We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated \((s, m)\)-\(P\)-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the Hermite-Hadamard type inequalities for coordinated \((s, m)\)-\(P\)-convex functions in an earlier article.

1. Introduction

Let \(f : I \to \mathbb{R}\) be a convex mapping. Then for any \(a, b \in I\) with \(a < b\), we have the following double inequality:

\[
\frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \tag{1}
\]

This celebrated inequality is known in the literature as the Hermite-Hadamard inequality. As we all know, some of the classical inequalities for means can be derived from (1) for appropriate particular selections of the mapping \(f\). Indeed, Hermite-Hadamard’s inequality (1) has already found many applications in mathematical analysis and optimization (see, for example, [1–8]).

In recent years, the applications of various properties of extended convex functions in establishing and improving Hermite-Hadamard type inequalities have attracted the attention of many researchers (see [10–15] and references cited therein).

In [16], Wu et al. established some Hermite-Hadamard type inequalities under the assumption that the function \(f\) is a coordinated \((s, m)\)-\(P\)-convex function. Motivated by the ideas of work [16], in this paper we study Hermite-Hadamard type inequalities related to the convexity of second-order mixed derivatives of \(f\). More precisely, we focus on establishing some new Hermite-Hadamard type inequalities for functions whose second-order mixed derivatives are coordinated \((s, m)\)-\(P\)-convex. For convenience of our discussions in subsequent sections, we begin with recalling some relevant definitions.

Definition 1. A function \(f : I \subseteq \mathbb{R} \to \mathbb{R}\) is said to be convex function if

\[
f (tx + (1-t)y) \leq tf(x) + (1-t)f(y) \tag{2}
\]

holds for all \(x, y \in I\) and \(t \in [0, 1]\).

Definition 2 (see [5]). We say that a map \(f : I \subseteq \mathbb{R} \to \mathbb{R}\) belongs to the class \(P(I)\) if it is nonnegative and for all \(x, y \in I\) and \(t \in [0, 1]\) satisfies the following inequality:

\[
f (tx + (1-t)y) \leq f(x) + f(y). \tag{3}
\]

In [17], the concept of \(m\)-convex functions was introduced as follows.
Definition 3 (see [17]). For \(f : [0, b] \subseteq \mathbb{R}_0 = [0, +\infty) \rightarrow \mathbb{R} \) and \(m \in (0, 1) \), if
\[
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y)
\] is valid for all \(x, y \in [0, b] \) and \(t \in [0, 1] \), then we say that \(f \) is a \(m \)-convex function on \([0, b]\).

In [18], the concept of \(s \)-convex functions was presented as follows.

Definition 4 (see [18]). Let \(s \in (0, 1] \). A function \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is said to be \(s \)-convex (in the second sense) if
\[
f(tx + (1-t)y) \leq t^s f(x) + (1-t)^s f(y)
\] holds for all \(x, y \in I \) and \(t \in [0, 1] \).

Definition 5 (see [19]). For \((s, m) \in (0, 1] \times (0, 1] \), a function \(f : [0, b] \rightarrow \mathbb{R} \) is said to be \((s, m)\)-convex if
\[
f(tx + m(1-t)y) \leq t^s f(x) + m(1-t)^s f(y)
\] holds for all \(x, y \in [0, b] \) and \(t \in [0, 1] \).

Definition 6 (see [20]). For some \(s \in [-1, 1] \), a function \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is said to be extended \(s \)-convex if
\[
f(tx + (1-t)y) \leq t^s f(x) + (1-t)^s f(y)
\] is valid for all \(x, y \in I \) and \(t \in (0, 1) \).

Dragomir [21] and Dragomir and Pearce [22] considered the convexity of a function on the coordinates and put forward the following definition.

Definition 7 (see [21, 22]). A function \(f : \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) is said to be convex on the coordinates on \(\Delta \) with \(a < b \) and \(c < d \) if the partial functions
\[
f_y : [a, b] \rightarrow \mathbb{R},

f_y(u) = f(u, y),

f_x : [c, d] \rightarrow \mathbb{R},

f_x(v) = f(x, v),
\]
are convex for all \(x \in (a, b) \) and \(y \in (c, d) \).

It should be noted that a formal definition for coordinated convex functions is stated as follows.

Definition 8 (see [21, 22]). A function \(f : \Delta = [a, b] \times [c, d] \subseteq \mathbb{R}^2 \rightarrow \mathbb{R} \) is said to be convex on the coordinates on \(\Delta \) with \(a < b \) and \(c < d \) if the partial function
\[
f(tx + (1-t)z, \lambda y + (1-\lambda)w)
\]
\[
\leq t\lambda f(x, y) + t(1-\lambda) f(x, w) + (1-t)\lambda f(z, y) + (1-t)(1-\lambda) f(z, w)
\] holds for all \(t, \lambda \in [0, 1], (x, y, z, w) \in \Delta \).

Definition 9 (see [16]). For some \(m \in (0, 1] \) and \(s \in [-1, 1] \), a function \(f : [0, b] \times [c, d] \rightarrow \mathbb{R} \) is said to be coordinated \((s, m)\)-\(P \)-convex on \([0, b] \times [c, d] \) with \(0 < b \) and \(c < d \), if
\[
f(tx + m(1-t)z, \lambda y + (1-\lambda)w)
\]
\[
\leq t^s [f(x, y) + f(x, w)]
\]
\[
+ m(1-t)^s [f(z, y) + f(z, w)]
\]
holds for all \(t \in (0, 1), \lambda \in (0, 1] \) and \((x, y), (z, w) \in [0, b] \times [c, d] \).

Dragomir [21] and Dragomir and Pearce [22] established the following result.

Theorem 10 (see [21, 22]). Let \(f : \Delta = [a, b] \times [c, d] \) be convex on the coordinates on \(\Delta = [a, b] \times [c, d] \) with \(a < b \) and \(c < d \).

Then, one has the inequalities:
\[
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2} \left[\frac{1}{b-a} \int_a^b f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2}, y\right) dy \right]
\]
\[
+ \frac{1}{d-c} \left[\int_c^d f\left(\frac{a+b}{2}, y\right) dy \right]
\]
\[
\leq \frac{1}{4} \left[\frac{1}{b-a} \left(\int_a^b f(x, c) dx + \int_a^b f(x, d) dx \right) + \frac{1}{d-c} \left(\int_c^d f(a, y) dy + \int_c^d f(b, y) dy \right) \right]
\]
\[
\leq \frac{f(a,c) + f(b,c) + f(a,d) + f(b,d)}{4}.
\]
\[-\frac{1}{d-c} \int_c^d f\left(\frac{a+b}{2}, y\right) dy = (b-a)(d-c)\]

\[
\cdot \int_0^1 \int_0^1 K(t, \lambda) \frac{\partial^2}{\partial x \partial y} f(ta + (1-t)b, \lambda c + (1-\lambda)d) dt \, d\lambda,
\]

(12)

where

\[
K(t, \lambda) = \begin{cases} t\lambda, & (t, \lambda) \in \left[0, \frac{1}{2}\right] \times \left[0, \frac{1}{2}\right], \\ t(\lambda-1), & (t, \lambda) \in \left[0, \frac{1}{2}\right] \times \left(\frac{1}{2}, 1\right], \\ (t-1)\lambda, & (t, \lambda) \in \left(\frac{1}{2}, 1\right] \times \left[0, \frac{1}{2}\right], \\ (t-1)(\lambda-1), & (t, \lambda) \in \left(\frac{1}{2}, 1\right] \times \left(\frac{1}{2}, 1\right].
\]

(13)

3. Main Results

In this section, we establish some Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated \((s, m)\)-co-\(\beta\)-convex on the plane \(\mathbb{R}_0 \times \mathbb{R}\).

Theorem 12. Suppose that the function \(f : \mathbb{R}_0 \times \mathbb{R} \rightarrow \mathbb{R}\) has continuous partial derivatives of the second-order and \(\frac{\partial^2 f}{\partial x \partial y} \in L_1([0, b^* / m] \times [c, d])\) with \(0 \leq a < b \leq b^*, c < d,\) for some \(m \in (0, 1)\) and \(s \in [-1, 1].\) If \(\frac{\partial^2 f}{\partial x \partial y}\) is coordinated \((s, m)\)-\(\beta\)-convex functions on \([0, b^* / m] \times [c, d]\) for \(q \geq 1,\) then

\[
|P(a, b, c, d)| \leq \frac{(b-a)(d-c)}{2^s} \left\{ \frac{1}{s+2} \Delta_1(q) \right. + \left. \frac{m}{s+2} \Delta_2(m, q) \right\}^{1/q}
\]

(14)

\[
\times \left\{ \left[\int_0^{1/2} \int_0^{1/2} t\lambda \left| \frac{\partial^2 f}{\partial x \partial y} f(ta + (1-t)b, \lambda c + (1-\lambda)d) \right|^q dt \, d\lambda \right]^{1/q}
\]

(17)

where

\[
\Delta_1(q) = \left| \frac{\partial^2 f(a, c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f(a, d)}{\partial x \partial y} \right|^q,
\]

\[
\Delta_2(m, q) = \left| \frac{\partial^2 f(b/m, c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f(b/m, d)}{\partial x \partial y} \right|^q.
\]

Proof. By Lemma 11 and Hölder’s integral inequality, we have

\[
|P(a, b, c, d)| \leq (b-a)(d-c) \left(\int_0^{1/2} \int_0^{1/2} K(t, \lambda) \, dt \, d\lambda \right)^{1-1/q}
\]

(11) if \(s \in (-1, 1],\) we have

\[
|P(a, b, c, d)| \leq \frac{(b-a)(d-c)}{2^s} \left\{ \frac{1}{s+2} \Delta_1(q) \right. + \left. \frac{m}{s+2} \Delta_2(m, q) \right\}^{1/q}
\]

(14)

\[
\times \left\{ \left[\int_0^{1/2} \int_0^{1/2} t\lambda \left| \frac{\partial^2 f(ta + (1-t)b, \lambda c + (1-\lambda)d) \right|^q dt \, d\lambda \right]^{1/q}
\]

(17)

(2) if \(s = -1,\) we have

\[
|P(a, b, c, d)| \leq \frac{(b-a)(d-c)}{8} \left\{ \left[\Delta_1(q) + m(2 \ln 2 - 1) \Delta_2(m, q) \right]^{1/q}
\]

\[
+ \left[(2 \ln 2 - 1) \Delta_1(q) + m \Delta_2(m, q) \right]^{1/q} \right\},
\]

(15)

where

\[
\Delta_1(q) = \left| \frac{\partial^2 f(a, c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f(a, d)}{\partial x \partial y} \right|^q,
\]

\[
\Delta_2(m, q) = \left| \frac{\partial^2 f(b/m, c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f(b/m, d)}{\partial x \partial y} \right|^q.
\]

Proof. By Lemma 11 and Hölder’s integral inequality, we have

\[
|P(a, b, c, d)| \leq (b-a)(d-c) \left(\int_0^{1/2} \int_0^{1/2} K(t, \lambda) \, dt \, d\lambda \right)^{1-1/q}
\]

(11) if \(s \in (-1, 1],\) we have

\[
|P(a, b, c, d)| \leq \frac{(b-a)(d-c)}{2^s} \left\{ \frac{1}{s+2} \Delta_1(q) \right. + \left. \frac{m}{s+2} \Delta_2(m, q) \right\}^{1/q}
\]

(14)

\[
\times \left\{ \left[\int_0^{1/2} \int_0^{1/2} t\lambda \left| \frac{\partial^2 f(ta + (1-t)b, \lambda c + (1-\lambda)d) \right|^q dt \, d\lambda \right]^{1/q}
\]

(17)

(2) if \(s = -1,\) we have

\[
|P(a, b, c, d)| \leq \frac{(b-a)(d-c)}{8} \left\{ \left[\Delta_1(q) + m(2 \ln 2 - 1) \Delta_2(m, q) \right]^{1/q}
\]

\[
+ \left[(2 \ln 2 - 1) \Delta_1(q) + m \Delta_2(m, q) \right]^{1/q} \right\},
\]

(15)

where

\[
\Delta_1(q) = \left| \frac{\partial^2 f(a, c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f(a, d)}{\partial x \partial y} \right|^q,
\]

\[
\Delta_2(m, q) = \left| \frac{\partial^2 f(b/m, c)}{\partial x \partial y} \right|^q + \left| \frac{\partial^2 f(b/m, d)}{\partial x \partial y} \right|^q.
\]
A straightforward computation gives
\[
\int_0^{1/2} \lambda \, d\lambda = \int_0^{1} (1 - \lambda) \, d\lambda = \frac{1}{8},
\]
\[
\int_0^{1/2} t^{1/2} \, dt = \int_0^{1/2} (1 - t)^{1/2} \, dt = \frac{2^{s+2} - s - 3}{2^{s+5} (s + 2)} \Delta_2 (m, q) \quad \text{for } s \in (-1, 1),
\]
\[
\int_0^{1/2} t (1 - t)^{1/2} \, dt = \int_0^{1/2} (1 - t) t^{1/2} \, dt = \frac{2^{s+2} - s - 3}{2^{s+5} (s + 1) (s + 2)} \Delta_2 (m, q),
\]
(18)
\[
\int_0^{1/2} t^{-1} \, dt = \int_0^{1/2} (1 - t)^{-1} \, dt = \frac{1}{2},
\]
\[
\int_0^{1/2} t (1 - t)^{-1} \, dt = \int_0^{1/2} (1 - t) t^{-1} \, dt = \ln 2 - \frac{1}{2},
\]
\[
\int_0^{1/2} \int_0^{1/2} |K(t, \lambda)| \, dt \, d\lambda = \frac{1}{16}.
\]

Now, by using the coordinated \((s, m)\)-P-convexity of \(|\partial^2 f/\partial x \partial y|^q\), it follows that if \(-1 < s \leq 1\), we have
\[
\int_0^{1/2} \int_0^{1/2} t \lambda \left| \frac{\partial^2}{\partial x \partial y} f (ta + (1 - t)b, \lambda c + (1 - \lambda)d) \right|^q \, dt \, d\lambda \leq \frac{1}{16} [\Delta_1 (q) + m (2 \ln 2 - 1) \Delta_2 (m, q)],
\]
(19)
and if \(s = -1\), we have
\[
\int_0^{1/2} \int_0^{1/2} t \lambda \left| \frac{\partial^2}{\partial x \partial y} f (ta + (1 - t)b, \lambda c + (1 - \lambda)d) \right|^q \, dt \, d\lambda \leq \frac{1}{16} [\Delta_1 (q) + m (2 \ln 2 - 1) \Delta_2 (m, q)].
\]
(20)

By a similar argument, we obtain
\[
\int_{1/2}^{1} \int_0^{1/2} t (1 - t) \, dt \lambda \left| \frac{\partial^2}{\partial x \partial y} f (ta + (1 - t)b, \lambda c + (1 - \lambda)d) \right|^q \, dt \, d\lambda \leq \frac{1}{2^{s+3}} \Delta_1 (q) + m \frac{2^{s+2} - s - 3}{(s + 1) (s + 2)} \Delta_2 (m, q), \quad -1 < s \leq 1,
\]
\[
\int_{1/2}^{1} \int_0^{1/2} t (1 - t) \, dt \lambda \left| \frac{\partial^2}{\partial x \partial y} f (ta + (1 - t)b, \lambda c + (1 - \lambda)d) \right|^q \, dt \, d\lambda \leq \frac{1}{2^{s+3}} \Delta_1 (q) + m \frac{2^{s+2} - s - 3}{(s + 1) (s + 2)} \Delta_2 (m, q), \quad s = -1,
\]
(21)

Applying (18) and inequalities (19)–(21) into inequality (17), we get (14) and (15). This completes the proof of Theorem 12. \(\square\)

Corollary 13. Under the assumptions of Theorem 12, if \(q = 1\), then
\[
(1) \text{if } s \in (-1, 1], \quad |P(a, b, c, d)| \leq \frac{(b - a) (d - c) (2^{s+1} - 1)}{2^{s+3} (s + 1) (s + 2)} \left[\Delta_1 (1) + m \Delta_2 (m, 1) \right],
\]
(22)
\[
(2) \text{if } s = -1, \quad |P(a, b, c, d)| \leq \frac{(b - a) (d - c) \ln 2}{4} \left[\Delta_1 (1) + m \Delta_2 (m, 1) \right].
\]
(23)

Corollary 14. Under the assumptions of Theorem 12, if \(q = m = 1\), then
\[
(1) \text{if } s \in (-1, 1], \quad |P(a, b, c, d)| \leq \frac{(b - a) (d - c) (2^{s+1} - 1)}{2^{s+3} (s + 1) (s + 2)} \times \left[\left| \frac{\partial^2 f (a, c)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f (a, d)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f (b, c)}{\partial x \partial y} \right| \right] \left[\left| \frac{\partial^2 f (a, c)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f (a, d)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f (b, c)}{\partial x \partial y} \right| \right],
\]
(24)
\[
(2) \text{if } s = -1, \quad |P(a, b, c, d)| \leq \frac{(b - a) (d - c) \ln 2}{4} \times \left[\left| \frac{\partial^2 f (a, c)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f (a, d)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f (b, c)}{\partial x \partial y} \right| \right].
\]
(25)
Furthermore, if \(q = m = 1, s = 0 \), then
\[
\begin{align*}
|P(a, b, c, d)| & \leq \frac{(b - a) (d - c)}{16} \times \left| \frac{\partial^2 f(a, c)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f(b, c)}{\partial x \partial y} \right| + \left| \frac{\partial^2 f(b, d)}{\partial x \partial y} \right| .
\end{align*}
\]
(26)

Theorem 15. Suppose that the function \(f: \mathbb{R}_0 \times \mathbb{R} \to \mathbb{R} \) has continuous partial derivatives of the second-order and \(\partial^2 f/\partial x \partial y \in L_1([0, b^*/m] \times [c, d]) \) with \(0 \leq a < b \leq b^*, c < d, \) and \(0 \leq r \leq q, -1 < \ell \leq q. \) If \(|\partial^2 f/\partial x \partial y|^q \) is coordinated \((s, m)-P\)-convex functions on \([0, b^*/m] \times [c, d]\) for some \(m \in (0, 1], s \in (-1, 1], \) and \(q > 1, \) then
\[
|P(a, b, c, d)| \leq (b - a) (d - c)
\]
\[
\times \left\{ \frac{\Delta_1(q)}{2^{r+1} (r + s + 1)} + 2^{-r} m \Delta_2(m, q) \frac{r}{r + 1} \left(\begin{array}{c} 1 \\ + \end{array} \right) \right\}^{1/q},
\]
(27)
where \(\Delta_1(q) \) and \(\Delta_2(m, q) \) are defined as in (16), and \(B(\alpha, \beta) \) is the beta function defined by
\[
B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} \, dt, \quad \alpha, \beta > 0,
\]
(28)
and \(2F_1(c, d, e, z) \) is the hypergeometric function defined by
\[
2F_1(c, d, e, z) = \frac{\Gamma(e)}{\Gamma(d) \Gamma(e - d)} \int_0^1 t^{e - d - 1} (1 - zt)^{-c} \, dt,
\]
(29)
for \(e > d > 0, |z| < 1, c \in \mathbb{R}, u > 0. \)

Proof. Using Lemma 11 and Hölder’s integral inequality, we obtain
\[
|P(a, b, c, d)| \leq (b - a) (d - c)
\]
\[
\times \left\{ \left(\frac{\Delta_1(q)}{2^{r+1} (r + s + 1)} + 2^{-r} m \Delta_2(m, q) \frac{r}{r + 1} \right)^{1/q}
\right\},
\]
\[
\times \left\{ \left(\frac{\Delta_1(q)}{2^{r+1} (r + s + 1)} + 2^{-r} m \Delta_2(m, q) \frac{r}{r + 1} \right)^{1/q}
\right\},
\]
\[
\times \left\{ \left(\frac{\Delta_1(q)}{2^{r+1} (r + s + 1)} + 2^{-r} m \Delta_2(m, q) \frac{r}{r + 1} \right)^{1/q}
\right\},
\]
\[
\times \left\{ \left(\frac{\Delta_1(q)}{2^{r+1} (r + s + 1)} + 2^{-r} m \Delta_2(m, q) \frac{r}{r + 1} \right)^{1/q}
\right\},
\]
(30)
After some calculations, it follows that
\[
\int_0^{1/2} \int_0^{1/2} t^{(q-r)/(q-1)} (1-\lambda)^{q-1} \, dt \, d\lambda \\
= \int_0^{1/2} \int_0^{1/2} t^{(q-r)/(q-1)} (1-\lambda)^{q-1} \, dt \, d\lambda \\
= \int_0^{1/2} \int_0^{1/2} (1-t)^{(q-r)/(q-1)} (1-\lambda)^{q-1} \, dt \, d\lambda \\
= \int_0^{1/2} \int_0^{1/2} (1-t)^{(q-r)/(q-1)} (1-\lambda)^{q-1} \, dt \, d\lambda \\
= \frac{(q-1)^2}{(2q-r-1)(2q-\ell-1)} \times 2^{-2(4q-r-\ell-2)/(q-1)}.
\]
From the coordinated \((s, m)\)-\(P\)-convexity of \(|\frac{\partial^2 f}{\partial x \partial y}|^q\), we deduce that
\[
\int_0^{1/2} \int_0^{1/2} t^{(q-1)/2} \lambda^q \left| \frac{\partial^2}{\partial x \partial y} \right|^q \\
\cdot f (ta + (1-t) b, \lambda c + (1-\lambda) d) \, dt \, d\lambda \\
\leq 2^{-2(\ell+1)} \int_0^{1/2} t^{(q-1)/2} \left[t^{(q-1)/2} \Delta_1(q) + m(1-t)^{\ell} \right] \\
\cdot \Delta_2 (m, q) \, dt \\
= 2^{-2(\ell+1)} \left[\frac{\Delta_1(q)}{2^{\ell+1}(r+s+1)} + \frac{\Delta_1(q)+m\Delta_2(m,q)}{r+1} \right] \\
\int_0^{1/2} (1-t)^{\ell} (1-\lambda)^{q-1} \left| \frac{\partial^2}{\partial x \partial y} \right|^q \\
\cdot f (ta + (1-t) b, \lambda c + (1-\lambda) d) \, dt \, d\lambda \\
\leq 2^{-2(\ell+1)} \left[B(r+1,s+1) - 2^{-2} 2F_1 \left(-s, r+1, s+2, 2^{-1} \right) \right] \\
\cdot \left| \frac{\partial^2}{\partial x \partial y} \right|^q \\
\cdot f (ta + (1-t) b, \lambda c + (1-\lambda) d) \, dt \, d\lambda \\
\leq 2^{-2(\ell+1)} \left[B(r+1,s+1) - 2^{-2} 2F_1 \left(-s, r+1, s+2, 2^{-1} \right) \right] \times \left[\frac{\Delta_1(q)+m\Delta_2(m,q)}{r+1} \right].
\]

Applying (31) and inequalities (32) into inequality (30), we get inequality (27). The proof of Theorem 15 is complete.

Corollary 16. Under the assumptions of Theorem 15, if \(r = 0\), then
\[
|P (a, b, c, d)| \leq \frac{(b-a)(d-c)}{[2^{\ell+1}(s+1)(\ell+1)]^{1/q}} \left(\frac{q-1}{2q-\ell-1} \right)^{1-1/q} \\
\times \left[\left(\frac{1}{2} \right)^{(q-1)/(q-1)} \left(\frac{1}{2q-\ell-1} \right)^{(4q-\ell-2)/(q-1)} \right]^{1-1/q} \\
\times \left[\left(\frac{1}{2} \right)^{(q-1)/(q-1)} \left(\frac{1}{2q-\ell-1} \right)^{(4q-\ell-2)/(q-1)} \right]^{1-1/q} \\
\times \left[\frac{\Delta_1(q)+m\Delta_2(m,q)}{r+1} \right]^{1-1/q}.
\]

In particular, if \(r = \ell = 0\), then
\[
|P (a, b, c, d)| \\
\leq \frac{(b-a)(d-c)}{[2^{\ell+1}(s+1)(\ell+1)]^{1/q}} \left(\frac{q-1}{2q-\ell-1} \right)^{1-1/q} \\
\times \left[\left(\frac{1}{2} \right)^{(q-1)/(q-1)} \left(\frac{1}{2q-\ell-1} \right)^{(4q-\ell-2)/(q-1)} \right]^{1-1/q} \\
\times \left[\left(\frac{1}{2} \right)^{(q-1)/(q-1)} \left(\frac{1}{2q-\ell-1} \right)^{(4q-\ell-2)/(q-1)} \right]^{1-1/q} \\
\times \left[\frac{\Delta_1(q)+m\Delta_2(m,q)}{r+1} \right]^{1-1/q}.
\]

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
All authors read and approved the final manuscript.

Acknowledgments
This work was partially supported by the Natural Science Foundation of Fujian Province of China (no. 201601023),
the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China (no. NJZZ18154), and the Science Research Fund of Inner Mongolia University for Nationalities (nos. NMDGP1713 and NMDYB1748).

References
