|a_1\|_{B_1} \leq w(t) J(t, a) + K(t, a).
\] (28)

Hence
\[
K(w(t), a; B_0, B_1) \leq w(t) J(t, a) + K(t, a).
\] (29)

Case 2. If
\[
\frac{g_0}{g_1} \leq \rho \leq \frac{h_0}{h_1}, \quad h \leq \rho \leq g,
\] (33)

then
\[
K(\rho(t), a; B_0, B_1) \approx I(t, a) + \rho(t) J(t, a)
\]
\[
+ g_0(t) \frac{K(t, a)}{t}.
\] (34)

Case 3. If
\[
\frac{g_0}{g_1} \leq \rho \leq \frac{g_0 + h_0}{h_1}, \quad h \leq \rho \leq g,
\] (35)

then
\[
K(\rho(t), a; B_0, B_1) \approx I(t, a) + \rho(t) J(t, a)
\]
\[
+ \rho(t) h_1(t) \frac{K(t, a)}{t}.
\] (36)

Case 4. If at least one of the conditions
\[
g_0/g_1 \leq \rho \leq g_1, \quad h_0 \leq \rho \leq g,
\]
\[
g_0 \leq h_0, \quad \rho \leq h_0/h_1, \quad h \leq \rho \leq g,
\]
\[
g_0 \leq h_0, \quad h_1 \leq g, \quad h \leq \rho \leq g
\]
is satisfied, then
\[
K(\rho(t), a; B_0, B_1) \approx I(t, a) + \rho(t) J(t, a).
\] (37)

Proof. From (6) and (20) it follows that
\[
\frac{g_0(t)}{t} \frac{K(t, a)}{t} \leq I(t, a) \quad \text{if} \quad g_0(t) \leq h_0(t),
\]
\[
\frac{g_0(t)}{t} \frac{K(t, a)}{t} \leq \rho(t) J(t, a) \quad \text{if} \quad \frac{g_0(t)}{g_1(t)} \leq \rho,
\] (38)
\[
\rho(t) h_1(t) \frac{K(t, a)}{t} \leq I(t, a) \quad \text{if} \quad \rho \leq \frac{h_0(t)}{h_1(t)},
\]
\[
\rho(t) h_1(t) \frac{K(t, a)}{t} \leq \rho(t) J(t, a) \quad \text{if} \quad h_1(t) \leq g_1(t).
\]

Let \(a = a_0 + a_1, a_j \in A_j, \text{ and } j = 0, 1\). Then, using estimates (7) and (21), we have
\[
K(t, a) \leq K(t, a_0) + K(t, a_1)
\]
\[
\leq \frac{t}{g_0(t) + h_0(t)} \|q_0\|_{B_0}
\]
\[
+ \frac{t}{g_1(t) + h_1(t)} \|q_1\|_{B_1},
\] (39)
whence
\[
g_0(t) \frac{K(t,a)}{t} \leq K(\rho(t),a;B_0,B_1)
\]
if \(\frac{g_0}{g_1 + h_0} \leq \rho, \)
\[
\rho(t) h_1(t) \frac{K(t,a)}{t} \leq K(\rho(t),a;B_0,B_1)
\]
if \(\rho \leq \frac{g_0 + h_0}{h_1}. \)

Also,
\[
I(t,a) \leq \| \chi_{(0,\ell)}(u) K(u,a_0) \|_{\Phi_j} + \| \chi_{(0,\ell)}(u) K(u,a_1) \|_{\Phi_j} \leq \| a_0 \|_{B_0} + h(t) \| a_1 \|_{B_1}, \]
\[
J(t,a) \leq \| \chi_{(t,\infty)}(u) K(u,a_0) \|_{\Phi_j} + \| \chi_{(t,\infty)}(u) K(u,a_1) \|_{\Phi_j} \leq \frac{1}{g(t)} \| a_0 \|_{B_0} + \| a_1 \|_{B_1}. \]

Hence,
\[
I(t,a) \leq K(\rho(t),a;B_0,B_1) \quad \text{if } h \leq \rho,
\]
\[
\rho(t) J(t,a) \leq K(\rho(t),a;B_0,B_1) \quad \text{if } \rho \leq g. \]

To estimate \(K(\rho(t),a;B_0,B_1) \) from above we use the same decomposition as before with properties (12). Then
\[
\| a_0 \|_{B_0} \leq \| \chi_{(0,\ell)}(u) K(u,a_0) \|_{\Phi_j} + \| \chi_{(0,\ell)}(u) K(u,a_1) \|_{\Phi_j} \leq \| a_0 \|_{B_0} + h(t) \| a_1 \|_{B_1},
\]
whence
\[
\| a_0 \|_{B_0} \leq I(t,a) + (g_0(t) + h_0(t)) \frac{K(t,a)}{t} \leq I(t,a) + g_0(t) \frac{K(t,a)}{t}. \]

Also,
\[
\| a_1 \|_{B_1} \leq \| \chi_{(0,\ell)}(u) K(u,a_1) \|_{\Phi_j} + \| \chi_{(t,\infty)}(u) K(u,a_1) \|_{\Phi_j} = C + D,
\]
whence
\[
\rho(t) \| a_1 \|_{B_1} \leq \rho(t) J(t,a) + \rho(t) h_1(t) \frac{K(t,a)}{t} \leq J(t,a) + \rho(t) h_1(t) \frac{K(t,a)}{t}. \]

Therefore for all weights \(\rho \) we have
\[
K(\rho(t),a;B_0,B_1) \leq I(t,a) + \rho(t) J(t,a) + (g_0(t) + \rho(t) h_1(t)) \frac{K(t,a)}{t}. \]

We give examples that are not entirely covered by the previous papers.

Example 5 (distant spaces). Let
\[
\| g \|_{\Phi_j} = \left(\int_0^1 \left[t^{-\eta_j} v_j(t) g(t) \right]^{p_j} \frac{dt}{t} \right)^{1/p_j} \]
\[
+ \left(\int_1^\infty \left[t^{-\eta_j} \omega_j(t) g(t) \right]^{q_j} \frac{dt}{t} \right)^{1/q_j}, \]
where \(0 \leq \eta_0 < \theta_1 \leq 1, 0 \leq \theta_1 < \eta_1 \leq 1, 0 < p_j, q_j \leq \infty, \) and \(v_j, \omega_j \) are slowly varying weights and \(j = 0, 1. \) We call these spaces distant if \(\theta_0 < \theta_1 \) or \(\eta_0 < \eta_1, \) in opposition to the case \(\theta_0 = \theta_1 \) and \(\eta_0 = \eta_1. \) We have
\[
g_j(t) \]
\[
= \left\{ \begin{array}{ll}
t \left(1 + \left(\int_0^t \left[s^{-\eta_j} v_j(s) \right]^{p_j} \frac{ds}{s} \right)^{1/p_j} \right), & 0 < t < 1, \\
\int_1^t \left[s^{-\eta_j} \omega_j(s) \right]^{q_j} \frac{ds}{s} \right)^{1/q_j}, & t \geq 1, \end{array} \right.
\]
\[
h_j(t) \]
\[
= \left\{ \begin{array}{ll}
\left(\int_0^t \left[s^{-1-\eta_j} v_j(s) \right]^{p_j} \frac{ds}{s} \right)^{1/p_j}, & 0 < t < 1, \\
1 + \left(\int_1^t \left[s^{-1-\eta_j} \omega_j(s) \right]^{q_j} \frac{ds}{s} \right)^{1/q_j}, & t \geq 1. \end{array} \right.
\]

These integrals are convergent due to the property \(\min(1,t) \in \Phi_j, j = 0, 1. \) Moreover,
\[
g_1(t) = \left\{ \begin{array}{ll}
t^{1-\eta_0} v_0(t), & 0 < t < 1, \\
t^{1-\eta_1} \omega_0(t), & t \geq 1, \end{array} \right.
\]
\[
h_0(t) = \left\{ \begin{array}{ll}
t^{1-\theta_0} v_0(t), & 0 < t < 1, \\
t^{1-\theta_1} \omega_0(t), & t \geq 1. \end{array} \right.
\]
Also,

\[g(t) \approx \begin{cases} \frac{t^{\theta_1}}{v_1(t)} \left(1 + \left(\int_0^1 \left[s^{-\theta_1} v_0(s) \right]^{p_1} \frac{ds}{s} \right)^{1/p_1} \right), & 0 < t < 1, \\ \frac{t^{\theta_1}}{v_1(t)} \left(\int_0^\infty \left[s^{-\theta_1} v_1(s) \right]^{p_1} \frac{ds}{s} \right)^{-1/p_1}, & t \geq 1, \end{cases} \] for \(0 < t < 1 \) and

\[h(t) \approx \begin{cases} \frac{t^{1-\theta_0}}{w_0(t)} \left(1 + \left(\int_0^1 \left[s^{1-\theta_0} w_0(s) \right]^{q_1} \frac{ds}{s} \right)^{1/q_1} \right), & 0 < t < 1, \\ \frac{t^{1-\theta_0}}{w_0(t)} \left(1 + \left(\int_1^\infty \left[s^{1-\theta_1} w_0(s) \right]^{q_1} \frac{ds}{s} \right)^{1/q_1} \right)^{-1}, & t \geq 1. \end{cases} \] for \(t \geq 1 \). Hence,

\[h \leq \frac{g_0}{h_1} \leq g \]

and therefore

\[K \left(\rho(t), a; B_0, B_1 \right) = I(t, a) + \rho(t) J(t, a) + g_0(t) h_1(t), \]

where \(B_0 = (A_0, A_1)_{\Phi_0}, B_1 = (A_0, A_1)_{\Phi_1}, \rho(t) \approx g_0(t)/h_1(t). \)

Also,

\[K \left(\rho(t), a; (A_0, A_1)_{\Phi_0}, A_1 \right) = I(t, a) + g_0(t) \frac{K(t, a)}{t}, \]

where \(\rho(t) = g_0(t). \)

In particular,

\[g_j(t) \geq h_j(t), \quad 0 < t < 1, \]

\[g_j(t) \leq h_j(t), \quad t \geq 1. \]
On the other hand, since $1/p_0 \leq 1/p_1$, we have

$$\frac{g_0}{g_1 + h_1} \leq h \leq \frac{h_0}{h_1}$$

(63)

and therefore

$$K\left(\rho(t), a; (A_0, A_1)_{\Psi}, (A_0, A_1)_{\Phi}\right)$$

$$= I(t, a) + \rho(t) f(t, a) + g_0(t) \frac{K(t, a)}{t},$$

(64)

where

$$\rho(t) = \begin{cases} (1 - \log t)^{a_0 - a_1 + 1/p_0 - 1/p_1}, & 0 < t < 1, \\ (1 + \log t)^{b_0 - b_1 + 1/q_0 - 1/q_1}, & t \geq 1. \end{cases}$$

(65)

3. Reiteration

The formulæ for the K-functionally imply immediately theorems of reiteration or stability of the K-method. In particular, we recover many classical results. For another type of general reiteration theorems see [13]. For example, Theorems 1 and 3 imply the following results.

Theorem 7. Let (A_0, A_1) be a compatible couple of quasi-normed spaces. Then

$$\left(A_0, A_1\right) \rho = (A_0, A_1)\Psi,$$

(66)

where

$$\|g\| = \|\chi_{(0,\rho^{-1}(t))} (u) g(u)\|_{\Phi} + \frac{tg(\rho^{-1}(t))}{\rho^{-1}(t)}$$

(67)

and ρ is the same as in Theorem 1 and $\rho(0) = 0, \rho(\infty) = \infty,$ and $\rho(1) = 1; \rho$ is increasing.

Proof. We only need to check that min$(1, t) \in \Psi.$ Since

$$\|\chi_{(0,1)}(t) \chi_{(0,\rho^{-1}(t))} (u) t\|_{\Phi} = \|\chi_{(0,1)}(t) h_0 (\rho^{-1}(t))\|_{\Phi}$$

(68)

and $h_0 \leq \rho$, therefore $h_0 (\rho^{-1}(t)) \leq t$; we see that the above quantity is finite. Also

$$\|\chi_{(1,\rho)} (t) \chi_{(0,1)} (u)\|_{\Phi} = \|\chi_{(1,\rho)}\|_{\Phi} h_0 (1) < \infty,$$

$$\|\chi_{(1,\rho)} (t) \chi_{(1,\rho^{-1}(t))}\|_{\Phi} \leq \|\chi_{(1,\rho)}\|_{\Phi} \|\chi_{(1,\rho)}\|_{\Phi}$$

(69)

$< \infty.$

Further, for $t > 1$, we have $g_0(t) \leq t$ and $h_0(t) \leq 1 + \|u\chi_{(1,t)}(u)\|_{\Phi} \leq t$; hence $t \leq \rho^{-1}(t)$. Therefore

$$\|\chi_{(1,\rho)} (t) t\|_{\Phi} \leq \|\chi_{(1,\rho)}\|_{\Phi} < \infty.$$

(70)

Theorem 8. Let (A_0, A_1) be a compatible couple of quasi-normed spaces. Then

$$\left(A_0, (A_0, A_1)_{\Psi}\right) = (A_0, A_1)_{\Psi},$$

(71)

where

$$\|g\| = \|t \chi_{(\rho^{-1}(t),\infty)} g (\rho^{-1}(t))\|_{\Phi} + \|g(\rho^{-1}(t))\|_{\Phi}$$

(72)

and ρ is the same as in Theorem 3 and $\rho(0) = 0, \rho(\infty) = \infty,$ and $\rho(1) = 1; \rho$ is increasing.

Proof. We only need to check that min$(1, t) \in \Psi.$ We have

$$\|\chi_{(0,1)}(t) \chi_{(\rho^{-1}(t),\infty)} (u)\|_{\Phi} < \infty$$

(73)

and, using also $\rho(u) \leq u/g_1(u)$,

$$\|\chi_{(1,\rho)} (t) \chi_{(\rho^{-1}(t),\infty)} (u)\|_{\Phi} < \infty.$$

(74)

As above, we check that $g_1(t) \leq 1$ and $h_1(t) \leq 1$ for $0 < t < 1$. Hence $\rho(t) \geq t$ for $0 < t < 1$. Then

$$\|\chi_{(0,1)}(t) t\|_{\Phi} < \infty.$$

(75)

In some cases the quasi norm of Ψ can be simplified.

Example 9 (distant spaces). Let

$$\|g\| = \left(\int_0^1 \left[v_0 (t) g(t)\right]^{p_0} \frac{dt}{t}\right)^{1/p_0}$$

(76)

$$+ \left(\int_0^\infty \left[w_0 (t) g(t)\right]^{q_0} \frac{dt}{t}\right)^{1/q_0},$$

where $0 < p_0, q_0 < \infty$ and v_0, w_0 are slowly varying weights and let

$$\|g\| = \left(\int_0^1 \left[t^{-1} v(t) g(t)\right]^p \frac{dt}{t}\right)^{1/p}$$

(77)

$$+ \left(\int_1^\infty \left[t^{-1} w(t) g(t)\right]^q \frac{dt}{t}\right)^{1/q},$$

where $0 < p, q < \infty$ and v, w are slowly varying weights. Then

$$\left(A_0, (A_0, A_1)_{\Phi}\right) = (A_0, A_1)_{\Psi},$$

$$\|g\| = \left(\int_0^1 \left[t^{-1} v(\rho(t)) g(t)\right]^p \frac{dt}{t}\right)^{1/p}$$

(78)

$$+ \left(\int_1^\infty \left[t^{-1} w(\rho(t)) g(t)\right]^q \frac{dt}{t}\right)^{1/q},$$
where

\[
\rho(t) = \begin{cases}
 t \left(1 + \int_0^t \sqrt[p]{u} (s) \frac{ds}{s} \right)^{1/p} , & 0 < t \leq 1, \\
 t \left(\int_0^\infty \sqrt[q]{w}(s) \frac{ds}{s} \right)^{1/q}, & t \geq 1.
\end{cases}
\]

Indeed, we have

\[
K(\rho(t),a;A_0,A_1) \approx I(t,a) + \frac{\rho(t)}{t} K(t,a;A_0,A_1) \tag{79}
\]

for \(0 < t < 1\) and

\[
K(\rho(t),a;A_0,A_1) \approx I_1(t,a)
\]

for \(t \geq 1\), where

\[
I(t,a) = \left(\int_0^t (\sqrt[p]{v(u)} K(u,a) - u) \frac{du}{u}\right)^{1/p}
\]

and

\[
I_1(t,a) = \left(\int_1^t (w(u) K(u,a)) \frac{du}{u}\right)^{1/q}.
\]

Let \(p(1) = 1\). Then

\[
\|a\|_{(A_0,A_1)_{\rho(1)},A_1} = B_0^{1/p} + B_1^{1/p} + C_0^{1/q} + C_1^{1/q} + C_2^{1/q},
\]

where

\[
B_0 = \int_0^1 \left(\frac{\sqrt[p]{v(t)}}{\sqrt[p]{\rho(t)}}\right)^p (I(t,a))^p \frac{d\rho}{\rho},
\]

\[
B_1 = \int_0^1 \left(\frac{\sqrt[p]{v(t)}}{\sqrt[p]{\rho(t)}}\right)^p \left(\frac{\sqrt[p]{\rho(t)}}{t} K(t,a)\right)^p \frac{d\rho}{\rho},
\]

\[
C_0 = \left(\int_0^1 \sqrt[p]{v(s)} K(s,a) \frac{ds}{s}\right)^{1/p},
\]

\[
C_1 = \left(\int_1^\infty \sqrt[q]{w}(t) \frac{dt}{t}\right)^{q},
\]

\[
C_2 = \left(\int_1^\infty \sqrt[q]{w}(t) \frac{dt}{t}\right)^{q} \left(\frac{I_1(t,a)}{\sqrt[p]{\rho(t)}}\right)^{q}\frac{d\rho}{\rho},
\]

We can choose equivalent \(\rho\) so that \(d\rho/\rho = dt/t\) (see [6]); hence

\[
B_1 \approx \int_0^1 \left(\frac{\sqrt[p]{v(\rho)} K(u,a)}{u}\right)^p \frac{du}{u},
\]

\[
C_2 \approx \int_1^\infty \left(\frac{\sqrt[p]{w(\rho)} K(u,a)}{u}\right)^q \frac{du}{u}.
\]

It is sufficient to prove that

\[
B_0 + C_0 \leq \int_0^1 \left(\frac{\sqrt[p]{v(\rho)} K(u,a)}{u}\right)^p \frac{du}{u},
\]

\[
C_1 \leq \int_1^\infty \left(\frac{\sqrt[p]{w(\rho)} K(u,a)}{u}\right)^q \frac{du}{u}.
\]

To estimate \(C_0\) for \(p \leq p_0\), we use monotonicity of the interpolation scale, while for \(p > p_0\) we apply Hölder’s inequality. Namely, if \(p \leq p_0\),

\[
\int_0^1 \left[\frac{\sqrt[p]{v(\rho)} K(u,a)}{u}\right]^p \frac{du}{u} \leq \left(\int_0^1 \left[\frac{\sqrt[p]{v(\rho)} K(u,a)}{u}\right]^{p/p} \frac{du}{u}\right)^{p/p} \tag{88}
\]

and if \(p > p_0\),

\[
\int_0^1 \left[\frac{\sqrt[p]{v(\rho)} K(u,a)}{u}\right]^p \frac{du}{u} \leq \left(\int_0^1 \left[\frac{\sqrt[p]{v(\rho)} K(u,a)}{u}\right]^p \frac{du}{u}\right)^{p/p} \tag{89}
\]

Next we check only the inequality for \(B_0\) and the inequality for \(C_1\) being similar. For \(p_0 = p_0\), it follows from Fubini’s theorem. \(B_0\) can be estimated from above if \(p > p_0\) by the Muckenhoupt result [18].

Let \(v_i \equiv w_1^{1-s}(\phi \int_0^1 \sqrt[p]{w}(u) du)\), where \(1 < s < \infty\), \(q > 0\), and \(w_1 > 0\). Then

\[
\int_0^1 \left(\int_0^\infty \sqrt[p]{v(u) h(u) du}^s \right) \sqrt[p]{w}(t) dt \leq \int_0^1 h^s(t) v_1(t) dt. \tag{90}
\]

We apply this for \(v(t) = v_1(t) h(t) K(t,a)\),

\[
w_1(t) = \left(\frac{(\sqrt[p]{v(t)})/\sqrt[p]{\rho(t)}}{\sqrt[p]{\rho(t)}}\right)^{\rho(t)},
\]

\[
s = \frac{p}{p_0}. \tag{91}
\]

Then \(v_1(t) = [\sqrt[p]{v(t)} v(\rho(t))/\sqrt[p]{\rho(t)})^{\rho(t)} t^{-1}\) and hence

\[
B_0 \leq \int_0^1 \left(\frac{\sqrt[p]{v(t) K(t,a)}}{u}\right)^p \frac{du}{u}. \tag{92}
\]
Further, if $p < p_0$, we estimate B_0 from above using integration by parts. We have

$$B_0 \approx \int_0^1 (I(a,t))^p \, d(\int_0^1 \left(\frac{v(t)}{\rho(t)} \right)^p \, d\rho).$$

(93)

Indeed, let $a \in (A_0,A_1)$. Using that $v(t)/\rho$ is equivalent to a decreasing function, we have

$$S := (I(a,t))^{1/p} \int_0^t \left(\frac{v(t)}{\rho(t)} \right)^p \, du,$$

and since $t v_0(t) \leq \rho(t), \ p < p_0,

$$S \leq \int_0^t \left(\frac{v(t) K(u,a) v_0(u)}{\rho(u)} \right)^p \, du,$$

(94)

The integral above has a limit zero when $t \to 0$. Thus (93) is true. Further,

$$B_0 \leq \int_0^1 (I(a,t))^{1/p} \left(\int_0^t \left(\frac{v(t)}{\rho(t)} \right)^p \, dt \right),$$

(95)

or

$$B_0 \leq \int_0^1 \left(v_0(t) K(t,a) \right)^p \left(\frac{v(t)}{\rho(t)} \right)^p \, dt.$$

(96)

Since $\rho(t) = g_0(t) \geq t v_0(t)$, we get (86).

Now we consider examples of nondistant spaces: $B := (A_p(A_0,A_1)_{w_1,(s)},h(t,a),u_1$-slowly varying, $0 < p < \infty$, $0 < q < \infty$.

In order to handle this case, we need the following result.

Lemma 10. One has

$$\int_0^\infty \left(\int_0^\infty g(t) \psi(u) \, du \right)^s w_0(t) \, dt,$$

$$= \int_0^\infty g^s(t) v_0(t) \, dt;$$

(98)

$\varphi \geq 0, g \geq 0, w_0 \geq 0, v_0 \geq 0$, and $0 < s < \infty$, if the following conditions are satisfied:

$$\int_0^\infty \psi(u) g(u) \, du \geq s \int_0^\infty \psi(u) \, du,$$

$$\int_0^\infty \psi(u) \, du \leq \int_0^\infty w_0(u) \, du,$$

(99)

(100)

where

$$v_0(t) = \varphi(t) \left(\int_0^\infty \varphi(u) \, du \right)^{s-1} \int_0^t w_0(u) \, du,$$

for $0 < s \leq 1$.

$$v_0(t) = w_0^{1-s}(t) \left(\varphi(t) \int_0^t w_0(u) \, du \right)^s,$$

for $1 \leq s < \infty$.

Proof. The estimate (98) from above is a consequence of Lemmas 3.2, 3.3 in [6]. Using (99), we get an estimate from below with $\int_0^\infty g^s(t) u(t) \varphi(u) \, du$. Now condition (100) ensures the equivalence in (98).

Theorem 11. Let w_1 be a slowly varying weight and let $\rho(t) = 1/\int_0^\infty w_1^q(\psi(u) \, du, 0 < \rho < \infty$, satisfying $p(0) = 0, \rho(\infty) = \infty$. If

$$\int_0^t h^q(s) \frac{ds}{s} = h^q(t) \frac{t^q}{q}, \quad 0 < q < \infty,$$

(102)

then

$$B := (A_p(A_0,A_1)_{w_1,(s)},h(t,a),u_1 \text{-slowly varying, 0 < p < \infty, satisfying p(0) = 0, \rho(\infty) = \infty}.$$

$$B = (A_p(A_0,A_1)_{w_1,(s)},h(t,a),u_1 \text{-slowly varying, 0 < p < \infty, satisfying p(0) = 0, \rho(\infty) = \infty})$$

(103)

Proof. We have

$$K(\rho(t,a),w_1,(s),h(t,a)) = \rho(t) \int_0^\infty u^q(s) \, ds \left(\int_0^\infty w_1^q(s) \, ds \right)^{1/p};$$

(104)

hence

$$\|a\|_B^p \approx \int_0^\infty h^q(\rho(t)) \, dt$$

$$\int_0^\infty \left(\int_0^\infty w_1^q(s) \, ds \right)^s \, ds \approx \int_0^\infty h^q(\rho(t)) \, dt.$$
For example, condition (102) is true if $h(t) = t^{-\theta}a(t)$, $0 \leq \theta < 1$, a-slowly varying.

Competing Interests

The authors declare that they have no competing interests.

References

