Research Article

Numerical Ranges of Normal Weighted Composition Operators on the Fock Space of \(C^N\)

Lili Lang\(^1\) and Liankuo Zhao\(^2\)

\(^1\)Mathematics Section, Changzhi Medical College, 046000 Changzhi, China
\(^2\)School of Mathematics and Computer Science, Shanxi Normal University, 041004 Linfen, China

Correspondence should be addressed to Liankuo Zhao; liankuozhao@sina.com

Received 24 April 2018; Revised 9 July 2018; Accepted 1 August 2018; Published 3 September 2018

Academic Editor: Eva A. Gallardo Gutiérrez

Copyright © 2018 Lili Lang and Liankuo Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Numerical ranges of normal weighted composition operators on the Fock space of \(C^N\) are completely characterized. The main result shows that numerical ranges of such operators are closely related to their composition symbols.

1. Introduction

Inspired by results on numerical ranges of (weighted) composition operators on Hardy space [1], in this paper we give a complete characterization of numerical ranges of normal weighted composition operators on the Fock space of \(C^N\) (\(N \geq 1\)), the \(N\)-dimensional complex Euclidean space.

Recall that for a bounded operator \(T\) on a complex Hilbert space \(H\), the numerical range \(W(T)\) of \(T\) is defined as

\[
W(T) = \{\langle Tf, f \rangle_H \mid f \in H, \|f\|_H = 1\}.
\]

The Fock space \(F^2\) over \(C^N\) is the space of analytic functions \(f\) on \(C^N\) with

\[
\|f\|^2 = \frac{1}{(2\pi)^N} \int_{C^N} |f(z)|^2 \exp\left(-\frac{|z|^2}{2}\right) dm_{2N}(z),
\]

where \(|z|\) is the norm for \(z \in C^N\) and \(dm_{2N}\) denotes usual Lebesgue measure on \(C^N\). It is well known that \(F^2\) is a reproducing kernel Hilbert space with inner product

\[
\langle f, g \rangle = \frac{1}{(2\pi)^N} \int_{C^N} f(z)\overline{g(z)} \exp\left(-\frac{|z|^2}{2}\right) dm_{2N}(z),
\]

\(f, g \in F^2\)

and reproducing kernel functions

\[
K_w(z) = \exp\left(\frac{\langle z, w \rangle}{2}\right), \quad w, z \in C^N,
\]

where \(\langle z, w \rangle\) denotes the inner product for \(z, w \in C^N\) and \(|z|^2 = \langle z, z \rangle\). Usually, \(k_w\) denotes the normalization of \(K_w\),

\[
k_w(z) = \frac{K_w(z)}{\|K_w\|} = \exp\left(\frac{\langle z, w \rangle}{2} - \frac{|w|^2}{4}\right).
\]

A weighted composition operator \(C_{\varphi, \psi}\) on \(F^2\) with \(\psi\) an analytic function on \(C^N\) and \(\varphi\) an analytic self-map of \(C^N\) is defined as

\[
C_{\varphi, \psi} f = \psi(f \circ \varphi), \quad f \in F^2.
\]

Weighted composition operators on \(F^2\) have been studied extensively. It is noteworthy that weighted composition operators on \(F^2\) of \(C\) are closely related to some important transforms on \(L^2(\mathbb{R})\) [2].

In [3], normal weighted composition operators on \(F^2\) are characterized completely. We have the following result.
Theorem 1. Let \(\psi \) be a nonzero analytic function on \(\mathbb{C}^N \) and \(\varphi \) be an analytic self-map of \(\mathbb{C}^N \). Then \(C_{\varphi, \psi} \) is a bounded normal operator on \(\mathbb{H}^2 \) if and only if
\[
\varphi(z) = Az + b, \\
\psi(z) = sK_\varphi(z),
\]
where \(A \) is a normal operator on \(\mathbb{C}^N \) with \(|A| \leq 1 \), \(b, c \in \mathbb{C}^N \) with \((I-A)c = (I-A^*)b \), \(|b| = |c| \), and \(s \) is a nonzero constant. Furthermore
\[
\langle A\xi, b + Ac \rangle = 0
\]
whenever \(|A\xi| = |\xi| \) for \(\xi \in \mathbb{C}^N \).

For the presentation of our main result, we make some notations.

Let \(A \) be an operator on \(\mathbb{C}^N \), \(|A| \) means the norm of \(A \).
\(\ker A = \{ z \in \mathbb{C}^N \mid Az = 0 \} \) and \(\text{ran} A = \{ Az \mid z \in \mathbb{C}^N \} \).

2. Proof of Main Result

In this section, we give the proof of our main result, Theorem 2. First, we recall some known results on numerical ranges of operators and a class of very important unitary operators on the Fock space.

Let \(T \) be a bounded operator on a complex Hilbert space \(\mathbb{H} \). Denote \(\sigma(T) \) with the spectrum of \(T \) and \(\sigma_r(T) \) the eigenvalues of \(T \). \(u \in \sigma_r(T) \) if and only if there exists \(f \neq 0 \) such that \(Tf = uf \), and \(f \) is called an eigenvector of \(T \) corresponding to the eigenvalue \(u \). It is well known that \(\sigma_r(T) \subseteq W(T) \subseteq \mathbb{D}(0, |T|) \).

For \(\rho \in \mathbb{C}^N \), denote \(\varphi_\rho(z) = z - \rho \), \(U_\rho = C_{\psi, \varphi_\rho} \). Then \(U_\rho \) is a unitary operator on \(\mathbb{H}^2 \) and \(U_\rho^{-1} = U_{-\rho} \).

For convenience, we make some notations.

Let \(\psi \) be an analytic function on \(\mathbb{C}^N \) and \(\varphi \) be an analytic mapping of \(\mathbb{C}^N \). Denote
\[
\Phi_p(z) = (\varphi_\rho \circ \varphi \circ \varphi_{-\rho})(z)
\]
and
\[
\Psi_p(z) = (k_{-p} \cdot (\varphi \circ \varphi_{-p}) \cdot (k_p \circ \varphi \circ \varphi_{-p}))(z).
\]

Then
\[
U_p \circ C_{\psi, \varphi} \circ U_p = C_{\varphi_{k_p \circ \varphi \circ \varphi_{-p}}} \circ (k_p \circ \varphi \circ \varphi_{-p} \circ \varphi_{k_p \circ \varphi \circ \varphi_{-p}}) = C_{\varphi, \varphi_p} \circ (k_p \circ \varphi \circ \varphi_{-p})
\]
and \(C_{\psi, \varphi} \) is unitarily equivalent to \(C_{\varphi, \varphi_p} \).

Let \(\varphi(z) = Az + b, \psi(z) = K_\varphi(z) \). Then
\[
\Phi_p(z) = Az + (b - (I - A)p)
\]
and
\[
\Psi_p(z) = \exp\left(\frac{\langle z, c - (I - A^*)p \rangle}{2} + \frac{\langle p, c \rangle + \langle b, p \rangle - \langle (I - A)p, p \rangle}{2}\right).
\]

Now we consider normal weighted composition operators on \(\mathbb{H}^2 \) from a different view, which will simplify the characterization of such operators’ numerical ranges.

For an operator \(A \) on \(\mathbb{C}^N \), let \(C_A \) denote the composition operator defined by \(C_A f(z) = f(Az) \).

Theorem 3. Let \(C_{\psi, \varphi} \) be a bounded normal operator on \(\mathbb{H}^2 \) with \(\varphi(z) = Az + b, \psi(z) = K_\varphi(z) \).

(1) If \(b \in \text{ran}(I - A) \), then \(C_{\psi, \varphi} \) is unitarily equivalent to \(\exp(p, c/2)C_A \) with \(p \in (I - A)^{-1}b \).

(2) If \(b \notin \text{ran}(I - A) \), then for any \(t \in \mathbb{R} \), \(C_{\psi, \varphi} \) is unitarily equivalent to \(e^{bt}C_{\psi, \varphi} \).

(3) If \(b \notin \text{ran}(I - A) \) and \(b = b_1 + b_2 \) with \(b_1 \in \text{ran}(I - A)^{-1}, b_2 \in \text{ran}(I - A) \), then \(C_{\psi, \varphi} \) is unitarily equivalent to \(\exp((p, c) + (b_1, p))/2)C_{\psi, \varphi_{-b_1}} \), where \(\varphi_{-b_1}(z) = Az + b_1, \psi(z) = K_{-b_1}(z) \) and \(p \in (I - A)^{-1}b_2 \).
Proof. (1) If \(b \in \text{ran}(I - A) \), then there exists \(p \in \mathbb{C}^N \) such that
\[
(I - A) p = b.
\]
By Theorem 1, \((I - A)c = (I - A^*)b \). So we have
\[
(I - A)c = (I - A^*)b = (I - A)^*(I - A) p = (I - A)(I - A^*) p.
\]
I.e., \((I - A)(c - (I - A^*)p) = 0\). It follows that
\[
c - (I - A^*) p \in \ker(I - A).
\]
(18)
For any \(\xi \in \ker(I - A) \), \(A^*\xi = \xi \) and by Proposition 3.1 in \([11, \text{Ch I}]\), \(A^*\xi = \xi \). Since \(\text{ran}(I - A)^\perp = \ker(I - A^*) \), \(\xi \perp b \). By Theorem 1, \(\langle A\xi, b + Ac \rangle = 0 \). So we have
\[
A\xi = \xi \quad \text{and} \quad (I - A)^* b = (I - A^*)c.
\]
(19)
(2) If \(b \notin \text{ran}(I - A) \), then \(b \neq 0 \) and there exist \(b_1 \in \text{ran}(I - A)^\perp \) and \(b_2 \in \text{ran}(I - A) \) such that
\[
b = b_1 + b_2.
\]
(23)
Obviously, \(b_1 \neq 0 \).
For any \(t \in \mathbb{R} \), let \(p = itb_1 \), \(i \) is the imaginary unit. Notice \(\ker(I - A) = \ker(I - A^*) = \text{ran}(I - A)^\perp \) by Proposition 3.1 in \([11, \text{Ch I}]\), so we have
\[
\]
But
\[
\langle c - (I - A^*) p, \xi \rangle = \langle c, \xi \rangle - \langle p, \xi \rangle + \langle p, A\xi \rangle = \langle c, \xi \rangle = 0,
\]
(20)
which implies that
\[
c - (I - A^*) p \perp \ker(I - A).
\]
(21)
It follows from (18) and (21) that
\[
(I - A^*) p = c.
\]
(22)
By formulas (14) and (15), \(\Phi_p(z) = Az + b \). So \(C_{\psi, \theta_p} \) is unitarily equivalent to \(C_{\psi, \theta_p} \).
(3) Since \(b_2 \in \text{ran}(I - A) \), there exists \(p \in \mathbb{C}^N \) such that
\[
(I - A) p = b_2.
\]
(27)
By Theorem 1, \(A \) is normal and \((I - A)c = (I - A^*)b \). We have
\[
\langle c - (I - A^*) p, \xi \rangle = \langle c, \xi \rangle - \langle (I - A^*) p, \xi \rangle + \langle b_1, \xi \rangle = \langle c, \xi \rangle - \langle p, (I - A) \xi \rangle + \langle b_1, \xi \rangle = \langle c, \xi \rangle + \langle b_1, \xi \rangle.
\]
(32)
So we have \((c - (I - A^*) p, b_1, \xi) = 0 \), which implies that
\[
c - (I - A^*) p + b_1 \perp \ker(I - A).
\]
(33)
It follows from (29) and (33) that
\[
c - (I - A^*) p + b_1 = 0.
\]
(34)
By formulas (14) and (15),
\[
\Phi_p(z) = Az + b_1,
\]
\[
\Psi_p(z) = \exp(\frac{\langle z, -b_1 \rangle}{2} + \langle p, c \rangle + \langle b_1, p \rangle) K_{\Phi_p}(z) = \exp(\frac{\langle p, c \rangle + \langle b_1, p \rangle}{2}) K_{\Phi_p}(z).
\]
(35)
So \(C_{\psi, \theta_p} \) is unitarily equivalent to \(\exp((\langle p, c \rangle + \langle b_1, p \rangle)/2) C_{\psi, \theta_p} \).
\[
\square
\]
For an analytic function φ on \mathbb{C}^N, it is well known that the composition operator C_φ on \mathcal{F}^2 is a normal operator if and only if $\varphi(z) = Az$ for some normal operator A on \mathbb{C}^N with $|A| \leq 1$. In fact, such operators are diagonalizable. In [8], the numerical ranges of such operators on Hardy space of \mathbb{D} are studied.

Lemma 4. Let A be a normal operator on \mathbb{C}^N with $|A| \leq 1$ and $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_N\}$. Then on \mathcal{F}^2, $\|C_A\| = 1$.

Proof. Since A is a normal operator on \mathbb{C}^N, there exists a unitary operator U on \mathbb{C}^N such that

$$U A U^* = \begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\vdots \\
\lambda_{k+1} \\
\vdots \\
\lambda_n
\end{pmatrix} = D (36)$$

Then $C_U C_A C_U^* = C_U$ and $\|C_A\| = \|C_D\|$.

For any $f \in \mathcal{F}^2$, let $f(z) = \sum_{\alpha \in \mathbb{N}_0^n} c(\alpha) z^\alpha$, then

$$(C_Df)(z) = f(Dz) = \sum_{\alpha \in \mathbb{N}_0^n} c(\alpha) \lambda^\alpha z^\alpha, (37)$$

where $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_N)$. Since $|\lambda^\alpha| \leq 1$, $\|C_Df\| \leq \|f\|$. It follows that $\|C_D\| \leq 1$. But $C_U 1 = 1$. So $\|C_D\| = 1$. \hfill \Box

Theorem 5. Let $C_{\psi_{\varphi,\psi}}$ be a bounded normal operator on \mathcal{F}^2 with $\varphi(z) = Az + b$, $\psi(z) = K_c(z)$.

(1) If $b \in \ker(I - A)$, then $\|C_{\psi_{\varphi,\psi}}\| = \|\varphi\|/2$.

(2) If $b \notin \ker(I - A)$ and $b = b_1 + b_2$ with $b_1 \in \ker(I - A)^\perp$, $b_2 \in \ker(I - A)$, then $\|C_{\psi_{\varphi,\psi}}\| = \varphi((\varphi, c) + (b_1, p))/2 + |b_1|^2/4$, where $p \in (I - A)^{-1}b_2$.

Proof. (1) The conclusion follows from Theorem 3 (1) and Lemma 4.

(2) By Theorem 3(3), $C_{\psi_{\varphi,\psi}}$ is unitarily equivalent to $\exp((\varphi, c) + (b_1, p))/2)C_{\psi_{\varphi,\psi}}$, with

$$\varphi_1(z) = Az + b_1, \quad \psi_1(z) = K_{-b_1}(z) (38)$$

and $p \in (I - A)^{-1}b_2$.

For any $f \in \mathcal{F}^2$,

$$\|C_{\psi_{\varphi,\psi}}f\|^2 = \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} \left| \varphi(z) f(\varphi_1(z)) \right|^2 \left(\frac{|z|^2}{2} \right) dm_{2N}(z)$$

$$= \exp \left(\frac{|b|^2}{2} \right) \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} \left| f(Az + b_1) \right|^2 \left(\frac{|z|^2}{2} \right) dm_{2N}(z)$$

$$= \exp \left(\frac{|b|^2}{2} \right) \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} \left| f(A(z - b_1) + b_1) \right|^2 \left(\frac{|z|^2}{2} \right) dm_{2N}(z)$$

$$= \exp \left(\frac{|b|^2}{2} \right) \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} \left| f(A(z - b_1) + b_1) \right|^2 \left(\frac{|z|^2}{2} \right) dm_{2N}(z)$$

(39)

Since $b_1 \in \ker(I - A)^\perp = \ker(I - A^*) = \ker(I - A)$, $b_1 = Ab_1$. Therefore,

$$\|C_{\psi_{\varphi,\psi}}f\|^2 = \exp \left(\frac{|b|^2}{2} \right) \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} \left| f(Az + b_1) \right|^2 \left(\frac{|z|^2}{2} \right) dm_{2N}(z)$$

$$= \exp \left(\frac{|b|^2}{2} \right) \|C_Af\|^2. (40)$$

It follows from Lemma 4 that $\|C_{\psi_{\varphi,\psi}}\| = \varphi((\varphi, c) + (b_1, p))/2 + |b_1|^2/4$. Hence

$$\|C_{\psi_{\varphi,\psi}}\| = \exp \left(\frac{(\varphi, c) + (b_1, p)}{2} + \frac{|b_1|^2}{4} \right). (41)$$

\hfill \Box

The following result is well known.

Lemma 6. Let A be a normal operator on \mathbb{C}^N, $|A| \leq 1$ and $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_N\}$. Then on \mathcal{F}^2,

$$\sigma_p(C_A) = \{\lambda^\alpha : \alpha \in \mathbb{N}_0^N \}, \quad \sigma(C_A) = \{\lambda^\alpha : \alpha \in \mathbb{N}_0^N \} = \sigma_p(C_A), (42)$$

where $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_N)$.

Theorem 7. Let A be a normal operator on \mathbb{C}^N, $|A| \leq 1$, and $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_N\}$. Then on \mathcal{F}^2, $W(C_A) = \text{co } \sigma_p(C_A)$.

Proof. Note that C_A is a normal operator on \mathbb{F}^2; we have
\[
\co\sigma_p(C_A) \subseteq W(C_A) \subseteq \overline{W(C_A)} = \co\sigma(C_A),
\]
(43)
If $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_N) = (0, 0, \cdots, 0)$, then $A = 0$. In this case, $\sigma(C_A) = \sigma_p(C_A) = [0, 1]$. By formula (43),
\[
W(C_A) = \co\sigma_p(C_A) = [0, 1].
\]
(44)
If $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_N) = (1, 1, \cdots, 1)$, then $A = I$. In this case, $\sigma(C_A) = \sigma_p(C_A) = \{1\}$. By formula (43),
\[
W(C_A) = \co\sigma_p(C_A) = [1].
\]
(45)
In the following, we assume $(0,0,\cdots,0) \neq (1,1,\cdots,1)$. We take the proof into several parts.

Case I. There exists $\lambda_j \in \sigma(A)$, $1 \leq j \leq N$, such that $|\lambda_j| = 1$; λ_j is not a root of 1.

It is well known that $\{\lambda_j^m\}_{m=0}^\infty$ is dense in \mathbb{T}. So we have
\[
D \subset \co \{\lambda_j^m\}_{m=0}^\infty \subset \co \sigma_p(C_A) \subset W(C_A)
\]
\[
\subset D(0,\norm{C_A}) = D,
\]
(46)
the last equality follows from Lemma 4.

For any $u \in \mathbb{T}$, if $u \in W(C_A)$, then by [1, lemma 2.3], $u \in \sigma_p(C_A)$ since $|u| = 1 = \norm{C_A}$. So
\[
W(C_A) \subset \bigcup \sigma_p(C_A) \subset \co \sigma_p(C_A).
\]
(47)
Therefore $W(C_A) = \co \sigma_p(C_A)$.

Case II. $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_N\} \subset (0, 1]$.

In this case, C_A is a positive operator on \mathbb{F}^2. Since $(\lambda_1, \lambda_2, \cdots, \lambda_N) \neq (1,1,\cdots,1)$, there exists λ_j, $1 \leq j \leq N$, $|\lambda_j| < 1$. Obviously, $1 \in \sigma_p(C_A)$ $\subset (0, 1]$. Since $\lim_{m \to \infty} \lambda_j^m = 0$, we have
\[
(0,1] = \co \sigma_p(C_A) \subset W(C_A) \subset \overline{W(C_A)} = \co \sigma(C_A)
\]
(48)
If there exists $f \in \mathbb{F}^2$ such that $\langle C_A f, f \rangle = 0$, then $C_A f = 0$ and hence $f = 0$. Therefore $0 \notin W(C_A)$. So $W(C_A) = \co \sigma(C_A) = [0, 1]$.

Case III. For any j, $1 \leq j \leq N$, either $|\lambda_j| < 1$ or λ_j is a root of 1, and there exists $\lambda_n \in \sigma(A)$, $1 \leq n \leq N$, $\lambda_n \neq (0, 1]$. Note that, in this case, $\sigma(C_A) = \overline{\co \sigma_p(C_A)} \subset \sigma_p(C_A) \cup \{0\}$. Since $|\lambda_n| < 1$ or λ_n is a root of 1 and $\lambda_n \notin (0, 1]$, we have
\[
0 \in \co \{\lambda_n^m\}_{m=0}^\infty \subset \co \sigma_p(C_A)
\]
(49)
So we obtain
\[
\co \sigma_p(C_A) \subset W(C_A) \subset \overline{W(C_A)} = \co \sigma(C_A)
\]
\[
\subset \co \sigma_p(C_A) \cup \{0\} \subset \co \sigma_p(C_A).
\]
(50)
It follows that $W(C_A) = \co \sigma_p(C_A)$.

Lastly, we give the proof of Theorem 2. Some ideas are derived from [1, 8].

Proof. (1) Since unitarily equivalent operators have the same numerical ranges, the conclusion follows from Theorems 3(1), and 7 and Lemma 6.

(2) Since $C_{\psi, \varphi}$ is normal, there exists $v \in \sigma(C_{\psi, \varphi})$ such that $|v| = \norm{C_{\psi, \varphi}}$. By Theorem 3(2), for any $t \in \mathbb{R}$, $e^{it} v \in \sigma(C_{\psi, \varphi})$. It follows that
\[
\{u \in C \mid \norm{u} = \norm{C_{\psi, \varphi}} \} \subset \sigma(C_{\psi, \varphi}).
\]
(51)
So we have
\[
W(C_{\psi, \varphi}) = \co \sigma(C_{\psi, \varphi}) = \co \{u \in C \mid \norm{u} = \norm{C_{\psi, \varphi}}\}
\]
\[
= D(0,\norm{C_{\psi, \varphi}}),
\]
(52)
If there exists $v \in \{u \in C \mid \norm{u} = \norm{C_{\psi, \varphi}}\}$ such that $v \in W(C_{\psi, \varphi})$, then by [1, Lemma 2.3] and Theorem 3(2), for any $t \in \mathbb{R}$, $e^{it} v \in \sigma(C_{\psi, \varphi})$, which implies that there is an uncountable collection of orthogonal vectors in \mathbb{F}^2 since $C_{\psi, \varphi}$ is normal and eigenvalues of $C_{\psi, \varphi}$ that correspond to distinct eigenvalues are orthogonal, a contradiction. So
\[
W(C_{\psi, \varphi}) \subset D(0,\norm{C_{\psi, \varphi}})
\]
(53)
and $W(C_{\psi, \varphi})$ is dense in $D(0,\norm{C_{\psi, \varphi}})$. Since $W(C_{\psi, \varphi})$ is convex, we must have $D(0,\norm{C_{\psi, \varphi}}) \subset W(C_{\psi, \varphi})$. Hence
\[
W(C_{\psi, \varphi}) = D(0,\norm{C_{\psi, \varphi}})
\]
\[
= \left\{0, \exp \left(\frac{\langle p, c \rangle + \langle b_1, p \rangle}{2} + \frac{|b_1|^2}{4}\right)\right\}
\]
(54)
by Theorem 5(2).

Remark 8. In Theorem 2(2), we can choose $p \in \ker(I - A)^{\perp}$ such that $(I - A)p = b_2$, and then $(b_1, p) = 0$ since $b_1 \in \text{ran}(I - A)^{\perp} = \ker(I - A)^{\perp} = \ker(I - A)$. So
\[
W(C_{\psi, \varphi}) = D\left(0, \exp \left(\frac{\langle p, c \rangle}{2} + \frac{|b_1|^2}{4}\right)\right),
\]
(55)
where $p \in (I - A)^{-1}b_2 \cap \ker(I - A)^{\perp}$.

Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work is supported by NSFC (11771401) and CSC (201608140025). Partial work in this paper was done while the
second author visited the Department of Mathematics and Statistics at the State University of New York at Albany from 2016.12 to 2017.12. He wishes to thank SUNY at Albany for hosting his visit.

References

Submit your manuscripts at
www.hindawi.com