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Abstract. 
Let  be a second-order divergence form elliptic operator, where  is an accretive  matrix with bounded measurable complex coefficients in  In this paper, we mainly establish the  boundedness for the commutators generated by  and the square function related to fractional differentiation for second-order elliptic operators.



1. Introduction
Let  be a linear operator in a measurable function space; then, the commutator formed by  and  is defined by  For , set  where  is a cube in  and . Then, the  space is defined as 
Let , and consider the fractional differentiation operators of even and odd parities, defined for tempered distributions , by  Let  be the Riesz potential operator of order  and be defined in the space of tempered distribution modulo polynomials by setting  The  Sobolev space  is the image of  under  Equivalently,  if and only if . Let , subsequently, if  satisfies , in which the supremum is taken over all  and . For ,  is a space of functions modulo constants that is properly contained in  (see [1, 2]).
Before presenting our main theorem, we introduce the second-order elliptic operator  as follows: For , denote its complex conjugate  by  Let  be an  matrix of complex  coefficients defined on  that satisfy the ellipticity condition:  for  and for some  such that  Here, the inner product notation  Therefore,  Associated with such a matrix , we define a second-order divergence form operator:which we interpret in the usual weak sense via a sesquilinear form. The operator  generates a semigroup  and the gradient of the semigroup .
In this paper, we first present a general criterion for weak-type  boundedness of commutators with square functions and .
Theorem 1.  Let , , , and  be an integer greater than 1. Let  and  be two closed subsets of  with a Euclidean distance  between each other, and let  be a family of sublinear operators acting on  Assume that, for  and ,where . Furthermore, ifThen, we have 
We recall a square function, which is representative of larger classes of square functions associated with , given as follows [3]:  In 2007, Aushcer [3] proved that  for . The interval  is the maximal open interval required for the semigroup  to be  bounded. We recall that  is the maximal open interval required for the semigroup  to be  bounded. In [3], the author has shown in general that ,  if ; ,  if  and .
Many researchers have contributed to the commutators associated with the second-order elliptic operator, and among the numerous studies, some related to development and applications have been cited herein [4–9]. In particular, commutators with fractional differentiations associated with  play an important role in the theory of linear partial differential equations and harmonic analysis [10–14]. Naturally, the case of the commutators of square functions being related to fractional differentials associated with  is worth studying.
In this paper, we define a square function related to the fractional differential operator associated with  as follows:  Moreover, for  and , the commutator of  can be defined by  In this paper, we also establish the  boundedness for .
Theorem 2.  Let  be a second-order elliptic operator in divergence form defined by (5), , and . Then, for , we have 
The remainder of this paper is organised as follows: in Section 2, we present some lemmas that play an important role in the proof of the main results; in Section 3, we prove Theorem 1; in Section 4, we prove Theorem 2. For ,  denotes the dual exponent of , i.e.,  Throughout this paper, the letter “” will stand for a positive constant that is independent of the essential variables but will not necessarily have the same value for each occurrence.
2. Preliminary Lemmas
The second-order elliptic operator  in divergence form is defined by (5) and has the following off-diagonal estimates (see [3, 4, 9] and references therein).
Lemma 3 (see [3, 4, 9]).  Let  be a second-order elliptic operator defined by (5), let  and  be two closed sets of , and let set  denote the distance between  and . Then, for , the complex-valued function , and vector-valued functions , the following statements hold:
(i) Let  and  supported in , (ii) Let ,  supported in  and , (iii) Let  and  supported in , In particular, if we choose , the abovementioned  off-diagonal estimates become  estimates.
Another very useful and well-known lemma for off-diagonal estimates is introduced here, which could be proved by using a similar argument for the proof of a previous lemma [9, lemma 2.3].
Lemma 4 ([3, 9]).  Let  and  be arbitrary closed subsets of . Assume that the two families of the operators  and  satisfy the following off-diagonal estimates:  Then, for  and  supported in E, we have 
Next, let us introduce a criterion that deals with the boundedness of the commutators of the operators satisfying  off-diagonal estimates, which can be proved in [15].
Lemma 5 (see [15]).  Let  and  be two closed subsets of  with a Euclidean distance , and let  be a family of sublinear operators acting on  Assume that, for  and  with ,If , then for  and , we havewhere  is independent of , and .
The following two lemmas are about the  off-diagonal estimates related to some commutators of the Lipschitz function and semigroups for second-order elliptic operators.
Lemma 6 (see [16]).  Let  and  be two closed subsets of  with a Euclidean distance . Assume that  and  and . If , then for  and  supported in , we obtain the following for some :
Lemma 7 (see [16]).  Let  be the second-order elliptic operator in divergence form defined by (5),  and  be two closed sets of , and  express the distance between  and . Assume that , , and . Then, for ,  supported in , we obtain where  is independent of .
3. Proof of Theorem 1
For any fixed , without loss of generality, we may assume that  is nonnegative. Let us write  for the Hardy-Littlewood maximal function. We use the Calderón-Zygmund decomposition for  at height . Then, there exists a collection of pairwise disjoint cubes  such that  and they satisfy the following property:Then, we write , where  After estimating (24),  and the standard arguments yield  for almost every . Then,  We estimate every term separately. For , we use (8) and the properties of  to obtain  Now, we proceed with . Let us fix an integer . We write , where  stands for the side length of the cube . We use the notation , where, in general, we write  for the -dilated , i.e., for the cube with the same centre as  and with the side length . Let . Because we obtain The first term can be estimated as follows:  Now, we complete the estimate of  By Chebychev’s inequality, we obtain where the supremum is taken over all the functions  with . We set Let us recall that . Because supp , we have Where, in the last inequality, we used (6). Because , for , we obtain . Recall that . Subsequently, we obtain Then, using , we obtain Then, because the Hardy-Littlewood maximal function is of weak-type , we use  and Kolmogorov’s lemma to obtain Then, we plug the estimate into (31) to obtain Applying  of the weak-type , we obtain  We now examine . Recall that  Then,  Thus, from Chebychev’s inequality, We fix . Then, for , by (8), we obtain  Hence, by (see [9])  we obtain  For , by (7) and  (see [3]), we obtain  Then,  where we use the fact that  is bounded on  with the bound  (see [16]). Next, we estimate the abovementioned two norms,  and . Now, taking  with , Note that, for all ,  satisfies the  off-diagonal estimates (see Lemma 3(ii)); let , and we obtain (47), which is controlled byThus, from (47), (48), and the fact that  is of weak-type , we obtainFor the second term of , , by Lemma 6 and the same procedures performed previously (48): Then, we haveCombining (49) and (51), we obtainCombining the estimates of  and , we obtain  The proof of Theorem 1 is now completed by combining the estimates of , , and  with .
4. Proof of Theorem 2
First, we introduce a lemma that will be used to prove Theorem 2.
Lemma 8 (see [16]).  For , let  Suppose that  is a family of operators satisfyingfor an  and all . Assume thatin the sense of  for all  Then, we haveIf, in addition,then
Recall that The proof of Theorem 2 is presented in two steps.
Step 1 (the  boundedness).  Let . By Lemma 8, we only need to prove that  satisfies (54)-(56) and (58). Because , it is easy to verify that  satisfies (54), (56), and (58). Moreover, it is easy to verify that  satisfies (55) by the  off-diagonal estimate of the operator  (see Lemma 3(i, iii)). We obtain
Step 2 (weak-type  boundedness for ).  We first prove that the commutator is of the weak-type  for . We apply Theorem 1 with  to prove this result. Because  and  are bounded on , verification of  satisfies (6). Taking , by the Minkowski inequality, we obtain Now, we study each operator separately. For the first operator, we have  and, then, For , by Lemma 7(i), we have where . Now, with , by the commutative property of the semigroup and Lemma 7(i), we obtain Collecting this estimate and the one proved for , we obtain  Next, we proceed with the estimate of : Let  be two closed sets and be such that supp . For , by a similar previous argument [9], we can prove that  uniformly on . Then, by Lemma 4, we haveWe write  as follows: First, we consider : Let us observe that, because of (71) and Lemma 7(i) in the composition of the operators, each of them verifies an off-diagonal estimate. This fact allows us to employ Lemma 4 to obtain where . From Lemma 5 and (71), it is easy to obtainFinally, for ,We know that the composition of the operators above (75) or Lemma 3 verifies an off-diagonal estimate. It follows from Lemma 4 that Collecting the estimates for  and , we obtain which combined with the estimate of  verify that  satisfies (6). Thus, we have proven Theorem 2.
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