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Abstract. 
We establish several oscillation criteria for a class of third-order nonlinear dynamic equations with a damping term and a nonpositive neutral coefficient by using the Riccati transformation. Two illustrative examples are presented to show the significance of the results obtained.



1. Introduction
In this paper, we are concerned with the oscillation of a class of third-order damped dynamic equations of neutral typeon a time scale  satisfying , where , , and . Throughout, we suppose that the following conditions are satisfied:  is a constant., ,  is positively regressive (i.e., ), and and , where ., ,  or , , and there exists a sequence  such that  and . and there exists a function  such that  and  for .
The theory of time scales, which was firstly introduced by Hilger in [1, 2], has been enriched by researchers; see, for instance, [3, 4], monographs [5, 6], and the references cited therein. During the past decade, a great deal of interest in oscillation of solutions to different classes of dynamic equations on time scales has been shown; we refer the reader to [7–23].
Yu and Wang [23] studied a third-order dynamic equationAgarwal et al. [8, 10], Candan [12], Erbe et al. [13], Hassan [15], and Li et al. [18] considered a third-order retarded dynamic equationSaker et al. [21] studied a second-order damped dynamic equationwhereas Qiu and Wang [20] considered a second-order damped dynamic equationwhere , , andHan et al. [14] and Qiu [19] investigated the third-order dynamic equations with nonpositive neutral coefficientsrespectively, where .
In this paper, using the Riccati transformation, we obtain some sufficient conditions which ensure that every solution  of (1) either is oscillatory or converges to a finite number asymptotically. We do not impose restrictive assumption  in our results. To illustrate the significance of new results, two examples are provided in the last section. In what follows, all functional inequalities are assumed to hold for all sufficiently large . Without loss of generality, we can deal only with eventually positive solutions of (1).
Definition 1.  A solution  of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is termed nonoscillatory.
Definition 2.  Equation (1) is said to be almost oscillatory if all its solutions either are oscillatory or converge to zero asymptotically.
2. Auxiliary Results
Lemma 3 (see [19, Lemma  2.1]).  Suppose that  is an eventually positive solution of (1) and there exists a constant  such that . Then
Lemma 4.  If  is an eventually positive solution of (1), then there exists a sufficiently large  such that, for ,
Proof.  Let  be an eventually positive solution of (1). From  and , there exist a  and a constant  such that , , , , and  for . By virtue of (1) and , we conclude thatWe claim that there exists a  such that  for . Otherwise, assume that  for . Then, by (12) and , . It follows from  and  that . Hence, there exists a  such that  for ; that is,By , there exists a sufficiently large integer  such that  for . For , we havewhich yields  and so , which contradicts the fact that . Therefore,  and hence  or . The proof is complete.
Lemma 5 (see [19, Lemma  2.3]).  If  is an eventually positive solution of (1), then  is eventually positive or .
Lemma 6.  Let  be an eventually positive solution of (1) and suppose that  and  are eventually positive. Assume also thatThen there exists a sufficiently large  such that, for ,
Proof.  Let  be an eventually positive solution of (1) and assume that there exists a  such that  and  for . DefineThen, by Lemma 4, for ,We can prove that  is eventually positive. If not, then there exists a  such that  for . Hence, we conclude thatwhich implies that  is strictly increasing on . Since , there exists a  such that, for , , and soUsing , we have . Therefore, by virtue of (1) and Lemma 4, for ,Integrating (21) from  to , we getIt follows from (15) thatwhich is a contradiction. Hence,  is eventually positive. Then, there exists a sufficiently large  such that, for ,so  is strictly decreasing on . If , then . If , then . Therefore, we arrive at (16). This completes the proof.
Lemma 7.  Assume that all assumptions of Lemma 6 are satisfied. For , definewhere . Then,  satisfieswhere
Proof.  Suppose that all assumptions of Lemma 6 hold. Differentiating (25) and using (1), we haveIf , thenAssume now that . It follows from Lemma 6 thatHence, we haveUsing Pötzsche chain rule (see [5, Theorem  1.90] for details), we obtainwhich yieldsFrom Lemma 4, we conclude thatwhich implies thatIt follows now from (31) thatThe proof is complete.
Lemma 8.  Assume that  is an eventually positive solution of (1) and  is eventually negative. Ifthen .
Proof.  Since  is eventually negative,  is either eventually positive or eventually negative. If  is eventually negative, then there exist a constant  and a  such that  for , which causes a contradiction as in the proof of Lemma 4. Thus,  is eventually positive.
Taking into account the fact that , by Lemma 4, there exists a  such that  for . We prove that . Otherwise, there exists a  such that  for , and a similar contradiction can be obtained. Suppose that . It follows from the proof of Lemma 4 and  thatIntegrating (38) from  to , , we havewhich contradicts the fact that . Hence,  and so  when using Lemma 3. This completes the proof.
3. Main Results
Let . Definewhere  is the -partial derivative of  with respect to .
Theorem 9.  Assume that (15) holds and there exist two functions  and  such that, for all sufficiently large  and for some ,where  and  are as in Lemma 7. Then every solution  of (1) is oscillatory or  exists (finite).
Proof.  Suppose that (1) has a nonoscillatory solution . Without loss of generality, let  be eventually positive. From Lemma 5, it follows that  is eventually positive or . Assume that  is eventually positive. By Lemma 4, there exists a  such that either  or  for . Let  for . Define  by (25). Then, by Lemma 7, (26) holds. It follows from (26) that, for some ,whereLet ,Using the inequality (a variation of the well-known Young inequality)we deduce thatTherefore, we obtainwhich implies thatThis contradicts (41). Thus,  for , and so  exists. By Lemma 3,  exists. The proof is complete.
From Lemma 8 and Theorem 9, we have the following corollary.
Corollary 10.  Assume that (37) is satisfied and there exist two functions  and  such that, for all sufficiently large  and for some ,where  and  are as in Lemma 7. Then (1) is almost oscillatory.
Theorem 11.  Assume that (15) holds and there exists a function  such that, for all sufficiently large  and for some ,where  and  are as in Lemma 7. Then conclusion of Theorem 9 remains intact.
Proof.  Proceeding as in the proof of Theorem 9, assume that  for . Let  be defined by (25). By virtue of Lemma 7, we arrive at (36). Let ,Using (45), we conclude thatwhich yieldsLet . It follows from (53) thatwhich contradicts (50). Therefore,  for . Along the same lines as in Theorem 9, we complete the proof.
If (37) holds, then we have the following corollary on the basis of Lemma 8 and Theorem 11.
Corollary 12.  Assume that (37) is satisfied and there exists a function  such that, for all sufficiently large  and for some ,where  and  are as in Lemma 7. Then conclusion of Corollary 10 remains intact.
Remark 13.  If , then it is not difficult to see thatand so (41) and (50) can be simplified torespectively.
Remark 14.  If , then  and we do not impose restrictive condition (15) in our theorems and corollaries.
Remark 15.  Our results complement and improve those obtained by Han et al. [14] since we do not impose specific restrictions on .
4. Examples
The following examples are presented to show applications of the main results.
Example 1.  Consider the third-order equationwhere , , , and . It is clear that , , , , and . Then,  and . Let . Since , we haveHence, assumptions – and (15) hold. Let  and . Ifwe obtainThat is, (41) is satisfied. By virtue of Theorem 9, we deduce that every solution of (59) either is oscillatory or converges to a finite number asymptotically. Furthermore, if (61) holds and , thenwhich implies that (59) is almost oscillatory by using Corollary 10.
Example 2.  Consider the third-order equationwhere , , , and . It is easy to see that , , , , and . Then,  and . Since , we getObviously, conditions  are satisfied. Let  or  and . If  or , thenThat is, both (37) and (55) hold. By Corollary 12, we conclude that (64) is almost oscillatory for  or .
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