1. Introduction

Let \(p \in \mathbb{N} = \{1, 2, \ldots\} \) and denote \(\mathcal{A}_p \) as the class of multivalent functions of the form
\[
f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n,
\]
which are analytic in the open unit disk:
\[
U = \{z \in \mathbb{C} : |z| < 1\}.
\]
For two parameters \(\alpha \in [-p, p] \) and \(\beta \geq 0 \), function \(f(z) \in \mathcal{A}_p \) is said to be in class \(\mathcal{UST}(p, \alpha, \beta) \) of \(p \)-valent \(\beta \)-uniformly star-like functions of order \(\alpha \) in \(U \), if and only if
\[
\Re \left(\frac{zf'(z)}{f(z)} - \alpha \right) \geq \beta \left| \frac{zf'(z)}{f(z)} - p \right|,
\]
where \(\Re(.) \) denotes taking the real part of argument. On the other hand, function \(f(z) \in \mathcal{A}_p \) is said to be in class \(\mathcal{UCV}(p, \alpha, \beta) \) of \(p \)-valent \(\beta \)-uniformly convex functions of order \(\alpha \) in \(U \), if and only if
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} - \alpha \right) \geq \beta \left| 1 + \frac{zf''(z)}{f'(z)} - p \right|.
\]
We note from (3) and (4) that
\[
f(z) \in \mathcal{UCV}(p, \alpha, \beta) \iff \frac{zf'(z)}{p} \in \mathcal{UST}(p, \alpha, \beta).
\]

The classes \(\mathcal{UST}(p, \alpha, \beta) \) and \(\mathcal{UCV}(p, \alpha, \beta) \) were introduced recently by Khairnar and More [1]. Various subclasses of analytic and univalent or multivalent functions were studied in many papers (see, e.g., [2–4]). Recently, Nishiwaki and Owa in [5] introduced two classes \(\mathcal{MD}(\alpha, \beta) \) consisting of all functions \(f(z) \in \mathcal{A}_1 \), which satisfy
\[
\Re \left(\frac{zf'(z)}{f(z)} - \alpha \right) < \beta \left| \frac{zf'(z)}{f(z)} - 1 \right|,
\]
and \(\mathcal{ND}(\alpha, \beta) \) consisting of all functions \(f(z) \in \mathcal{A}_1 \), which satisfy
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} - \alpha \right) < \beta \left| \frac{zf''(z)}{f'(z)} \right|.
\]
where \(\alpha \geq 1 \) and \(\beta \leq 0 \). We notice from definitions of these classes that

\[
f(z) \in \mathcal{N}(\alpha, \beta) \iff z^\alpha f(z) \in \mathcal{M}(\alpha, \beta).
\]

For each \(f(z) \in \mathcal{A}_p \), it is easily seen upon differentiating both sides of (1) \(q \) times with respect to \(z \) that

\[
f^{(q)}(z) = \delta(p, q) z^{p-q} \sum_{n=p+1}^{\infty} \delta(n, q) a_n z^{n-q},
\]

where \(p > q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \), and \(\delta(p, q) \) denotes \(q \)-permutations of \(p \) objects; that is,

\[
\delta(p, q) = \frac{p!}{(p-q)!}.
\]

Let \(q, m \in \mathbb{N}_0 \) and \(p \in \mathbb{N} \) such that \(p > q + m \), and assume that

\[
-\delta(p - q, m) \leq \alpha < \delta(p - q, m), \quad \beta \geq 0.
\]

Srivastava et al. in [6] introduced a subclass of the \(\mathcal{M}(\alpha, \beta) \) consisting of functions related to close-to-convexity, starlikeness, and convexity. K. I. Noor defined some subclasses that include extreme points, and integral means inequalities for this subclass \(\mathcal{M}_m(p, q, \alpha, \beta) \) of multivalent functions involving higher-order derivatives.

2. Coefficient Inequalities

We derive sufficient conditions for \(f(z) \) which are given by using coefficient inequalities.

Theorem 2. Let \(f(z) \) be a function of form (1). If the coefficients of \(f(z) \) satisfy

\[
\sum_{n=p+1}^{\infty} \Phi(n, p, q, m, \alpha, \beta) |a_n| \leq \delta(p, q)(\alpha - |2\delta(p - q, m) - \alpha|),
\]

where

\[
\Phi(n, p, q, m, \alpha, \beta) = \delta(n, q)
\]

\[
\cdot \left| \delta(n - q, m) + \delta(p - q, m) - \alpha \right|
\]

\[
+ \left| \delta(n - q, m) - \delta(p - q, m) - \alpha \right|
\]

\[
- 2\beta \left| \delta(n - q, m) - \delta(p - q, m) \right|,
\]

then, \(f(z) \) is in class \(\mathcal{M}_m(p, q, \alpha, \beta) \).

Proof. Suppose that inequality (14) holds, and denote

\[
F(z) = \frac{z^m f^{(q+m)}(z)}{f^{(q)}(z)} - \alpha
\]

\[
- \beta \frac{z^m f^{(q+m)}(z)}{f^{(q)}(z)} - \delta(p - q, m),
\]

From the definition, we can verify that

\[
\left| \frac{F(z) + \delta(p - q, m)}{F(z) - \delta(p - q, m)} \right| < 1,
\]

then \(f(z) \in \mathcal{M}_m(p, q, \alpha, \beta) \). In fact, denoting

\[
\Psi^+(z; f, m, q, \alpha, \beta) = z^m f^{(q+m)}(z) - \alpha f^{(q)}(z)
\]

\[
\pm \delta(p - q, m) f^{(q)}(z)
\]

\[
- \beta e^{i\theta} z^m f^{(q+m)}(z) - \delta(p - q, m) f^{(q)}(z),
\]

\[
\Sigma^+(z; m, q, \alpha) = \sum_{n=p+1}^{\infty} \delta(n, q)
\]

\[
\cdot \left(\delta(n - q, m) \pm \delta(p - q, m) - \alpha \right) a_n z^{n-p},
\]

\[
\Xi^+(m, p, q, \alpha) = \sum_{n=p+1}^{\infty} \delta(n, q)
\]

\[
\cdot \left| \delta(n - q, m) \pm \delta(p - q, m) - \alpha \right| a_n,
\]

and

\[
\Xi^-(m, p, q, \alpha) = \sum_{n=p+1}^{\infty} \delta(n, q)
\]

\[
\cdot \left| \delta(n - q, m) \mp \delta(p - q, m) - \alpha \right| a_n,
\]

we obtain several properties including the coefficient inequalities, distortion theorems, extreme points, and integral means inequalities for this subclass.
we have
\[
\frac{|F(z) + \delta(p-q,m)|}{|F(z) - \delta(p-q,m)|} = \frac{\Psi^+(z; f, m, p, q, \alpha, \beta)}{\Psi^-(z; f, m, p, q, \alpha, \beta)}
\]
\[
= \frac{\delta(p,q)(2\delta(p-q,m) - \alpha) + \Sigma^+(z; m, p, q, \alpha) - \beta e^\theta |\Sigma^-(z; m, p, q, 0)|}{\delta(p,q) - \Sigma^-(z; m, p, q, \alpha) + \beta e^\theta |\Sigma^+(z; m, p, q, 0)|}
\]
\[
\leq \frac{\delta(p,q)\Sigma^+(m, p, q, \alpha) + \Sigma^-(m, p, q, 0)}{\Sigma^-(m, p, q, \alpha) + \Sigma^+(m, p, q, 0)}.
\]

Here, we use technology \(f(z) = e^{i\theta}|f(z)| \). If (14) satisfies, we drive that the last expression above is bounded by 1 which implies \(f(z) \in \mathcal{M}_m(\alpha, \beta) \). Thus, the proof of Theorem 2 is completed.

Example 3. Function \(f(z) \) given by
\[
f(z) = z^p + \sum_{n=p+1}^{\infty} \frac{\delta(p,q)(\alpha - 2\delta(p-q,m) - |\alpha|)}{(n+\gamma)(n+\gamma+1)} \Phi(n, p, q, m, \alpha, \beta) z^n
\]
belongs to class \(\mathcal{M}_m(\alpha, \beta) \) for \(\gamma > -(p+1) \) and \(\xi_n \in \mathbb{C} \) with \(|\xi_n| = 1 \).

As a special case of Theorem 2, as in [2], we can obtain the following corollary.

Corollary 4. Function \(f(z) \in A_1 \) is in class \(\mathcal{M}_m(\alpha, \beta) \), if
\[
\sum_{n=2}^{\infty} \left| n+1 - \alpha \right| + \left| n-1 - \alpha \right| - 2\beta (n-1) \cdot |a_n| \leq \alpha - |2 - \alpha|.
\]

In view of Theorem 2, we introduce subclass \(\mathcal{M}_m^*(\alpha, \beta) \) which consists of functions of the form
\[
f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n
\]

whose Taylor-Maclaurin coefficients \(a_n \) are nonnegative and satisfy inequality (14). By the coefficient inequalities for classes \(\mathcal{M}_m^*(\alpha, \beta) \), we have the following theorem.

Theorem 5. If \(\beta_1 \leq \beta_2 \leq 0 \), then
\[
\mathcal{M}_m^*(p, q; \alpha, \beta_1) \subset \mathcal{M}_m^*(p, q; \alpha, \beta_2).
\]

Since \(\mathcal{M}_1(1, 0; \alpha, \beta) = \mathcal{M}(\alpha, \beta) \), we get the following corollary, which is a theorem in [2].

Corollary 6. If \(\beta_1 \leq \beta_2 \leq 0 \), then
\[
\mathcal{M}(\alpha, \beta_1) \subset \mathcal{M}(\alpha, \beta_2).
\]

3. Distortion Theorems

Lemma 7. If \(f(z) \in \mathcal{M}_m^*(p, q; \alpha, \beta) \), then there exists \(p_0 \in \mathbb{N} \) such that
\[
\sum_{n=p_0+1}^{\infty} a_n \leq A_{p_0},
\]
where
\[
A_{p_0} = \frac{\delta(p,q)(\alpha - 2\delta(p-q,m) - |\alpha|)}{\Phi(p_0+1, p, q, m, \alpha, \beta)} - \sum_{n=p_0+1}^{\infty} \phi(n, p, q, m, \alpha, \beta) a_n.
\]

and \(\Phi(n, p, q, m, \alpha, \beta) \) is given in (15).

Proof. From the definition of \(\Phi(n, p, q, m, \alpha, \beta) \), there exists \(p_0 \in \mathbb{N} \) such that function \(\Phi(n, p, q, m, \alpha, \beta) \) is increasing with respect to \(n \) when \(n > p_0 \). According to Theorem 2, we have
\[
\sum_{n=p_0+1}^{\infty} \Phi(n, p, q, m, \alpha, \beta) a_n \leq \delta(p,q)(\alpha - 2\delta(p-q,m) - |\alpha|)
\]
From
\[
\Phi(p_0+1, p, q, m, \alpha, \beta) \sum_{n=p_0+1}^{\infty} a_n \leq \sum_{n=p_0+1}^{\infty} \Phi(n, p, q, m, \alpha, \beta) a_n,
\]

we have
\[
\Phi(p_0 + 1, p, q, m, \alpha, \beta) \sum_{n=p+1}^{\infty} a_n
\]
\[
\leq \delta(p, q) (\alpha - |2\delta(p - q, m) - \alpha|) - \sum_{n=p+1}^{p} \Phi(n, p, q, m, \alpha, \beta) a_n.
\]
This implies that inequality (25) holds.

Using the same argument, we obtain the following inequality.

Lemma 8. If \(f(z) \in M \mathcal{D}_m^{*}(p, q; \alpha, \beta) \), then there exists \(p_0 \in \mathbb{N} \) such that
\[
\sum_{n=p_0+1}^{\infty} n a_n \leq B_{p_0},
\]
where

\[
B_{p_0} = \frac{(p_0 + 1) \left[\delta(p, q) (\alpha - |2\delta(p - q, m) - \alpha|) - \sum_{n=p_0+1}^{p_0} \Phi(n, p, q, m, \alpha, \beta) a_n \right]}{\Phi(p_0 + 1, p, q, m, \alpha, \beta)},
\]
and \(\Phi(n, p, q, m, \alpha, \beta) \) is defined by (15).

Theorem 9. Let \(f(z) \) be a function in class \(M \mathcal{D}_m^{*}(p, q; \alpha, \beta) \). Then, for \(|z| = r < 1 \),

\[
|f(z)| \leq r^p + \sum_{n=p+1}^{p} a_n r^n + A_p r^{p+1},
\]
\[
|f(z)| \geq r^p - \sum_{n=p+1}^{p} a_n r^n - A_p r^{p+1},
\]
where \(A_p \) and \(B_p \) are given in Lemmas 7 and 8, respectively.

Proof. Let \(f(z) \) be a function of form (22). For \(|z| = r < 1 \), using Lemma 7, we have
\[
|f(z)| \leq |z|^p + \sum_{n=p+1}^{p} |a_n| \cdot |z|^n + \sum_{n=p+1}^{\infty} |a_n| \cdot |z|^n
\]
\[
\leq |z|^p + \sum_{n=p+1}^{p} |a_n| \cdot |z|^n + |z|^{p+1} \sum_{n=p+1}^{\infty} |a_n|
\]
\[
\leq r^p + \sum_{n=p+1}^{p} a_n r^n + A_p r^{p+1},
\]
\[
|f(z)| \geq |z|^p - \sum_{n=p+1}^{p} |a_n| \cdot |z|^n - |z|^{p+1} \sum_{n=p+1}^{\infty} |a_n|
\]
\[
\geq r^p - \sum_{n=p+1}^{p} a_n r^n - A_p r^{p+1}.
\]

Using the same argument, we can prove the following result.

Theorem 10. Let \(f(z) \) be a function in class \(M \mathcal{D}_m^{*}(p, q; \alpha, \beta) \). Then, for \(|z| = r < 1 \),
\[
|f'(z)| \leq pr^{p-1} + \frac{p}{p_n} a_n r^{n-1} + B_p r^n,
\]
\[
|f''(z)| \geq pr^{p-1} - \frac{p}{p_n} a_n r^{n-1} - B_p r^n,
\]
where \(A_p \) and \(B_p \) are given in Lemmas 7 and 8, respectively.

4. Extreme Points

Theorem 11. Let \(f_p(z) = z^p \) and, for each \(n = p + 1, p + 2, \ldots \), define
\[
f_n(z) = z^p + \frac{\delta(p, q) (\alpha - |2\delta(p - q, m) - \alpha|)}{\Phi(n, p, q, m, \alpha, \beta)} z^n,
\]
where \(\Phi(n, p, q, m, \alpha, \beta) \) is defined by (15). Then \(f(z) \in M \mathcal{D}_m^{*}(p, q; \alpha, \beta) \) if and only if it can be expressed in the form
\[
f(z) = \sum_{n=p}^{\infty} \lambda_n f_n(z),
\]
where \(\lambda_n \geq 0 \) for all \(n = p, p + 1, \ldots \), and \(\sum_{n=p}^{\infty} \lambda_n = 1 \).

Proof. Suppose that
\[
f(z) = \sum_{n=p}^{\infty} \lambda_n f_n(z) = \lambda_p f_p(z) + \sum_{n=p+1}^{\infty} \lambda_n f_n(z)
\]
\[
= z^p + \sum_{n=p+1}^{\infty} \frac{\delta(p, q) (\alpha - |2\delta(p - q, m) - \alpha|)}{\Phi(n, p, q, m, \alpha, \beta)} z^n.
\]
Then,
\[\sum_{n=p+1}^{\infty} \Phi(n, p, q, m, \alpha, \beta) \lambda_n \]
\[= \sum_{n=p+1}^{\infty} \frac{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)}{\Phi(n, p, q, m, \alpha, \beta)} \lambda_n \]
\[= \sum_{n=p+1}^{\infty} \lambda_n \Phi(n, p, q, m, \alpha, \beta) \delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha) \]
\[= \delta(p, q) \Phi(n, p, q, m, \alpha, \beta) \lambda_n \]
\[\leq \delta(p, q) \Phi(n, p, q, m, \alpha, \beta) \lambda_n \]
and
\[\lambda_n \]
we denote
\[\lambda_n = \frac{\Phi(n, p, q, m, \alpha, \beta)}{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)} a_n \]
\[n = p + 1, p + 2, \ldots \]}

Thus, it follows from Theorem 2 that \(f(z) \in \mathcal{M} \mathcal{D}_m^*(p, q; \alpha, \beta) \). Conversely, suppose that \(f(z) \in \mathcal{M} \mathcal{D}_m^*(p, q; \alpha, \beta) \). Since
\[a_n \leq \frac{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)}{\Phi(n, p, q, m, \alpha, \beta)} \]
\[n = p + 1, p + 2, \ldots \]}

And \(\lambda_p = 1 - \sum_{n=p+1}^{\infty} \lambda_n \). By a simple calculation, we get \(f(z) \in \mathcal{M} \mathcal{D}_m^*(p, q; \alpha, \beta) \).

Corollary 12. The extreme points of \(\mathcal{M} \mathcal{D}_m^*(p, q; \alpha, \beta) \) are functions \(f_p(z) = z^p \) and
\[f_n(z) = \frac{\Phi(n, p, q, m, \alpha, \beta)}{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)} \sum_{n=1}^{\infty} a_n z^{n-p} \]
for each \(n = p + 1, p + 2, \ldots \) \(\square \)

5. Integral Means Inequalities

Assume that two functions \(f(z) \) and \(g(z) \) are analytic in \(\mathcal{U} \). We say that \(f(z) \) is subordinate to \(g(z) \), written as \(f(z) \leq g(z) \), if there exists an analytic function \(w(z) \) in \(\mathcal{U} \) with \(w(0) = 1 \) and \(|w(z)| < 1 \) such that \(f(z) = g(w(z)) \).

Lemma 13 (see [11]). If \(f(z) \) and \(g(z) \) are analytic in \(\mathcal{U} \) with \(f(z) < g(z) \), then, for \(\mu > 0 \) and \(z = re^{i\theta} \) \((0 < r < 1)\),
\[\int_0^{2\pi} |f(z)|^\mu d\theta \leq \int_0^{2\pi} |g(z)|^\mu d\theta . \]
\[\int_0^{2\pi} |f(z)|^\mu d\theta \leq \int_0^{2\pi} |g(z)|^\mu d\theta . \]

Theorem 14. Let \(f(z) \in \mathcal{M} \mathcal{D}_m^*(p, q; \alpha, \beta) \) and \(f_n(z) \) be given by (35). Suppose that
\[\sum_{n=p+1}^{\infty} a_n \leq \frac{\Phi(n, p, q, m, \alpha, \beta)}{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)} \]
\[\lambda_n \]

If there exists function \(w(z) \), \(z \in \mathcal{U} \), that satisfied the condition
\[w(z) = \left(\frac{\Phi(n, p, q, m, \alpha, \beta)}{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)} \right)^{1/(n-p)} \sum_{n=p+1}^{\infty} a_n z^{n-p} \]
then, for \(z = re^{i\theta} \), \(0 < r < 1 \), we have
\[\int_0^{2\pi} |f(z)|^\mu d\theta \leq \int_0^{2\pi} |f_n(z)|^\mu d\theta . \]
\[\int_0^{2\pi} |f(z)|^\mu d\theta \leq \int_0^{2\pi} |f_n(z)|^\mu d\theta . \]

Proof. In order to obtain the result, it is necessary to prove the following inequality:
\[\int_0^{2\pi} \left| 1 + \sum_{n=p+1}^{\infty} a_n z^{n-p} \right|^\mu d\theta \leq \int_0^{2\pi} \left| 1 + \sum_{n=p+1}^{\infty} a_n z^{n-p} \right|^\mu d\theta . \]
\[\int_0^{2\pi} \left| 1 + \sum_{n=p+1}^{\infty} a_n z^{n-p} \right|^\mu d\theta \leq \int_0^{2\pi} \left| 1 + \sum_{n=p+1}^{\infty} a_n z^{n-p} \right|^\mu d\theta . \]

From Lemma 13, it is sufficient to verify the subordination:
\[1 + \sum_{n=p+1}^{\infty} a_n z^{n-p} \]
\[< 1 + \sum_{n=p+1}^{\infty} a_n z^{n-p} \]
\[= 1 + \frac{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)}{\Phi(n, p, q, m, \alpha, \beta)} w(z)^{n-p} . \]
\[= 1 + \frac{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)}{\Phi(n, p, q, m, \alpha, \beta)} w(z)^{n-p} . \]

We find that
\[w(z) = \left(\frac{\Phi(n, p, q, m, \alpha, \beta)}{\delta(p, q) (\alpha - 2\delta(p - q, m) - \alpha)} \right)^{1/(n-p)} \sum_{n=p+1}^{\infty} a_n z^{n-p} \]
\[\sum_{n=p+1}^{\infty} a_n z^{n-p} \]
\[= \left| w(z) \right|^{1/(n-p)} \]
which readily yields \(w(0) = 0 \) and
\[\left| w(z) \right|^{1/(n-p)} \]
\[\leq \left| w(z) \right|^{1/(n-p)} \]
\[\leq |z| \sum_{n=p+1}^{\infty} a_n \]
\[\leq |z| \sum_{n=p+1}^{\infty} a_n \]
\[\leq |z| < 1 . \]
This means that the hypotheses of \(w(z) \) are satisfied and the theorem is proved.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Acknowledgments

This work is partially supported University of Macau, with the Research Grant (MYRG068(Y1-L2)-FST13-DD), the research fund from Engineering and Technology College Yangtze University (no. 15J0802), and research fund from Wuhan University (no. 2042016KF0029).

References

Submit your manuscripts at https://www.hindawi.com