Existence of Solutions for a Class of Coupled Fractional Differential Systems with Nonlocal Boundary Conditions

Tingting Qi,1 Yansheng Liu,1 and Yujun Cui2

1School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong 250014, China
2Department of Mathematics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Correspondence should be addressed to Yansheng Liu; yanshliu@gmail.com

Received 6 April 2017; Accepted 5 June 2017; Published 6 July 2017

1. Introduction

Fractional differential equations have a wide range of applications in many science and engineering, such as in physics, chemistry, biology, and electrodynamics. We refer the reader to see [1–5]. The main reason is that fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. Therefore, this topic has attracted much attention of scientists and engineers. More and more good results are obtained. See [6–10] and references therein.

In recent years, fractional differential equations with the nonlinear terms involving fractional derivative D^α_0 of unknown functions have been investigated by some authors. See [11–16] and references therein. For example, in [13], Su studied the following nonlinear coupled fractional differential systems:

\begin{align}
D^\alpha_0 u(t) &= f(t, v(t), D^\mu_0 v(t)), \quad t \in (0, 1), \\
D^\beta_0 v(t) &= g(t, u(t), D^\delta_0 u(t)), \quad t \in (0, 1),
\end{align}

(1)

where $1 < \alpha, \beta < 2$, $\mu, \delta > 0$, $\alpha - \delta > 0$, $\beta - \mu \geq 1$, and $f, g : [0, 1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are given continuous functions. D^ρ_0, ($\rho = \alpha, \beta, \delta, \mu$) is the standard Riemann-Liouville fractional derivative. Applying Schauder fixed point theorem, the existence of solution was studied.

On the other hand, integral boundary conditions have various applications in applied fields such as chemical engineering, underground water flow, blood flow problems, thermoelasticity, population dynamics, and finite element method approaches with the minimization of constitutive error. In consequence, the integral boundary value problem of fractional differential equations is gaining much importance and attention. See [17–21] and references therein. For instance, in [19], Zhao and Liu studied the following coupled fractional differential systems with integral boundary conditions:

\begin{align}
C^\alpha D^\alpha_0 u(t) + f(t, v(t)) &= 0, \quad t \in (0, 1), \\
C^\beta D^\beta_0 v(t) + g(t, u(t)) &= 0, \quad t \in (0, 1),
\end{align}

\begin{align}
u^{(j)}(0) = v^{(j)}(0) = 0, \\
0 \leq j \leq n - 1, \quad j \neq 1,
\end{align}

(2)

and

\begin{align}
u'(1) &= \lambda \int_0^1 u(t) \, dt, \\
v'(1) &= \lambda \int_0^1 v(t) \, dt,
\end{align}

(3)
where \(1 < \alpha, \beta \leq 2 \). \(C D_{0+}^{\alpha} \) is the Caputo fractional derivative and \(f, g : [0, 1] \times [0, +\infty) \to [0, +\infty) \) are given continuous functions. By using the monotone method and the theory of fixed point index on cone, they investigated the existence and uniqueness of solution for this coupled system.

In [21], Ahmad et al. investigated the following coupled fractional differential system with nonlocal and integral boundary value conditions:

\[
C D_{0+}^{\alpha} x(t) = f \left(t, x(t), y(t), C D_{0+}^{\beta} y(t) \right), \quad t \in [0, T],
\]

\[
C D_{0+}^{\beta} y(t) = g \left(t, x(t), C D_{0+}^{\alpha} x(t), y(t) \right), \quad t \in [0, T],
\]

\[
x(0) = h(y), \quad y(0) = \phi(x), \quad \int_{0}^{T} x(s) \, ds = \mu_{x} y(\xi),
\]

\[
\int_{0}^{T} y(s) \, ds = \mu_{y} x(\xi),
\]

where \(1 < \alpha, \beta \leq 2, 0 < \gamma, \delta < 1, \eta, \xi \in (0, T), f, g : [0, T] \times R \times R \times R \to R, h, \phi : C([0, T], R) \to R \) are given continuous functions and \(\mu_{x}, \mu_{y} \) are real number. Applying Banach contraction mapping principle and Leray-Schauder nonlinear alternative theory, the existence and uniqueness of solution were studied.

To the best of our knowledge, there are fewer results for coupled fractional differential systems with nonlocal and fractional integral boundary value conditions. Motivated by the above-mentioned references, we consider the existence of solutions of the following systems:

\[
C D_{0+}^{\alpha} x(t) = f \left(t, x(t), C D_{0+}^{\beta} y(t) \right), \quad t \in [0, 1],
\]

\[
C D_{0+}^{\beta} y(t) = g \left(t, x(t), C D_{0+}^{\alpha} x(t) \right), \quad t \in [0, 1],
\]

\[
x(0) = h(y), \quad x(1) = a I_{0+}^{\theta_{1}} x(\eta), \quad y(0) = \phi(y), \quad y(1) = b I_{0+}^{\theta_{1}} y(\xi),
\]

where \(\theta_{1} (i = 1, 2) \) is Riemann-Liouville fractional integral, \(1 < \alpha, \beta < 2, 0 < \gamma, \delta < 1, \eta, \xi \leq 1, \theta_{1} > 0 \) \((i = 1, 2) \), \(a, b \in R, f, g \in C([0, 1] \times R \times R \to R), h, \phi : C([0, 1], R) \to R \) are given continuous functionals. Applying Schauder fixed point theorem and Leray-Schauder nonlinear alternative theory, some existence results of solutions to this systems are obtained. Finally, two examples are worked out to illustrate the application of our results.

The main features of this paper are as follows. (1) The coupled fractional differential systems with nonlocal and fractional integral boundary value conditions are first studied. (2) The nonlinear term here involves fractional derivative of unknown functions. (3) Nonlocal conditions such as \(x(0) = h(x) \) and \(y(0) = \phi(y) \) and fractional integral boundary conditions such as \(x(1) = a I_{0+}^{\theta_{1}} x(\eta) \) and \(y(1) = b I_{0+}^{\theta_{1}} y(\xi) \) are more extensive and superior to local conditions.

The rest of this paper is organized as follows. Section 2 introduces some basic definitions and lemmas. In Section 3, the main results are presented. Finally, in Section 4, some examples are given to illustrate the effectiveness of the main results.

2. Preliminary Results

In this section, we first introduce some definitions and lemmas for fractional calculus. For details, please refer to [1, 22].

Definition 1. The Caputo fractional derivative of order \(\alpha > 0 \) of a function \(u : (0, \infty) \to R \) is given by

\[
C D_{0+}^{\alpha} u(t) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-s)^{n-\alpha-1} u^{(n)}(s) \, ds,
\]

where \(n = [\alpha] + 1, \ [\alpha] \) denotes the integer part of the real number \(\alpha \).

Definition 2. The Riemann-Liouville fractional integral of order \(\alpha > 0 \) of a function \(u : (0, \infty) \to R \) is given by

\[
I_{0+}^{\alpha} u(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} u(s) \, ds,
\]

where \(\Gamma \) is the gamma function.

Lemma 3. Let \(\alpha > 0 \). Then the fractional differential equation \(C D_{0+}^{\alpha} u(t) = 0 \) has solution

\[
u(t) = c_{1} + c_{2} t + c_{3} t^{2} + \cdots + c_{n} t^{n-1},
\]

where \(c_{i} \in R, i = 1, 2, \ldots, n, n = [\alpha] + 1 \).

Lemma 4. Let \(n-1 < \alpha \leq n \) \((n \in N) \). Then

\[
I_{0+}^{\alpha} C D_{0+}^{\alpha} u(t) = u(t) + c_{1} + c_{2} t + c_{3} t^{2} + \cdots + c_{n} t^{n-1},
\]

where \(c_{i} \in R, i = 1, 2, \ldots, n, n = [\alpha] + 1 \).

Lemma 5. Let \(p > q \geq 0 \), and \(g \in L[a, b] \). Then

\[
I_{0+}^{p} I_{0+}^{q} g(t) = I_{0+}^{p+q} g(t) = I_{0+}^{q} I_{0+}^{p} g(t),
\]

\[
C D_{0+}^{p} I_{0+}^{q} g(t) = g(t),
\]

\[
C D_{0+}^{q} I_{0+}^{p} g(t) = I_{0+}^{p-q} g(t),
\]

\(t \in [a,b] \).
Lemma 6. Suppose \(h, \phi : C[0, 1] \to R \) are given continuous functionals and \(\omega, u \in L[0, 1] \). Then the boundary value problem

\[
\begin{align*}
C^\alpha D_0^\alpha x(t) &= \omega(t), \quad t \in [0, 1], \\
C^\beta D_\beta y(t) &= u(t), \quad t \in [0, 1], \\
x(0) &= h(x), \\
x(1) &= a \int_{0}^{\eta} x(\eta) \\
y(0) &= \varphi(y), \\
y(1) &= b \int_{0}^{\xi} y(\xi)
\end{align*}
\]

is equivalent to system

\[
\begin{align*}
x(t) &= (1 + \tau_1 t) h(x) + \frac{at}{1 - a \Delta_1} \frac{t^{\alpha+1}}{\Gamma(\theta_1 + 1)} \omega(\eta) \\
&\quad - \frac{t}{1 - a \Delta_1} \int_{0}^{\eta} \frac{t^{\alpha+1}}{\Gamma(\theta_1 + 1)} \omega(t) \\
y(t) &= (1 + \tau_2 t) \varphi(y) + \frac{bt}{1 - b \Delta_2} \frac{t^{\beta+1}}{\Gamma(\theta_2 + 1)} u(\xi) \\
&\quad - \frac{t}{1 - b \Delta_2} \int_{0}^{\xi} \frac{t^{\beta+1}}{\Gamma(\theta_2 + 1)} u(t)
\end{align*}
\]

where \(1 < \alpha, \beta < 2, 0 \leq \xi, \eta \leq 1, \theta_1 > 0 \) \((i = 1, 2)\), \(a, b \in R, 1 - a \Delta_1 \neq 0, 1 - b \Delta_2 \neq 0 \), \(\Delta_1 = \frac{\eta^{\beta+1}}{\Gamma(\theta_1 + 2)}, \)

\(\sigma_1 = \frac{\eta^\beta}{\Gamma(\theta_1 + 1)}, \)

\(\tau_1 = \frac{a \sigma_1 - 1}{1 - a \Delta_1}, \)

\(\Delta_2 = \frac{\xi^{\beta+1}}{\Gamma(\theta_2 + 2)}, \)

\(\sigma_2 = \frac{\xi^\beta}{\Gamma(\theta_2 + 1)}, \)

\(\tau_2 = \frac{b \sigma_2 - 1}{1 - b \Delta_2}. \)

Proof. In view of Lemmas 3 and 4, the solution of \(C^\alpha D_0^\alpha x(t) = \omega(t) \) is

\[
x(t) = c_1 + c_2 t + \int_{0}^{\alpha} \omega(t),
\]

where \(c_i \in R, i = 1, 2 \). From \(x(0) = h(x) \), one can get \(c_1 = h(x) \). By means of Lemma 5 and (14), we have

\[
\int_{0}^{\alpha} \omega(t) = \frac{c_1 t^{\theta_1}}{\Gamma(\theta_1 + 1)} + \frac{c_2 t^{\theta_1+1}}{\Gamma(\theta_1 + 2)} + \int_{0}^{\alpha} \omega(t).
\]

Since \(x(1) = a \int_{0}^{\eta} x(\eta) \), one has

\[
c_1 + c_2 + \int_{0}^{\alpha} \omega(1) = \frac{a c_1}{\Gamma(\theta_1 + 1)} \eta^{\beta_1} + \frac{a c_2}{\Gamma(\theta_1 + 2)} \eta^{\beta_1+1} + a \int_{0}^{\alpha} \omega(\eta),
\]

which implies

\[
c_2 (1 - a \Delta_1) = (a \sigma_1 - 1) h(x) + a \int_{0}^{\alpha} \omega(\eta) - \int_{0}^{\alpha} \omega(1).
\]

Thus,

\[
c_1 = h(x),
\]

\[
c_2 = \frac{a \sigma_1 - 1}{1 - a \Delta_1} h(x) + \frac{a}{1 - a \Delta_1} \int_{0}^{\alpha} \omega(\eta) - \frac{1}{1 - a \Delta_1} \int_{0}^{\alpha} \omega(1).
\]

Substituting \(c_1 \) and \(c_2 \) to (14), we obtain that (11) holds. Similarly, one can prove that (12) holds.

Lemma 7. \((X, \| \cdot \|_X) \) is a Banach space.

Let \(Y = \{ y \in C[0, 1] : C^\gamma D_0^\gamma y(t) \in C[0, 1] \} \) be endowed with the norm \(\| x \|_X = \| x \|_c + \| C^\gamma D_0^\gamma x \|_c = \max_{t \in [0, 1]} | x(t) | + \max_{t \in [0, 1]} C^\gamma D_0^\gamma | x(t) | \). Then we have the following conclusions.

Defining an operator \(T : X \times Y \to X \times Y \) by

\[
T(x, y)(t) = (T_1(x, y)(t), T_2(x, y)(t)), \quad \forall x \in X, y \in Y,
\]

where

\[
T_1(x, y)(t) = (1 + \tau_1 t) h(x) + \frac{at}{1 - a \Delta_1} t^{\alpha+1} f(t, y(t), C^\gamma D_0^\gamma y(t)) \bigg|_{t=\eta} \\
- \frac{t}{1 - a \Delta_1} t^\alpha \int_{0}^{\eta} f(t, y(t), C^\gamma D_0^\gamma y(t)) \bigg|_{t=1} \\
+ \int_{0}^{\alpha} f(t, y(t), C^\gamma D_0^\gamma y(t)) \\
T_2(x, y)(t) = (1 + \tau_2 t) \varphi(y) + \frac{bt}{1 - b \Delta_2} t^{\beta+1} g(t, x(t), C^\gamma D_0^\gamma x(t)) \bigg|_{t=\xi} \\
- \frac{t}{1 - b \Delta_2} t^\beta \int_{0}^{\xi} g(t, x(t), C^\gamma D_0^\gamma x(t)) \bigg|_{t=1} \\
+ \int_{0}^{\beta} g(t, x(t), C^\gamma D_0^\gamma x(t)).
\]
\[- \frac{t}{1-b\Delta_2} I^\beta_{0^+} g \left(t, x(t), C D^\beta_0 x(t) \right) \bigg|_{t=1} \]
\[+ I^\beta_{0^+} g \left(t, x(t), C D^\beta_0 x(t) \right), \]
(20)

\[\Delta_i \sigma_i, \tau_i \ (i = 1, 2) \text{ are described as in Lemma 6.} \]

Lemma 8. Suppose \(f, g \in C([0, 1] \times \mathbb{R}^2, \mathbb{R}) \). Then \((x, y) \in X \times Y\) is a solution of problem (4) if and only if \((x, y) \in X \times Y\) is a fixed point of the operator \(T \).

Proof. By Lemma 6, the necessity is obvious. Now we show sufficiency.

Suppose \((x, y) \in X \times Y\) is a fixed point of the operator \(T \). This together with (19) indicates

\[x(t) = (1 + \tau_1 t) h(x) + \frac{at}{1-a \Delta_1} I^{\alpha \delta_1}_{0^+} f \left(t, y(t), C D^\alpha_0 y(t) \right) |_{t=\eta} \]
\[- \frac{t}{1-a \Delta_1} I^\alpha_{0^+} f \left(t, y(t), C D^\alpha_0 y(t) \right) |_{t=1} \]
\[+ I^\alpha_{0^+} f \left(t, y(t), C D^\alpha_0 y(t) \right), \]
\[(21) \]

\[y(t) = (1 + \tau_2 t) \varphi(y) + \frac{bt}{1-b \Delta_2} I^{\beta \delta_2}_{0^+} y \left(t, x(t), C D^\beta_0 x(t) \right) |_{t=\xi} \]
\[- \frac{t}{1-b \Delta_2} I^\beta_{0^+} y \left(t, x(t), C D^\beta_0 x(t) \right) |_{t=1} \]
\[+ I^\beta_{0^+} y \left(t, x(t), C D^\beta_0 x(t) \right). \]

Notice that \(C D^\alpha_0 \varphi^{m-\omega} = 0, m = 1, 2, \ldots, N, \) where \(N \) is the smallest integer greater than or equal to \(\rho \). Therefore,

\[C D^\alpha_0 x(t) = C D^\alpha_0 \left[I^\alpha_{0^+} f \left(t, y(t), C D^\alpha_0 y(t) \right) \right] \]
\[= f \left(t, y(t), C D^\alpha_0 y(t) \right). \]
(22)

Similarly, one has

\[C D^\beta_0 y(t) = C D^\beta_0 \left[I^\beta_{0^+} y \left(t, x(t), C D^\beta_0 x(t) \right) \right] \]
\[= g \left(t, x(t), C D^\beta_0 x(t) \right). \]
(23)

By direct computation, we can easily get \(x(0) = h(x), \ y(0) = \varphi(y), \ x(1) = a \delta_1 \varphi(x(\eta)), \ y(1) = b \delta_2 \varphi(y(\xi)). \) Therefore, \((x, y) \in X \times Y\) is a solution of (4). \(\Box \)

Lemma 9 ([23] (Leray-Schauder nonlinear alternative)). Let \(F \) be a Banach space, \(\Omega \) be a bounded open subset of \(F \), and \(0 \in \Omega \). \(T : \overline{\Omega} \rightarrow F \) is a completely continuous operator. Then, either there exists \(x \in \partial \Omega, \lambda > 1 \) such that \(T x = \lambda x \) or there exists a fixed point \(x^* \in \Omega. \)

3. Main Results

For convenience, some notations and assumptions are stated as follows:

\[A_1 = \left| \frac{a}{1-a \Delta_1} \right| \Gamma \left(\theta_1 + \alpha + 1 \right) + \left| \frac{1}{1-a \Delta_1} \right| \Gamma \left(\alpha + 1 \right) \]
\[+ \frac{1}{\Gamma \left(\alpha + 1 \right)} \]
\[A_2 = \left| \frac{b}{1-b \Delta_2} \right| \Gamma \left(\theta_2 + \beta + 1 \right) + \left| \frac{1}{1-b \Delta_2} \right| \Gamma \left(\beta + 1 \right) \]
\[+ \frac{1}{\Gamma \left(\beta + 1 \right)} \]
\[B_1 = \left| 1 + \tau_1 \right| + \left| \frac{r_1}{\Gamma \left(2 - \delta \right)} \right| \]
\[B_2 = \left| 1 + \tau_2 \right| + \left| \frac{r_2}{\Gamma \left(2 - \gamma \right)} \right| \]
\[C_1 = \left| \frac{a}{1-a \Delta_1} \right| \Gamma \left(\theta_1 + \alpha + 1 \right) + \left| \frac{1}{1-a \Delta_1} \right| \Gamma \left(\alpha + 1 \right) \]
\[+ \frac{1}{\Gamma \left(\alpha + 1 \right)} \]
\[C_2 = \left| \frac{b}{1-b \Delta_2} \right| \Gamma \left(\theta_2 + \beta + 1 \right) + \left| \frac{1}{1-b \Delta_2} \right| \Gamma \left(\beta + 1 \right) \]
\[+ \frac{1}{\Gamma \left(\beta + 1 \right)} \]
\[D_1 = A_1 + \frac{C_1}{\Gamma \left(2 - \delta \right)} \]
\[D_2 = A_2 + \frac{C_2}{\Gamma \left(2 - \gamma \right)} \]
\[P_1 = a_1 + b_1 \phi_1 (Q) + c_1 \psi_1 (Q), \]
\[P_2 = a_2 + b_2 \phi_2 (Q) + c_2 \psi_2 (Q). \]

\((H_1) \ f, g : [0, 1] \times \mathbb{R}^2 \rightarrow \mathbb{R} \) are continuous functions and there exist constants \(k_i > 0, l_i > 0, \) and \(m_i, n_i \in (0, 1), \ i = 1, 2, \) such that

\[|f (t, u, v)| \leq k_0 + k_1 |u|^{m_1} + k_2 |v|^{n_1}, \quad \forall t \in [0, 1], \ u, v \in \mathbb{R}; \]
\[|g (t, u, v)| \leq l_0 + l_1 |u|^{n_1} + l_2 |v|^{m_1}, \quad \forall t \in [0, 1], \ u, v \in \mathbb{R}. \]
(25)

\((H_2) h, \varphi : C[0, 1] \rightarrow \mathbb{R} \) are continuous functionals, \(h(0) = \varphi(0) = 0, \) and there exist constants \(K, L > 0, \mu, \lambda \in (0, 1) \) such that, for all \(x, y \in C[0, 1], \)

\[|h(x)| \leq K \|x\|^\mu, \]
\[|\varphi (y)| \leq L \|y\|^\lambda. \]
(26)
\((H_3)\) \(f, g : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}\) are continuous functions, and there exist \(a_i, b_i, c_i, d_i \geq 0\) \((i = 1, 2)\) and nonincreasing functions \(\phi_i, \psi_i \in C([0, +\infty), [0, +\infty))\) \((i = 1, 2)\), such that

\[
[f(t, u, v)] \leq a_1 + b_1 \phi_1 (|u|) + c_1 \psi_1 (|v|),
\]
\(\forall t \in [0, 1], u, v \in \mathbb{R};\) \(\quad \tag{27}\)

\[
g(t, u, v)] \leq a_2 + b_2 \phi_2 (|u|) + c_2 \psi_2 (|v|),
\]
\(\forall t \in [0, 1], u, v \in \mathbb{R};\) \(\quad \tag{28}\)

\((H_4)\) There exists \(Q > 0\) such that \(B_1 K Q^\lambda + D_1 P_1 + B_2 L Q^\lambda + D_2 P_2 < Q\), where \(K, L, \mu, \lambda\) are described as in \((H_2)\).

Theorem 10. Assume that \((H_1)-(H_2)\) hold. Then FDE (4) has at least one solution.

Proof. Let

\[
B_R = \{(x, y) \in X \times Y \mid \|x, y\|_{X \times Y} \leq R\},
\]
where

\[
R \geq \max \left\{ (8B_2 K)^{1/(1-\mu)}, (8B_2 L)^{1/(1-\lambda)}, 8k_0 D_1, 8l_0 D_2, (8k_1 D_1)^{1/(1-\lambda)}, (8l_1 D_2)^{1/(1-\lambda)}, (8k_2 D_1)^{1/(1-\mu)}, (8l_2 D_2)^{1/(1-\mu)} \right\}. \tag{30}\]

Now we prove that \(T : B_R \to B_R\). In fact, for any \((x, y) \in B_R\), it follows from Definition 2 and \((H_1)\) that

\[
[T_1(x, y)](t) \leq [1 + r_1]|h(x)|
\]
\[
+ \frac{a}{1 - a\Delta_1} \left\lfloor t_{\tau_0} (f(t, y(t), C D_0^\gamma y(t))\right\rfloor_{t=\eta}
\]
\[
+ \frac{1}{1 - a\Delta_1} \left\lfloor t_{\tau_0} f(t, y(t), C D_0^\gamma y(t))\right\rfloor_{t=\tau_1}
\]
\[
+ \left\lfloor t_{\tau_0} f(t, y(t), C D_0^\gamma y(t))\right\rfloor \leq [1 + r_1]|h(x)|
\]
\[
+ \frac{a}{1 - a\Delta_1} \frac{1}{\Gamma(\theta + \alpha + 1)} (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2})
\]
\[
+ \frac{1}{1 - a\Delta_1} \frac{1}{\Gamma(\alpha + 1)} (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2})
\]
\[
+ \frac{1}{\Gamma(\alpha + 1)} (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2}) = [1 + r_1]|h(x)|
\]
\[
+ C_1 (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2}). \tag{31}\]

On the other hand, by Definition 1, we can obtain

\[
C D_0^\delta T_1 (x, y) (t) = \frac{1}{\Gamma(1 - \delta)} \int_0^t \frac{[T_1(x, y)](s)}{(t-s)^\delta} ds. \tag{32}\]

Repeating a process similar to that of (31), it is easy to see

\[
[T_1(x, y)](t) \leq \frac{1}{\Gamma(1 - \delta)} \int_0^t \frac{[T_1(x, y)](s)}{(t-s)^\delta} ds + \frac{1}{\Gamma(\alpha + 1)} (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2})
\]
\[
+ \frac{1}{\Gamma(\alpha + 1)} (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2}) \leq [1 + r_1]|h(x)|
\]
\[
+ C_1 (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2}). \tag{33}\]

It follows from (32) and (33) that

\[
\left\lfloor C D_0^\delta T_1 (x, y) (t)\right\rfloor \leq \frac{1}{\Gamma(1 - \delta)} \int_0^t \left\lfloor [T_1(x, y)](s)\right\rfloor (t-s)^\delta ds
\]
\[
\leq \frac{1}{\Gamma(1 - \delta)} \int_0^t [T_1(x, y)](s) (t-s)^\delta ds
\]
\[
\leq \frac{1}{\Gamma(2 - \delta)} \left\lfloor [T_1(x, y)](s)\right\rfloor (t-s)^\delta ds
\]
\[
\leq [1 + r_1]|h(x)| + C_1 (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2}). \tag{34}\]

By virtue of (31) and (34), we have

\[
[T_1(x, y)](t) \leq B_1 K R^{\mu_1} + (k_0 + k_1 R^{\mu_1} + k_2 R^{\mu_2}) D_1
\]
\[
\leq \frac{R}{8} + \frac{R}{8} + \frac{R}{8} = \frac{R}{2}. \tag{35}\]

Similarly, we can get

\[
[T_2(x, y)](t) \leq B_2 L R^{\lambda_1} + (l_0 + l_1 R^{\lambda_1} + l_2 R^{\lambda_2}) D_2
\]
\[
\leq \frac{R}{8} + \frac{R}{8} + \frac{R}{8} = \frac{R}{2}. \tag{36}\]

Therefore,

\[
\|T(x, y)\|_{X \times Y} = \|T_1(x, y)\|_X + \|T_2(x, y)\|_Y \leq \frac{R}{2} + \frac{R}{2} \leq R, \tag{37}\]

which means that \(T : B_R \to B_R\).
From the continuity of the functions \(f, g, h, \) and \(\varphi \), it is not difficult to see that \(T \) is continuous.

Next we show that \(T(B_R) \) are equicontinuous. For this sake, let
\[
M_1 = \max_{t \in [0,1], |x| \leq R, |y| \leq R} |f(t, x, y)|, \\
M_2 = \max_{t \in [0,1], |x| \leq R, |y| \leq R} |g(t, x, y)|.
\]

For any \(t_1, t_2 \in [0,1] \) \((t_1 < t_2) \), one has
\[
|T_1(x,y)(t_2) - T_1(x,y)(t_1)| \leq |r_1| |KR^\mu| |t_2 - t_1| + \frac{M_1 a}{1 - a\Delta_1} |t_2 - t_1| + \frac{M_1}{1 - a\Delta_1} t_2 - t_1 |
+ \frac{1}{\Gamma (\alpha + \gamma + 1)} \int_{t_1}^{t_2} (t-s)^{\alpha-1} f(s, y(s), CD^\nu y(s)) ds
- \frac{1}{\Gamma (\alpha + \theta_1 + 1)} \int_{t_1}^{t_2} (t-s)^{\alpha-1} f(s, y(s), CD^\nu y(s)) ds \leq |r_1| |KR^\mu| |t_2 - t_1| + \frac{M_1 a}{1 - a\Delta_1} |t_2 - t_1| + \frac{M_1}{1 - a\Delta_1} t_2 - t_1 |
- \frac{1}{\Gamma (\alpha + \gamma + 1)} \int_{t_1}^{t_2} (t-s)^{\alpha-1} f(s, y(s), CD^\nu y(s)) ds.
\]

On the other hand, we have
\[
\left| CD^\delta T_1 (x, y) (t_2) - CD^\delta T_1 (x, y) (t_1) \right| = \frac{1}{\Gamma (1 - \delta)} \int_{t_1}^{t_2} \frac{1}{(t-s)^{\delta}} ds - \frac{1}{\Gamma (1 - \delta)} \int_{t_1}^{t_2} \frac{1}{(t-s)^{\delta}} ds
\leq \frac{1}{\Gamma (1 - \delta)} \left[\int_{t_1}^{t_2} (t-s)^{\delta} ds \right] T_1 (x, y)'
\cdot (s) ds + \int_{t_1}^{t_2} \frac{1}{(t-s)^{\delta}} \left| T_1 (x, y) ' (s) \right| ds.
\]

This together with (39)-(40) guarantees that
\[
\left| CD^\delta T_1 (x, y) (t_2) - CD^\delta T_1 (x, y) (t_1) \right| \leq \frac{1}{\Gamma (1 - \delta)} \left[|r_1| |KR^\mu| |t_2 - t_1| + \frac{M_1 a}{1 - a\Delta_1} |t_2 - t_1| + \frac{M_1}{1 - a\Delta_1} t_2 - t_1 |
\cdot \left(\frac{b}{1 - b\Delta_2} \right) \Gamma (\beta + \theta_1 + 1) t_2 - t_1 + \frac{M_2}{\Gamma (\delta + 1)} t_2 - t_1 \leq \frac{1}{\Gamma (1 - \delta)} \left[|r_1| |KR^\mu| |t_2 - t_1| + \frac{M_1 a}{1 - a\Delta_1} |t_2 - t_1| + \frac{M_1}{1 - a\Delta_1} t_2 - t_1 |
= \frac{1}{\Gamma (2 - \delta)} \left[|r_1| |LR^\lambda| + M_2 C_1 \right] \cdot \left[(t_2 - t_1)^{1 - \gamma} + 2 (t_2 - t_1)^{1 - \gamma} \right].
\]

Similarly, we can get
\[
\left| T_2 (x, y) (t_2) - T_2 (x, y) (t_1) \right| \leq |r_2| |LR^\lambda| |t_2 - t_1| + \frac{M_2}{\Gamma (\delta + 1)} t_2 - t_1 \leq \frac{1}{\Gamma (2 - \delta)} \left[|r_1| |LR^\lambda| + M_2 C_1 \right] \cdot \left[(t_2 - t_1)^{1 - \gamma} + 2 (t_2 - t_1)^{1 - \gamma} \right].
\]

This together with (39), (42), and (43) implies that \(T(B_R) \) are equicontinuous. By virtue of the Arzela-Ascoli theorem, we can infer that the operator \(T \) is completely continuous. Hence, applying Schauder fixed theorem, FDE (4) has at least one solution \((x, y)\) in \(B_R \).

Theorem 11. Assume that \((H_2)-(H_4)\) hold. Then FDE (4) has at least one solution.

Proof. Firstly, we show that \(T \) is completely continuous operator. From the continuity of the functions \(f, g, h, \) and \(\varphi \), it follows that the operator \(T \) is continuous. Let \(B_Q = \{ (x, y) \in X \times Y \mid \| (x, y) \|_{X \times Y} \leq Q \} \), where \(Q \) is described as in \((H_4)\); we now prove that \(T(B_Q) \) is relatively compact.

For any \((x, y) \in B_Q \), by similar computation as (31) and (34), we obtain that
\[
\left| T_1 (x, y) (t) \right| \leq |r_1| |KR^\mu| + A_1 (a_1 + b_1 \phi_1 (Q) + c_1 \psi_1 (Q)), \\
\left| CD^\delta T_1 (x, y) (t) \right| \leq \frac{1}{\Gamma (2 - \delta)} \left[|r_1| |KR^\mu| + A_1 (a_1 + b_1 \phi_1 (Q) + c_1 \psi_1 (Q)) \right].
\]

Notice that
\[
\left| T_1 (x, y) ' (s) \right| \leq |r_1| |KR^\mu| + M_1 C_1.
\]
which imply
\[
\|T_1(x, y)(t)\|_X \leq \left(1 + r_1 + \frac{|r_1|}{\Gamma(2 - \delta)}\right) K Q^\nu + D_1 \left(a_1 + b_1 \phi_1(Q) + c_1 \psi_1(Q)\right).
\] (45)

Similarly, we have
\[
\|T_2(x, y)(t)\|_Y \leq \left(1 + r_2 + \frac{|r_2|}{\Gamma(2 - \gamma)}\right) L Q^\lambda + D_2 \left(a_2 + b_2 \phi_2(Q) + c_2 \psi_2(Q)\right).
\] (46)

Combining (45) and (46), one can get
\[
\|T(x, y)\|_{X \times Y} \leq \left(1 + r_1 + \frac{|r_1|}{\Gamma(2 - \delta)}\right) K Q^\nu + D_1 \left(a_1 + b_1 \phi_1(Q) + c_1 \psi_1(Q)\right)
+ \left(1 + r_2 + \frac{|r_2|}{\Gamma(2 - \gamma)}\right) L Q^\lambda + D_2 \left(a_2 + b_2 \phi_2(Q) + c_2 \psi_2(Q)\right)
= B_1 K Q^\nu + B_1 P_1 + B_2 L Q^\lambda + D_2 P_2.
\] (47)

By (47) and (H_4) we know \(T(B_Q) \subset B_Q \). Using similar computation as in (39), (40), (42), and (43), we can obtain \(T(B_Q)\) are equicontinuous. Thus, \(T\) is completely continuous by Arzela-Ascoli theorem.

We now claim that \(T\) has at least one solution in \(X \times Y\).

Suppose there exists \((x, y) \in \partial B_Q\) such that \((x, y) = \lambda T(x, y)\) for some \(\lambda \in (0, 1)\). This together with (44) implies that
\[
|x(t)| = \lambda |T_1(x, y)(t)| \leq |T_1(x, y)(t)|,
\]
\[
\left|C D^\alpha_0 x(t)\right| = \lambda \left|C D^\alpha_0 T_1(x, y)(t)\right| \leq \left|C D^\alpha_0 T_1(x, y)(t)\right|.
\] (48)

By virtue of (44)-(47), it is easy to see
\[
\|(x, y)\|_{X \times Y} \leq B_1 K Q^\nu + B_1 P_1 + B_2 L Q^\lambda + D_2 P_2 < Q.
\] (49)

This is a contradiction with \((x, y) \in \partial B_Q\). Therefore, it follows from Lemma 9 that the operator \(T\) has a fixed point \((x, y) \in B_Q\). Thus FDE (4) has at least one solution in \(X \times Y\).

Remark 1.2. Comparing \((H_4)\) with \((H_3)\), we know that condition \((H_4)\) is more extensive than \((H_3)\). However, the assumptions of Theorem 10 are easier to verify than that of Theorem 11.

4. Examples

Example 1. Consider the following coupled system:
\[
C D^{5/4}_0 x(t) = \frac{1}{\sqrt{25 + t^2}} \cos t + \frac{1}{2} \left(y(t)\right)^{1/5}
\]
\[
+ \frac{1}{4(1 + t)} \left[C D^{1/4}_0 y(t)\right]^{1/3},
\]
\(t \in [0, 1]\),
\[
C D^{3/2}_0 y(t) = \frac{e^t}{3 + t^2} + \frac{1}{4} \left(x(t)\right)^{1/7}
\]
\[
+ \frac{1}{4(2 + t)} \sin \left[C D^{1/2}_0 x(t)\right]^{1/5},
\]
\(t \in [0, 1]\),
\[
x(0) = \frac{1}{4} \left(\int_0^1 x(t) dt\right)^{1/7},
\]
\[
x(1) = 3 l^{1/4} x\left(\frac{1}{3}\right),
\]
\[
y(0) = \frac{1}{2} \left(\int_0^1 y(t) dt\right)^{1/5},
\]
\[
y(1) = 2 l^{1/2} y\left(\frac{1}{2}\right),
\]
where \(\alpha = 5/4, \beta = 3/2, \gamma = 1/4, \delta = 1/2, a = 3, b = 2, \theta_1 = 1/4, \theta_2 = 1/2, \eta = 1/3, \xi = 1/2.\)

(50) can be regarded as the form of (4), where
\[
f(t, u, v) = \frac{1}{\sqrt{25 + t^2}} \cos t + \frac{1}{2} \left(u(t)\right)^{1/5}
\]
\[
+ \frac{1}{4(1 + t)} v(t))^{1/3},
\]
\[
g(t, u, v) = \frac{e^t}{3 + t^2} + \frac{1}{4} \left(u(t)\right)^{1/7}
\]
\[
+ \frac{1}{4(2 + t)} \sin (v(t))^{1/5},
\]
\[
h(x) = \frac{1}{4} \left(\int_0^1 x(t) dt\right)^{1/7},
\]
\[
g(x) = \frac{1}{2} \left(\int_0^1 y(t) dt\right)^{1/5}.
\]

It is not difficult to see
\[
|f(t, u, v)| \leq \frac{1}{5} + \frac{1}{2} \left(|u|\right)^{1/5} + \frac{1}{4} \left(|v|\right)^{1/3},
\]
\[
|g(t, u, v)| \leq \frac{1}{3} + \frac{1}{4} \left(|u|\right)^{1/7} + \frac{1}{8} \left(|v|\right)^{1/5},
\]
\[|h(x)| \leq \frac{1}{4} \|x\|^{1/7}, \]
\[|\phi(y)| \leq \frac{1}{2} \|y\|^{1/5}. \]

(52)

Choose \(k_0 = 1/5, k_1 = 1/2, k_2 = 1/4, l_0 = 1/3, l_1 = 1/4, \]
\(l_2 = 1/8, m_1 = 1/5, m_1 = 1/3, n_1 = 1/7, n_2 = 1/5, K = 1/4, \]
\(L = 1/2, \mu = 1/7, \lambda = 1/5. \) Obviously, \(\hat{h}(0) = \phi(0) = 0. \)
Therefore, \((H_1) \) and \((H_2) \) are satisfied. Immediately, we can
conclude that FDE (4) has at least one solution by Theorem 10.

Example 2. Consider the following problem:
\[f(t, u, v) = \frac{(1-t)^2}{3000} + \frac{y^2(t)}{7000(1 + |y|)}, \]
\[g(t, u, v) = \frac{(1-t)^2}{4000} + \frac{(1-t)u^4(t)}{4000(1 + x^2)} + \frac{v(t)}{1000}, \]
\[y(0) = \frac{1}{400} \max_{t \in [0,1]} |y(t)|^{1/2}, \]
\[y(1) = \frac{2}{3} \frac{1}{400} y^{1/2}(1/2), \]

(53)

where \(\alpha = 3/2, \beta = 5/4, \gamma = 1/2, \delta = 1/2, a = 4, b = 2, \)
\(\theta_1 = 1/4, \theta_2 = 1/2, \eta = 1/4, \xi = 1/2. \)

(53) can be regarded as the form of (4), where
\[f(t, u, v) = \frac{(1-t)^2}{3000} + \frac{u^2}{7000(1 + |u|)} + \frac{t}{5000} v^2, \]
\[g(t, u, v) = \frac{(1-t)^2}{4000} + \frac{(1-t)u^4}{4000(1 + x^2)} + \frac{t^2}{1000} v^3, \]
\[h(x) = \frac{1}{200} \max_{t \in [0,1]} |x(t)|^{1/3}, \]
\[\phi(y) = \frac{1}{400} \max_{t \in [0,1]} |y(t)|^{1/2}. \]

(54)

It is not difficult to see
\[|f(t, u, v)| \leq \frac{1}{3000} + \frac{|u|^2}{7000} + \frac{|v|^2}{5000}, \]
\[|g(t, u, v)| \leq \frac{1}{1000} + \frac{|u|^2}{4000} + \frac{1}{1000} |v|^3. \]

(55)

Choose \(a_1 = 1/3000, b_1 = 1/7000, c_1 = 1/5000, \phi_1(|u|) = |u|^2, \psi_1(|v|) = |v|^2, \phi_2(|u|) = |u|^2, \psi_2(|v|) = |v|^3, K = 1/200, L = 1/400, \mu = 1/3, \lambda = 1/2. \) Now we need to verify \((H_3) \). By direct calculation, it
is easy to see
\[\Delta_1 = 0.0781, \]
\[\sigma_1 = 0.7801, \]
\[\tau_1 = 3.0838, \]
\[\Delta_2 = 0.2660, \]
\[\sigma_2 = 0.1995, \]
\[\tau_2 = -1.2842, \]
\[A_1 = 11.2022, \]
\[B_1 = 4.9537, \]
\[C_1 = 10.7321, \]
\[D_1 = 14.2296, \]
\[E_1 = 0.0051, \]
\[F_1 = 0.6447, \]
\[C_2 = 5.9846, \]
\[D_2 = 7.6490, \]
\[E_2 = 0.0690. \]

Thus, we can get \(B_1 K Q^a + D_1 P_1 + B_2 L Q^b + D_2 P_2 < 0.0394 + 0.0726 + 0.0032 + 0.5278 = 0.7582 < 4 \) for \(Q = 4 \), which
means that \((H_3) \) holds. Consequently, FDE (4) has at least one solution
by Theorem II.

Conflicts of Interest
The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments
This project is supported by NNSF of China (11671237) and
NSF of Shandong Province (ZR2013AM005).

References
[1] I. Podlubny, Fractional Differential Equations, Mathematics in
Science and Engineering, vol. 198, Academic Press, San Diego,
Calif, USA, 1999.

Submit your manuscripts at https://www.hindawi.com