Research Article

On Fekete-Szegö Problems for Certain Subclasses Defined by q-Derivative

Huda Aldweby1 and Maslina Darus2

1Department of Mathematics, Faculty of Science, AL Asmarya Islamic University, Zliten, Libya
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia

Correspondence should be addressed to Maslina Darus; maslina@ukm.edu.my

Received 15 April 2017; Accepted 2 August 2017; Published 7 September 2017

Academic Editor: Henryk Hudzik

Copyright © 2017 Huda Aldweby and Maslina Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We derive the Fekete-Szegö theorem for new subclasses of analytic functions which are q-analogue of well-known classes introduced before.

1. Introduction

Denote by A the class of all analytic functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$.

For two analytic functions f and g in U, the subordination between them is written as $f \prec g$. Frankly, the function $f(z)$ is subordinate to $g(z)$ if there is a Schwarz function w with $w(0) = 0$, $|w(z)| < 1$, for all $z \in U$, such that $f(z) = g(w(z))$ for all $z \in U$. Note that, if g is univalent, then $f \prec g$ if and only if $f(0) = g(0)$ and $f(U) \subseteq g(U)$.

In [1, 2], Jackson defined the q-derivative operator D_q of a function as follows:

$$D_q f(z) = \frac{f(qz) - f(z)}{(q - 1)z} \quad (z \neq 0, \ q \neq 0)$$

and $D_q f(z) = f'(0)$. In case $f(z) = z^k$ for k is a positive integer, the q-derivative of $f(z)$ is given by

$$D_q z^k = \frac{z^k - (zq)^k}{z(1 - q)} = [k]_q z^{k-1}.$$

As $q \to 1^-$ and $k \in \mathbb{N}$, we have

$$[k]_q = \frac{1 - q^k}{1 - q} \to k.$$

Quite a number of great mathematicians studied the concepts of q-derivative, for example, by Gasper and Rahman [3], Aral et al. [4], Li et al. [5], and many others (see [6–15]).

Making use of the q-derivative, we define the subclasses $\delta_q^*(\alpha)$ and $\psi_q(\alpha)$ of the class A for $0 \leq \alpha < 1$ by

$$\delta_q^*(\alpha) = \left\{ f \in A : \text{Re}\left(\frac{z D_q (f(z))}{f(z)}\right) > \alpha, \ z \in U \right\},$$

$$\psi_q(\alpha) = \left\{ f \in A : \text{Re}\left(1 + \frac{zq D_q (D_q (f(z)))}{D_q f(z)}\right) > \alpha, \ z \in U \right\}.$$

These classes are also studied and introduced by Seoudy and Aouf [16].
Noting that
\[f \in \mathcal{C}_q(\alpha) \iff zD_q f \in \mathcal{S}^*_q(\alpha), \]
\[\lim_{q \to 1} \mathcal{S}^*_q(\alpha) = \left\{ f \in \mathcal{A} : \lim_{q \to 1} \mathrm{Re} \left(\frac{zD_q f(z)}{f(z)} \right) > \alpha, z \in \mathbb{U} \right\} = \mathcal{S}^*(\alpha), \]
\[\lim_{q \to 1} \mathcal{C}_q(\alpha) = \left\{ f \in \mathcal{A} : \lim_{q \to 1} \mathrm{Re} \left(1 + \frac{zqD_q \left(D_q f(z) \right)}{D_q f(z)} \right) > \alpha, z \in \mathbb{U} \right\} = \mathcal{C}(\alpha), \]
where \(\mathcal{S}^*(\alpha) \) and \(\mathcal{C}(\alpha) \) are, respectively, the classes of starlike of order \(\alpha \) and convex of order \(\alpha \) in \(\mathbb{U} \) ([17, 18]).

Next, we state the \(q \)-analogue of Ruscheweyh operator given by Aldiweby and Darius [8] that will be used throughout.

Definition 1 (see [8]). Let \(f \in \mathcal{A} \). Denote by \(R^\lambda_q \) the \(q \)-analogue of Ruscheweyh operator defined by
\[R^\lambda_q f(z) = z + \sum_{k=1}^{\infty} \left[\frac{(k+\lambda-1)q!}{[\lambda]_q!} - [k-1]q! \right] a_k z^k, \]
where \([k]_q!\) given by is as follows:
\[[k]_q! = \begin{cases} [k]_q! [k-1]_q! \cdots [1]_q!, & k = 1, 2, \ldots; \\ 1, & k = 0. \end{cases} \]

From the definition we observe that if \(q \to 1 \), we have
\[\lim_{q \to 1} R^\lambda_q f(z) = z + \sum_{k=1}^{\infty} \left(\frac{(k+\lambda-1)q!}{[\lambda]!} - [k-1]q! \right) a_k z^k = R^\lambda f(z), \]
where \(R^\lambda \) is Ruscheweyh differential operator defined in [19].

Using the principle of subordination and \(q \)-derivative, we define the classes of \(q \)-starlike and \(q \)-convex analytic functions as follows.

Definition 2. For \(\varphi \in \mathcal{P} \) and \(\lambda > -1 \), the class \(\mathcal{S}^*_{q,\lambda}(\varphi) \) which consists of all analytic functions \(f \in \mathcal{A} \) satisfies
\[\frac{zD_q \left(R^\lambda_q (f(z)) \right)}{R^\lambda_q (f(z))} < \varphi(z), \quad |z| < 1. \]
Since \(w(z) \) is a Schwarz function, immediately \(\text{Re}(p(z)) > 0 \) and \(p(0) = 1 \). Let
\[
g(z) = zD_q \left(\mathcal{R}^q_1(f(z)) \right) = 1 + d_1 z + d_2 z^2 + \cdots. \tag{18}
\]
Then from (16), (17), and (18), obtain
\[
g(z) = q \left(\frac{p(z) - 1}{p(z) + 1} \right). \tag{19}
\]
Since
\[
\frac{p(z) - 1}{p(z) + 1} = 1 + \frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_2^3}{4} - p_1 p_2 \right) z^3 + \cdots \right] \tag{20}
\]
we have
\[
q \left(\frac{p(z) - 1}{p(z) + 1} \right) = 1 + \frac{1}{2} B_1 p_1 z
+ \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) z^2
+ \cdots. \tag{21}
\]
From the last equation and (18), we obtain
\[
d_1 = \frac{1}{2} B_1 p_1, \quad d_2 = \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right). \tag{22}
\]
A simple computation in (18) and knowing that \([n]_q - 1 = q [n-1]_q \), we obtain
\[
zD_q \left(\mathcal{R}^q_1(f(z)) \right) \]
\[
= 1 + q [\lambda + 1]_q a_2 z
+ \left[q [\lambda + 1]_q [\lambda + 2]_q a_3 - q [\lambda + 1]^2_2 a_2^2 \right] z^2
+ \cdots. \tag{23}
\]
Then, from last equation and (18), we see that
\[
d_1 = q [\lambda + 1]_q a_2, \quad d_2 = q [\lambda + 1]_q [\lambda + 2]_q a_3 - q [\lambda + 1]^2_2 a_2^2, \tag{24}
\]
or equivalently, we have
\[
a_2 = \frac{B_1 p_1}{2q [\lambda + 1]_q}, \quad a_3 = \frac{B_1}{2q [\lambda + 1]_q [\lambda + 2]_q} \left(p_2 - \frac{p_1^2}{2} \right)
+ \frac{B_2 p_3^2}{4q [\lambda + 1]_q [\lambda + 2]_q}
+ \frac{B_2^2 p_4^2}{8q^2 [\lambda + 1]_q [\lambda + 2]_q}. \tag{25}
\]
Therefore
\[
a_3 - \mu a_2^2 = \frac{B_1}{2q [\lambda + 1]_q [\lambda + 2]_q} \left(p_2 - \nu p_1^2 \right), \tag{26}
\]
where
\[
y = \frac{1}{2} \left[1 - \frac{B_2}{B_1} \right]
- \frac{[\lambda]_q + q^4 - \mu \left([\lambda]_q + q^4 (1 + q) \right)}{q ([\lambda]_q + q^4) B_1}. \tag{27}
\]
By an application of Lemma 4, our result follows. Again by Lemma 4, the equality in (15) is gained for
\[
p(z) = \frac{1 + z}{1 - z} \tag{28}
\]
or \(p(z) = \frac{1 + z^2}{1 - z^2} \).
Thus Theorem 6 is complete. \(\Box \)

Similarly, we can prove for the class \(\mathcal{C}_{q,\lambda}(\varphi) \). We omit the proofs.

Theorem 7. Let \(\varphi(z) = 1 + B_1 z + B_2 z^2 + \cdots \in P \). If \(f \) given by (1) is in the class \(\mathcal{C}_{q,\lambda}(\varphi) \) and \(\mu \) is a complex number, then
\[
\left| a_3 - \mu a_2^2 \right| \leq \frac{B_1}{2q [\lambda + 1]_q [\lambda + 2]_q} \left. \left| p_2 - \nu p_1^2 \right| \right. \tag{29}
\]
\[
\cdot \max \left\{ 1, \frac{B_2}{B_1} \left[\frac{[\lambda]_q + q^4 (1 + q) \left([\lambda]_q + q^4 \right)}{q [\lambda + 1]_q [\lambda + 2]_q} \right] \right\}.
\]
The result is sharp.

Taking \(\lambda = 0 \) in Theorem 6, we have the corollary for the class \(\mathcal{S}^*_q(\varphi) \) as follows.

Corollary 8. Let \(\varphi(z) = 1 + B_1 z + B_2 z^2 + \cdots \in P \). If \(f \) given by (1) is in the class \(\mathcal{S}^*_q(\varphi) \) and \(\mu \) is a complex number, then
\[
\left| a_3 - \mu a_2^2 \right| \leq \frac{B_1}{q (1 + q)} \max \left\{ 1, \frac{B_2}{B_1} \left[1 - \frac{\mu (1 + q)}{q} \right] B_1 \right\}. \tag{30}
\]
The result is sharp.
Taking $q \to 1$ and $\lambda = 0$ in Theorem 6, we obtain the following.

Corollary 9. Let $q(z) = 1 + B_1 z + B_2 z^2 + \cdots$, $B_1 \in P$. If f given by (1) is in the class $C_{q, \lambda}(\phi)$ and μ is a complex number, then

$$|a_3 - \mu a_2^2| \leq \frac{B_2}{2} \max \left\{ 1, \frac{B_2}{B_1} + \frac{1 - 2\mu}{1} \right\}.$$ \hspace{1cm} (31)

By using Lemma 4, we have the following theorem.

Theorem 10. Let $q(z) = 1 + B_1 z + B_2 z^2 + \cdots$ with $B_1 > 0$ and $B_2 \geq 0$. Let

$$\xi_1 = \frac{\left[\lambda \right]_q + q^2 \left(B_2 - B_1 \right)}{\left[\lambda \right]_q + q^2 [2]_q B_1^2},$$

$$\xi_2 = \frac{\left[\lambda \right]_q + q^2 \left(B_2 + B_1 \right)}{\left[\lambda \right]_q + q^2 [2]_q B_1^2}.$$ \hspace{1cm} (32)

Let f given by (1) be in the class $C_{q, \lambda}(\phi)$. Then

$$|a_3 - \mu a_2^2| \leq \frac{B_2}{q \left[\lambda + 1 \right]_q \left[\lambda + 2 \right]_q} \left[\frac{\left[\lambda \right]_q + q^2 - \left(\left[\lambda \right]_q + q^2 [2]_q \right) \mu}{q \left(\left[\lambda \right]_q + q^2 \right)} \right],$$ \hspace{1cm} if $\mu \leq \xi_1$;

$$- \frac{B_2}{q \left[\lambda + 1 \right]_q \left[\lambda + 2 \right]_q} \left(\frac{\left[\lambda \right]_q + q^2 - \left(\left[\lambda \right]_q + q^2 [2]_q \right) \mu}{q \left(\left[\lambda \right]_q + q^2 \right)} \right).$$ \hspace{1cm} (35)

Now, let $\xi_1 \leq \mu \leq \xi_2$; then using the above calculation, we obtain

$$|a_3 - \mu a_2^2| \leq \frac{B_2}{q \left[\lambda + 1 \right]_q \left[\lambda + 2 \right]_q}.$$ \hspace{1cm} (36)

Similarly, we can prove for the class $C_{q, \lambda}(\phi)$ as follows.

Theorem 11. Let $q(z) = 1 + B_1 z + B_2 z^2 + \cdots$ with $B_1 > 0$ and $B_2 \geq 0$. Let

$$\xi_1 = \frac{\left[\lambda \right]_q \left(B_2 - B_1 \right)}{\left[\lambda \right]_q B_1^2},$$

$$\xi_2 = \frac{\left[\lambda \right]_q \left(B_2 + B_1 \right)}{\left[\lambda \right]_q B_1^2}.$$ \hspace{1cm} (37)

If f given by (1) is in the class $C_{q, \lambda}(\phi)$, then

$$|a_3 - \mu a_2^2| \leq \frac{B_2}{2q \left[\lambda + 1 \right]_q \left[\lambda + 2 \right]_q} \left[\frac{B_2}{B_1} + \left(\frac{\left[\lambda \right]_q + q^2 \left[\lambda + 2 \right]_q \mu}{q \left[2 \right]_q} \right) B_1 \right],$$ \hspace{1cm} if $\mu \leq \xi_1$;

$$- \frac{B_2}{2q \left[\lambda + 1 \right]_q \left[\lambda + 2 \right]_q} \left(\frac{\left[\lambda \right]_q + q^2 \left[\lambda + 2 \right]_q \mu}{q \left[2 \right]_q} \right) B_1.$$ \hspace{1cm} (38)

Finally, if $\mu \geq \xi_2$, then

$$|a_3 - \mu a_2^2| \leq \frac{B_1}{2q \left[\lambda + 1 \right]_q \left[\lambda + 2 \right]_q} \left[\frac{B_2}{B_1} - \left(\frac{\left[\lambda \right]_q + q^2 \left[\lambda + 2 \right]_q \mu}{q \left[2 \right]_q} \right) B_1 \right],$$ \hspace{1cm} if $\xi_1 \leq \mu \leq \xi_2$;
Taking $\lambda = 0$ in Theorem 10, we obtain next result for the class $\mathcal{S}_q^*(\phi)$.

Corollary 12. Let $q(z) = 1 + B_1 z + B_2 z^2 + \cdots$ with $B_1 > 0$ and $B_2 \geq 0$. Let

$$
\sigma_1 = \frac{B_2^2 + q(B_2 - B_1)}{[2]_q B_1^2},
$$

$$
\sigma_2 = \frac{B_2^2 + q(B_2 + B_1)}{[2]_q B_1^2}.
$$

If f given by (1) is in the class $\mathcal{S}_q^*(\phi)$, then

$$
|d_3 - \mu_2| \leq \begin{cases}
\frac{B_2}{q[2]_q} + \frac{B_1^2}{q[2]_q} \left(\frac{1 - [2]_q \mu}{q} \right), & \text{if } \mu \leq \sigma_1; \\
\frac{B_1}{q[2]_q}, & \text{if } \sigma_1 \leq \mu \leq \sigma_2; \\
-\frac{B_2}{q[2]_q} - \frac{B_1^2}{q[2]_q} \left(\frac{1 - [2]_q \mu}{q} \right), & \text{if } \mu \geq \sigma_2.
\end{cases}
$$

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The work here is supported by MOHE Grant FRGS/1/2016/STG06/UKM/01/1.

References

