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Abstract. 
This paper is concerned with the existence results of nonlocal problems for a class of fractional impulsive integrodifferential equations in Banach spaces. We define a piecewise continuous control function to obtain the results on controllability of the corresponding fractional impulsive integrodifferential control systems. The results are obtained by means of fixed point methods. An example to illustrate the applications of our main results is given.



1. Introduction
In recent decades, existence of mild solutions of nonlocal Cauchy problems has been investigated extensively by many researchers (see [1–15] and the references cited therein). The study of abstract nonlocal semilinear initial value problems was initiated by Byszewski and Lakshmikantham [11] and Byszewski [12]. Byszewski [12] considered the existence and uniqueness of mild, strong, and classical solutions of nonlocal Cauchy problems. Lin and Liu [8] studied the existence and uniqueness of mild and classical solutions of semilinear integrodifferential equations with nonlocal Cauchy problems. Using Krasnoselskii’s fixed point theorem, Schauder’s fixed point theorem, and Banach contraction principle, Zhou and Jiao [13] obtained several criteria on the existence and uniqueness of mild solutions of nonlocal Cauchy problems for fractional evolution equations without impulse.
Such analysis on nonlocal Cauchy problems is important from an applied viewpoint, since the nonlocal condition has a better effect in applications than a classical initial one. For instance, the diffusion phenomenon of a small amount of gas in a transparent tube can be given a better description than using the usual local Cauchy problem. On the other hand, controllability of nonlocal problems in Banach spaces has become an active area of investigation; we refer the reader to, for example, the papers [16–29]. The most common method is to transform the controllability problem into a fixed-point problem of solutions for an appropriate operator in a function space, that is, the existence problem of differential and integrodifferential equations. Unfortunately, by [16], we know that the concept of mild solutions used in [14, 15, 17] was not suitable for fractional evolution systems.
Chang et al. [18] investigated the controllability of a class of first-order semilinear differential systems with nonlocal initial conditions in a Banach space:  where  generates a strongly continuous, not necessarily compact, semigroup  in the Banach space . Sufficient conditions for the controllability of the first-order semilinear differential system with nonlocal initial conditions were established. The approach used is Sadovskii’s fixed point theorem.
Balachandran et al. [19] discussed the controllability of a class of fractional integrodifferential systems with nonlocal conditions in a Banach space: 
Motivated by the work of the above papers and wide applications of nonlocal Cauchy problems in various fields of natural sciences and engineering, in this paper, we study the existence of nonlocal problems for a class of fractional impulsive integrodifferential systems in a Banach space of the following type: where  and  is the Caputo fractional derivative (); the state  takes values in the Banach space .  is the infinitesimal generator of a strongly continuous semigroup  of uniformly bounded operators in , and  is a bounded linear operator.  is a given -value function;  is continuous; here , , , , , and  represent the right and left limits of  at , respectively. Using the similar method and a piecewise continuous control function, we consider the controllability of a class of fractional impulsive integrodifferential systems with nonlocal initial conditions: where  is a bounded linear operator from  to  and the control function  is given in , with  as a Banach space.
We study the nonlocal initial problem (3) that describes a more general form than the previous ones reported in [18, 19]. We introduce a suitable concept of PC-mild solutions for nonlocal initial problem (3). We not only study the existence and uniqueness of a mild solution for impulsive fractional semilinear integrodifferential equation (3) but also define a piecewise continuous control function and present the results on the controllability of the corresponding fractional impulsive integrodifferential system (4) which include some known results obtained in [14, 17]. Assumptions in our results are less restrictive.
2. Preliminaries and Lemmas
Throughout this paper, let us consider the set of functions  and there exist  and , , with . Endowed with the norm , it is easy to verify that  is a Banach space. Let  be the Banach space of all linear and bounded operators on . For a -semigroup , we set . For each positive constant , we set . Obviously,  is a bounded closed and convex subset.
Definition 1.  The fractional integral of order  with the lower limit zero for a function  is defined as provided that the right side is point-wise defined on , where  is the gamma function.
Definition 2.  The Riemann-Liouville derivative of order  with the lower limit zero for a function  can be written as 
Definition 3.  The Caputo derivative of order  for a function  can be written as 
Remark 4.  If  is an abstract function with values in , then integrals that appear in Definitions 1–3 are taken in Bochner’s sense.
Definition 5 (see [20]).  Let  be a Banach space; a one-parameter family , , of bounded linear operators from  to  is a semigroup of bounded linear operators on  if (1);  is the identity operator on ;(2) for every  (the semigroup property). A semigroup of bounded linear operators, , is uniformly continuous if .
Definition 6 (see [21]).  By a PC-mild solution of system (3), we mean a function  that satisfies the following integral equation: where  and  are called characteristic solution operators and are given by and, for ,where  is a probability density function defined on ; that is, 
Definition 7 (see [21]).  By a PC-mild solution of system (4), we mean a function  that satisfies the following integral equation: 
Definition 8.  System (4) is said to be controllable on the interval  if, for every , there exists a control  such that a mild solution  of (4) satisfies .
Lemma 9 (see [20]).  Linear operator  is the infinitesimal generator of a uniformly continuous semigroup if and only if  is a bounded linear operator.
Lemma 10 (see [13] Krasnoselskii's fixed point theorem).  Let  be a Banach space, let  be a bounded closed and convex subset of , and let  be maps of  into  such that  for every pair . If  is a contraction and  is completely continuous, then the equation  has a solution in .
Lemma 11 (see [22, 23]).  The operators  and  defined by (9) have the following properties: (i)For any fixed ,  and  are linear and bounded operators; that is, for any , (ii) and  are strongly continuous.(iii) and  are uniformly continuous.
Remark 12.  Since the infinitesimal generator  is a linear bounded operator and thanks to Definition 5 and Lemma 9, we can get that (iii) is satisfied.
Lemma 13 (see [21]).  For  and , .
3. Existence and Uniqueness of PC-Mild Solutions
In order to prove the existence and uniqueness of mild solutions of (3), we have the following assumptions: is continuous and there exist two functions  such that  is continuous and there exists a function  such that  are continuous and there exist  such that  is continuous and there exists a function  such that The function  is defined by  where , , and , .()The constant  and function  are defined by  where  and , .
Theorem 14.  If hypotheses – are satisfied, then (3) has a unique PC-mild solution.
Proof.  Define the operator  on  by For , by virtue of (20), we conclude thatIt follows from Lemma 11, part (iii) and Lemma 13 thatThus, we deduce that . For , we have From (23), we know that . Using the same method, we obtain ,, , and therefore . For each , , When , we getIt follows now from , , and the contraction mapping principle that  has a unique fixed point ; that is, is a unique PC-mild solution of (3). The proof is complete.
In order to obtain more existence results, we have the following assumptions: is continuous and there exist three functions  such that  is continuous and there exist two functions  such that   are continuous and there exist  such that  Define There exists a function  such that  Define  For all bounded subsets , the set  is relatively compact in  for arbitrary  and , where  and  are defined by For all bounded subsets , the set  is relatively compact in  for arbitrary  and .
Theorem 15.  Let hypotheses  and – be satisfied. If the inequalities hold, where  and  is as in , then (3) has at least one PC-mild solution.
Proof.  We shall present the results in six steps.
Step  1 (Continuity of  defined by (20) on   ). Let  and   . Then  and . For   , we have Since the functions , , and  are continuous, we conclude that Applications of  and  yield which implies that By Lebesgue’s dominated convergence theorem, we get  and so Step  2 ( maps bounded sets into bounded sets in . From (20), we get where By Lemma 11 and (42), we obtain Thus, for any , we have Hence, we deduce that , that is,  maps bounded sets into bounded sets in .
Step  3 ( is equicontinuous with  on . For any , , , we obtain Based on a straightforward computation, we have It follows from Lemma 11, part (iii) and Lemma 13 that . Thus,  is equicontinuous with  on   .
Step  4 ( map  into a precompact set in ). We define the operator where Define  and  for . Set where From hypotheses we imposed and the same method used in [16, Theorem3.2], it is not difficult to verify that the set  can be arbitrary approximated by the relatively compact set . Thus,  are relatively compact in .
Step  5 ( for ). Note that Choose and define operators  and  on  by It is sufficient to proceed exactly as in step 1 to step 4 of the proof to deduce that  are continuous and compact. Thus, to complete this proof, it suffices to show that  is a contraction mapping and that  for . Indeed, for any , by virtue of (43) and (51), we have Consequently, if , then .
Step  6 ( is a contraction mapping). For any  and , we have Since ,  is a contraction mapping. Hence, by Lemma 10, we conclude that (3) has at least one PC-mild solution on . This completes the proof.
4. Controllability Results
In this section, we impose the following conditions to prove the results.()Define   . The linear operator  from  into  defined by  induces an invertible operator  defined on  and there exists a positive constant  such that .
Theorem 16.  If hypotheses –, , and  are satisfied, then system (4) is controllable on .
Proof.  Using , for an arbitrary function , we define the piecewise continuous control  by On the basis of this control, with a similar proof to Theorem 14, we can conclude that the operator  defined by has a fixed point . This fixed point is a PC-mild solution of system (4), which implies that the system is controllable on . The proof is complete.
Theorem 17.  Assume that hypotheses , , , and  are satisfied. If the inequalities hold, where  and  and  are as in Theorem 15, then system (4) is controllable on .
Proof.  The proof is similar to that of Theorem 15 and so is omitted.
5. Example
Consider the following nonlinear partial integrodifferential equation of the form where  is continuous. Let us take . Consider the operator  defined by It is not difficult to getand, clearly,  is the infinitesimal generator of a uniformly continuous semigroup  on . Put  and , and take where  and  are positive constants and  and  are continuous functions. Then  and  are continuous functions; , , , and  satisfy –, respectively.
For , we define whereand, for , Moreover, the linear operator  from    into  induces an invertible operator  defined on  and there exists a positive constant  such that ; that is,  is satisfied. With the choices of , and  (the identity operator), we see that (60) is an abstract formulation of (4). All conditions of Theorem 17 are able to be fulfilled, so we deduce that (60) is controllable on . On the other hand, we have It is easy to see that all assumptions of Theorem 16 are satisfied when using the suitable choices of . Hence, Theorem 16 can also yield controllability of (60) on .
6. Conclusions
In this paper, we studied the existence and uniqueness results for a class of impulsive fractional semilinear integrodifferential equations with nonlocal initial conditions in a Banach space. Introducing the concept of PC-mild solutions and using the piecewise continuous control functions and uniformly continuous semigroup, we obtained the controllability results for the corresponding fractional impulsive integrodifferential system. Assuming that the semigroup is compact and utilizing some additional conditions, Hernández and O’Regan [30] showed that some known results on exact controllability (see the references cited therein) are valid if and only if the Banach space is finite dimensional. Recently, Hernández et al. [31] pointed out that some recent results on exact controllability of abstract differential systems with an unbounded linear operator dominated by a sectorial operator were not applicable. Contrary to those results, we do not need in our results conflicting conditions, which, in a certain sense, is a significant improvement compared to the results in the cited papers. An illustrative example is given to demonstrate the effectiveness of the results obtained. Our future work will focus on constrained controllability, nonlocal problems, and their applications in nonlinear dynamical systems (see [32–36]).
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