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Abstract. 
We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.



1. Introduction
A frame for a Hilbert space firstly emerged in the work on nonharmonic Fourier series owing to Duffin and Schaeffer [1], which has made great contributions to various fields because of its nice properties; the reader can examine the papers [2–12] for background and details of frames.
Balan et al. in [13] showed us a surprising inequality when they further investigated the Parseval frame identity derived from their study on efficient algorithms for signal reconstruction, which was then extended to general frames and alternate dual frames by Găvruţa [14]. In this paper, we establish a new inequality for frames in Hilbert spaces, where a scalar and a bounded linear operator with respect to two Bessel sequences are involved, and it is shown that our result can lead to the corresponding results of Balan et al. and Găvruţa.
The notations , , and  are reserved, respectively, for a complex Hilbert space, the identity operator on , and an index set which is finite or countable. The algebra of all bounded linear operators on  is designated as .
One says that a family  of vectors in  is a frame, if there are two positive constants  satisfyingThe frame  is said to be Parseval if . If  satisfies the inequality to the right in (1), we call that  is a Bessel sequence for .
For a given frame , the frame operator , a positive, self-adjoint, and invertible operator on , is defined by  from which we see that  where the involved frame  is said to be the canonical dual of .
For any , denote . A positive, bounded linear, and self-adjoint operator induced by  and the frame  is given below 
Suppose that  and  are two Bessel sequences for . An application of the Cauchy-Schwartz inequality can show that the operatoris well-defined and further . Particularly, if , then both  and  are frames for . In this case we say that  is an alternate dual frame of , and the pair  is called an alternate dual frame pair.
2. The Main Results
We need the following simple result on operators to present our main result.
Lemma 1.  Suppose that  and that . Then for each  we have 
Proof.  A direct calculation gives From this fact and taking into account that we arrive at the relation stated in the lemma.
We can immediately get the following result obtained by Poria in [15], when putting  in Lemma 1.
Corollary 2.  Suppose that  and that . Then for every  we have 
Theorem 3.  Suppose that  is a frame for , that  and  are two Bessel sequences for , and that the operator  is defined by (5). Then for each  and each , we haveMoreover, if  is self-adjoint, then for any  and any ,
Proof.  We take  and  for any . Then  and further By Lemma 1 we have Therefore,  It follows that  We now prove the inequality in (10). Again by Lemma 1,  for every . Hence,  from which we conclude that The proof of (11) is similar to the proof of (10); we leave the details to the reader.
Corollary 4.  Suppose that  is a frame for  with frame operator  and that  for any . Then for all , for any  and any , we have 
Proof.  Setting  for each , then . Taking  then  and  are both Bessel sequences for . For any  we have  A similar discussion yields  We also have  Thus the result follows from Theorem 3.
Let  be a Parseval frame for ; then . Thus for any ,  Similarly we have  This together with Corollary 4 leads to a result as follows.
Corollary 5.  Suppose that  is a Parseval frame for . Then for each , for any  and any , we have 
Corollary 6.  Suppose that  is an alternate dual frame pair for . Then for each , for any  and any , we have 
Proof.  Since  is an alternate dual frame of , . For any , let  On the one hand we have  On the other hand we have  By Theorem 3 the conclusion follows.
Remark 7.  Theorems 2.2 and 3.2 in [14] and Proposition 4.1 in [13] can be obtained when taking , respectively, in Corollaries 4, 6, and 5.
As a matter of fact, we can establish a more general inequality for alternate dual frames than that shown in Corollary 6.
Theorem 8.  Suppose that  is an alternate dual frame pair for . Then for every bounded sequence , for all  and all , we have 
Proof.  We define the operators  and  by  Then both series converge unconditionally and . Since , by Corollary 2 we obtain  for each . Hence  Therefore,  It follows that  This completes the proof.
Remark 9.  If we take  in Theorem 8, then we can obtain Theorem 3.3 in [14].
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