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Abstract. 
On the harmonic Dirichlet space of the unit disk, the commutativity of Toeplitz and Hankel operators is studied. We obtain characterizations of commuting Toeplitz and Hankel operators and essentially commuting (semicommuting) Toeplitz and Hankel operators with general symbols.



1. Introduction
Let  be the open unit disk in the complex plane  and  denote the normalized area measure on . The Sobolev space  is the completion of the space of all smooth functions  on  with norm and the inner product of the Sobolev space  is where  denotes the inner product in the Hilbert space .
The Dirichlet space  is the closed subspace of  consisting of all holomorphic functions on  vanishing at zero and the harmonic Dirichlet space  is the closed subspace of  consisting of all harmonic functions on . There is the relation that , where . It is well known that each point evaluation in  is a bounded linear functional on , so, for every , there exists a unique function  which has the reproducing property for every .
Since , there is a relationwhere  is the reproducing kernel for Dirichlet space  and is given by 
Let  denote the orthogonal projection of  onto  and  denote the orthogonal projection of  onto . Since  for  and , then by (4) it is easy to see thatfor any function .
For a function , the Toeplitz operator  with the symbol  is densely defined by for  and . The (small) Hankel operator  with the symbol  is densely defined by for  and , where  is an unitary operator defined by  for . It is easy to check that , so Hankel operator has the relation with the Toeplitz operator as follows:It follows that  since , the identity operator.
On the classical Hardy space, Brown and Halmos [1] showed the necessary and sufficient conditions for Toeplitz operator which has the commutativity properties. Also, they obtained the characterization for the product problem of the Toeplitz operators. Their works have been generalized onto the case on the (harmonic) Bergman or Dirichlet space by many authors; see [2–6] and the references therein. Many works related to the product involving Toeplitz or Hankel operators are referred to in [7–12].
In recent years, Chen et al. have studied the algebraic properties of Toeplitz operators on the harmonic Dirichlet space ([13]) with general symbols. Later, Feng et al. studied the commutativity of Toeplitz operator and Hankel operator, or two Hankel operators on harmonic Dirichlet space ([14, 15]), and they focused on the operators with harmonic symbols.
In the present paper, we continue to study the same characterizing problems for general symbols. In order to handle the general symbols, in the second section, we will give a characterization for when the sum of products of two Toeplitz operators equals a Hankel operator, which is the key to prove our main results (see Proposition 5). In the third section, we give the commutativity of Toeplitz and Hankel operators (see Theorem 10) or two Hankel operators (see Theorem 11). We also characterize when the product of two Hankel operators equals another Hankel operator (see Theorem 12), and then, as an consequence, we get the semicommutativity of two Hankel operators (see Corollary 13). In the last section, we study the essential (semi)commutativity of Toeplitz and Hankel operators or two Hankel operators.
2. Preliminaries
For , it turns out that  is absolutely continuous on  for almost every  and absolutely continuous on  for almost every . In particular, the radial limit  exists for almost every . Moreover, we have , the space of integrable functions on , and the Poisson extension of  belongs to . See [16, 17] for details and related facts.
A nonnegative Borel measure  on  is called a -Carleson measure if there exists a constant  such that for every . See [18, 19] for the details. We let  be the space of all  for which  is bounded measurable on  and  and  are -Carleson measures, where  is the Poisson extension of .
It is known that  is bounded on the harmonic Dirichlet space  if and only if  (see [13]), so, by (9),  is bounded on  if and only if .
We let It is easy to see  when  for each , and also  if and only if  when . Moreover, a decomposition for the Sobolev space  proved in [17, 20] gives the notion that
We start with the following lemma showing that the boundary vanishing property of a symbol gives a simple behavior of the corresponding Toeplitz operator (see [13]).
Lemma 1.  Let . Then, one has for every polynomial . In particular,  can be extended to a bounded linear functional on 
Note that Lemma 1 shows that, for ,  is at most rank one. It is also the same case for  when  by relation (9). In addition,  is the Toeplitz operator on , denoted by , and thus, for , the compactness of  implies  (see [16, 17]), so, by (9) and Lemma 1, we have
We also need the following result.
Lemma 2.  Let ; then the following statements are equivalent: (a) is compact.(b) is finite rank.(c).
Proof. Let  and ; here,  and . Note that, by Lemma 1,  and  are finite rank operators, so we only need to show that  is compact or finite rank if and only if .
If  is compact, then  is compact; that is, ; here,  is the (small) Hankel operator on the Dirichlet space  (see [17, 21]),  is the Toeplitz operator on , and  is a compact operator on .
Claim. .
In fact, it is easy to checkLet . Then, for , by (15). So, for positive integers  and , we have and hence the claim holds.
Since , by the claim, we get It is well known that  and  (see [6, 17, 20]); then, by the above equality, we get which gives , so  because  on the boundary of  except at . Thus, we see that  is a compact operator which gives  by (14).
If  is finite rank, then similar arguments give .
The sufficiency is obvious. The proof is complete.
We let  denote the set of all  such that for all integers where  is the Poisson extension of . Note that, for harmonic function , we can check that  if and only if  is constant. Also, for , by (9) and Lemma 1 we see that  if and only if  and if and only if . Now, by Lemmas 1 and 2, we can get easily the following result which has independent interest.
Corollary 3.  Let . Then,  if and only if  and .
Let  and  are the Poisson extensions of  and , respectively. Then, it is easy to see . Fix a polynomial . By Lemma 1, we have It follows from Lemma 1 again thatSo,
The above will be used to characterize when the following product of Toeplitz operators equals a Hankel operator: for . Here,  is a fixed positive integer. To this end, we also need the following lemma which is easy to verify by (6) (see Lemmas 3.1 and  in [13] for the details).
Lemma 4.  Let  be harmonic and writefor the power series expansions of , respectively. Then, one has for every integer  and .
We now give the following necessary conditions for the sum of products of two Toeplitz operators equal to a Hankel operator which is the key to characterize the related problems.
Proposition 5.  Let  and  be the Poisson extensions of , respectively, . Suppose . Then,  and . Moreover, if there is  such that , thenfor some constants  and some constant .
Proof. Consider power series expansions of  as for . By (23) and Lemma 4, for every integer , we havehere in the last equality we have used the identity for each  and . On the other hand, for each nonnegative integer , since . So, from  and (29), we getfor integer .
Similarly, we consider  as done in (29) to getso similarly we can get the identityfor integer .
It follows from (32) and (34) that  is a finite rank operator, and thus Lemma 2 gives  and , and by Lemma 1 the latter one is for each . It follows that the left sides of identities (32) and (34) are both zero for each integer , and so are the right sides of these two identities; that is,for each integer . If , then there is integer  such that and hence (36) or (37) gives (27), as desired. The proof is complete.
3. Commutativity of Toeplitz and Hankel Operators
As one application of Proposition 5, we have the following result.
Proposition 6.  Let . Then,  if and only if one of the following statements holds: (a) or  are constants and .(b) or  and  or  are not constant and there are some constants  satisfying  such that
Proof. The sufficiency is easy to check and in what follows we prove the necessity:(a)If  and  both are constants, then  is a harmonic function, so  becomes  which gives . In a similar argument,  and  are both constants.(b)Suppose that  is not constant and one of  and  is not constant. So, . It follows from Proposition 5 thatfor some constants  and . So,Now, if  is not constant, which means , then, by Proposition 5 again, we get that  is constant. By (40), we see that  is also constant, which is a contradiction. So,  is constant, which combined with (40) and (41) gives (39).
Suppose that  is not constant and one of  and  is not constant; then, similar arguments will give (39). The proof is complete.
By (9) and the above result, we can easily get the following two corollaries which have been proved using different methods in [14] and [15], respectively.
Corollary 7.  Let . Then, the following statements are equivalent: (a).(b).(c) is constant, or  is not constant, and there are constants  such that  and .
Corollary 8.  Let . Then, the following statements are equivalent: (a).(b).(c) is constant and , or  is not a constant, and there are constants  such that  and .
As another application of Proposition 5, we have the following.
Corollary 9.  Let ; then,  if and only if  if and only if  or .
Now, we generalize the above three corollaries to the cases for the general symbols. First, we characterize the commutativity of Toeplitz and Hankel operators.
Theorem 10.  Let . Then,  if and only if  if and only if one of the following statements holds: (a)If , then there are constants  such that ,  and, for each , (b)If , then there are constants  such that ,  and, for each , (c)If , then  and, for each , 
Proof. First, we prove the necessity. Note that by Proposition 5 we have , which means .
(a) If , then by Proposition 5 there are constants  such that ; this combines with  to get . So, by Corollary 7, we have . Now, by (23), we have for each , which combined with  will give (a) becauseand .
(b) If , then by Proposition 5 there are constants  such that ; this combines with  to get . So, by Corollary 7, we have . The left proof is similar to (a).
(c) Notice that, by Lemma 1,   means for each , so combining with (29), (33), and (46), we can get (c) easily.
The sufficiency is obvious by the above arguments. We complete the proof.
With similar and easier arguments, we can get the characterization for commuting of two Hankel operators.
Theorem 11.  Let . Then,  if and only if  if and only if one of the following statements holds: (a)If , then there are constants  such that ,  and, for each , (b)If , then there are constants  such that ,  and, for each , (c)If , then  and, for each , 
Now, we consider when the product of two Hankel operators equals another Hankel operator.
Theorem 12.  Let . Then,  if and only if  if and only if one of the following statements holds: (a) and, for each , (b) and, for each , 
Proof. First, assume . Then, by Proposition 5, we have  and , and the former one means that , so  or .
If , then . In this case, by Lemma 1,  for each  which gives (a).
If , then . In this case, by Lemma 1,  for each  which gives (b).
The converse is obvious. We complete the proof.
Since  with  or  in , then the following is an easy consequence of the above result which gives the semicommutativity of two Hankel operators.
Corollary 13.  Let . Then,  if and only if  if and only if one of the following statements holds: (a) and, for each , (b) and, for each , 
4. Essentially Commuting Toeplitz and Hankel Operators
Recall that Lemma 1 shows that, for ,  is at most rank one. It is also the same case for  when  by (9). Moreover, if  and  are the Poisson extensions of  and , respectively, then it is easy to see that  with . So,  with  being a finite rank operator, so by (29) and (33) we have the following result which is proved in [13].
Lemma 14.  Let  and ; then,  and  are both finite rank operators.
Now, we can obtain the conclusions about the compact or finite rank product of Toeplitz and Hankel operators.
Theorem 15.  Let ; then, the following statements are equivalent: (1) is compact.(2) is finite rank.(3) is compact.(4) is finite rank.(5) or .
Proof. First, note that, by (9), we have so  is always finite rank by Lemma 14. It follows from that  and .
In addition, Again, by Lemma 14, we see that  is compact or finite rank if and only if  is compact or finite rank; the latter one is equivalent to  by (14). Since  means  or , we get (5). The proof is complete.
Theorem 16.  Let ; then, the following statements are equivalent: (1) is compact.(2) is finite rank.(3) is compact.(4) is finite rank.(5) or .
Proof. By (9), we have so  and . In addition, So, by Lemma 14,  is compact or finite rank if and only if  is compact or finite rank, and the latter is equivalent to  by Lemma 2. Since  means  or , we get (5). The proof is complete.
The following is the easy conclusion of the above result.
Corollary 17.  Let ; then, the following statements are equivalent: (1) is compact.(2) is finite rank.(3) is compact.(4) is finite rank.(5) or .
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