Research Article

Equivalent Property of a Hilbert-Type Integral Inequality Related to the Beta Function in the Whole Plane

Dongmei Xin, Bicheng Yang, and Aizhen Wang

Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, China

Correspondence should be addressed to Bicheng Yang; bcyang818@163.com

Received 22 March 2018; Accepted 16 August 2018; Published 2 September 2018

Academic Editor: Ismat Beg

Copyright © 2018 Dongmei Xin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By means of the technique of real analysis and the weight functions, a few equivalent statements of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The constant factor related to the beta function is proved to be the best possible. As applications, the case of the homogeneous kernel, the operator expressions, and a few corollaries are considered.

1. Introduction

Suppose that \(p > 1, 1/p + 1/q = 1, f(x), g(y) \geq 0, 0 < \int_{0}^{\infty} f^{p}(x)dx < \infty \), and \(0 < \int_{0}^{\infty} g^{q}(y)dy < \infty \). We have the following well-known Hardy-Hilbert’s integral inequality (see [1]):

\[
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y}dx\,dy < \frac{\pi}{\sin(\frac{\pi}{p})} \left(\int_{0}^{\infty} f^{p}(x)dx \right)^{1/p} \left(\int_{0}^{\infty} g^{q}(y)dy \right)^{1/q},
\]

where the constant factor \(\frac{\pi}{\sin(\pi/p)} \) is the best possible. For \(p = q = 2 \), (1) reduces to the well-known Hilbert’s integral inequality. By using the weight functions, some extensions of (1) were given by [2, 3]. A few Hilbert-type inequalities with the homogenous and nonhomogeneous kernels were provided by [4–7]. In 2017, Hong [8] also gave two equivalent statements between Hilbert-type inequalities with the general homogenous kernel and parameters. Some other kinds of Hilbert-type inequalities were obtained by [9–16].

In 2007, Yang [17] gave a Hilbert-type integral inequality in the whole plane as follows:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x)g(y)}{(1 + e^{xy})^{\alpha}}dx\,dy < B(\frac{\lambda}{2}, \frac{\lambda}{2}) \left(\int_{-\infty}^{\infty} e^{-\lambda x} f^{2}(x)dx \right)^{1/2} \left(\int_{-\infty}^{\infty} e^{-\lambda y} g^{2}(y)dy \right)^{1/2},
\]

with the best possible constant factor \(B(\lambda/2, \lambda/2) \) (\(\lambda > 0 \), \(B(\alpha, \beta) \) is the beta function) (see [18]). He et al. [19–23] proved a few Hilbert-type integral inequalities in the whole plane with the best possible constant factors.

In this paper, by means of the technique of real analysis and the weight functions, a few equivalent statements of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane similar to (2) are obtained. The constant factor related to the beta function is proved to be the best possible. As applications, the case of the homogeneous kernel, the operator expressions, and a few corollaries are considered.

2. An Example and Two Lemmas

Example 1. For \(R = (-\infty, \infty), R_{+} = (0, \infty) \), we set \(h(u) = (\max\{u, 1\})^{\alpha+\beta}/[u - 1]^{1+\alpha} \min\{u, 1\}^{\beta} (u \in R_{+}) \), and then for \(a, b \neq 0 \),

\[
h\left(e^{ax+by}\right) = \frac{\max\{e^{ax+by}, 1\}^{\alpha+\beta}}{\left[e^{ax+by} - 1\right]^{1+\alpha} \left\{\min\{e^{ax+by}, 1\}\right\}^{\beta}} (x, y \in R).
\]

For \(\sigma, \mu > \beta, \sigma + \mu = \lambda < 1 - \alpha (\alpha + 2\beta < 1) \), in view of \(h(v^{-1}v^{\lambda-\alpha}) = h(v)v^{\lambda-1} (0 < \nu < 1) \), we find
\begin{align}
k_\lambda(\sigma) &:= \int_0^\infty h(u) u^{\sigma-1} du = \int_0^1 h(u) (u^{\sigma-1} + u^{\mu-1}) du \\
&= \int_0^1 (\max |u, 1|)^{a + \beta} (u^{\sigma-1} + u^{\mu-1}) du \\
&= \int_0^1 \frac{1}{(1 - u)^{a + \alpha}} (u^{\sigma-1} + u^{\mu-1}) du \\
&= B(1 - \lambda - \alpha, \sigma - \beta) + B(1 - \lambda - \alpha, \mu - \beta) \quad \in \mathbb{R}_+, \end{align}

where \(B(u, v) = \int_0^1 (1 - t)^{u-1} t^{v-1} dt \) \((u, v > 0) \) is the beta function (cf. [18]).

In particular, (i) for \(\alpha = 0 \), we have \(\sigma, \mu > \beta, \sigma + \mu = \lambda < 1 \) \((\beta < 1/2) \), \(h_1(u) = (\max |u, 1|)^{\beta} / |u - 1|^{1+\alpha} \) \((u > 0) \), and

\(k_1^{(1)}(\sigma) = B(1 - \lambda - \alpha, \sigma - \beta) + B(1 - \lambda - \alpha, \mu - \beta); \) \((5) \)

(ii) for \(\beta = 0 \), we have \(\sigma, \mu > 0, \sigma + \mu = \lambda < 1 - \alpha (\alpha < 1), h_2(u) = (\max |u, 1|)^{\sigma} / |u - 1|^{1+\alpha} \) \((u > 0) \), and

\(k_1^{(2)}(\sigma) = B(1 - \lambda - \alpha, \sigma) + B(1 - \lambda - \alpha, \mu); \) \((6) \)

(iii) for \(\beta = -\alpha \), we have \(\sigma, \mu > -\alpha, \sigma + \mu = \lambda < 1 - \alpha (\alpha > -1), h_3(u) = (\min |u, 1|)^{\sigma} / |u - 1|^{1+\alpha} \) \((u > 0) \), and

\(k_1^{(3)}(\sigma) = B(1 - \lambda - \alpha, \sigma + \alpha) + B(1 - \lambda - \alpha, \mu + \alpha). \) \((7) \)

In the case of (iii), for \(\alpha = 0 \), we have \(\sigma, \mu > 0, \sigma + \mu = \lambda < 1, h_4(u) = 1/|u - 1|^{1+\alpha} \) \((u > 0) \), and

\(k_1^{(4)}(\sigma) = B(1 - \lambda, \sigma) + B(1 - \lambda, \mu). \) \((8) \)

In the following, we assume that \(p > 1, 1/p + 1/q = 1, a, b \neq 0, \alpha, \sigma, \mu > \beta, \sigma + \mu = \lambda < 1 - \alpha(\alpha + 2\beta < 1), \) and

\begin{align}
K_\lambda(\sigma) &:= \frac{1}{|a|^{1/q} |b|^{1/p}} k_\lambda(\sigma) \\
&= \frac{1}{|a|^{1/q} |b|^{1/p}} \times (B(1 - \lambda - \alpha, \sigma - \beta) + B(1 - \lambda - \alpha, \mu - \beta)). \end{align}

For \(n \in \mathbb{N} = \{1, 2, \ldots\} \), we define two sets \(E_\alpha := \{t \in \mathbb{R} ; ct \geq 0\} \), \(F_\alpha := \mathbb{R} \setminus E_\alpha = \{t \in \mathbb{R} ; ct < 0\} \), \((c = a, b) \), and the following two expressions:

\begin{align}
I_1 &= \int_{E_\alpha} e^{(\sigma - \alpha + \beta) y} \left[\int_{E_\alpha} h(x) e^{(\alpha - \sigma + \beta) x} dx \right] dy, \quad (10) \\
I_2 &= \int_{E_\alpha} e^{(\sigma - \alpha) y} \left[\int_{F_\alpha} h(x) e^{(\sigma + \beta) x} dx \right] dy. \quad (11)
\end{align}

Setting \(u = e^{ax+by} \) in (10), in view of Fubini theorem (cf. [24]), it follows that

\begin{align}
I_1 &= \frac{1}{|a|} \int_{E_\alpha} e^{(\sigma - \sigma + \beta + 1) y} \left(\int_{E_\alpha} h(u) u^{\alpha - 1/(\mu - 1)} du \right) dy \\
&= \frac{1}{|a|b} \int_0^1 1^{(\sigma - \sigma + 1)/(\mu - 1)} \left(\int_{E_\alpha} h(u) u^{\alpha - 1/(\mu - 1)} du \right) d\nu. \quad (12)
\end{align}

In the same way, we find that

\begin{align}
I_2 &= \frac{1}{|a|} \int_{E_\alpha} e^{(\sigma - \sigma + \beta + 1) y} \left(\int_{F_\alpha} h(u) u^{\alpha - 1/(\mu - 1)} du \right) dy \\
&= \frac{1}{|a|b} \int_0^1 1^{(\sigma - \sigma + 1)/(\mu - 1)} \left(\int_{F_\alpha} h(u) u^{\alpha - 1/(\mu - 1)} du \right) d\nu. \quad (13)
\end{align}

Lemma 2. If there exists a constant \(M \), such that for any nonnegative measurable functions \(f(x) \) and \(g(y) \) \(\in \mathbb{R} \), the following inequality

\begin{align}
I := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x) g(y) \ dx \ dy \\
&\leq M \left[\int_{-\infty}^{\infty} \left(f(x) \right)^p dx \right]^{1/p} \left[\int_{-\infty}^{\infty} \left(g(y) \right)^q dy \right]^{1/q}
\end{align}

holds true, then we have \(\sigma_1 = \sigma \).

Proof. (i) If \(\sigma_1 < \sigma \), then for \(n > 1/(\sigma - \sigma_1) \) \((n \in \mathbb{N}) \), we set two functions

\begin{align}
f_n(x) &= \begin{cases}
 e^{(\sigma - \sigma_1) x}, & x \in E_a \\
 0, & x \in F_a
\end{cases}, \\
g_n(y) &= \begin{cases}
 e^{(\sigma_1 - \sigma) y}, & y \in E_b \\
 0, & y \in F_b
\end{cases}, \quad (15)
\end{align}

and obtain

\begin{align}
J_2 &= \left(\int_{-\infty}^{\infty} e^{-p x} \int_{E_\alpha} h(x) \ dx \right)^{1/p} \left(\int_{-\infty}^{\infty} e^{-q x} \int_{F_\alpha} h(x) \ dx \right)^{1/q} \left(\int_{-\infty}^{\infty} e^{-s x} \int_{E_\alpha} h(x) \ dx \right)^{1/p} \left(\int_{-\infty}^{\infty} e^{-t x} \int_{F_\alpha} h(x) \ dx \right)^{1/q} \end{align}
By (12) and (14), we find
\[
\frac{1}{|ab|} \int_0^1 \nu^{\sigma_1 - 1} |d| \nu \int_0^\infty \frac{\nu^{\rho_1 - 1}|d| \nu}{(u - 1)^{\lambda_1}} du \leq I_2
\]
\[
= \int_0^\infty \int_0^\infty h(e^{ax + by}) f_n(x) g_n(y) dx dy \leq M I_2
\]
\[
= \frac{M n}{|a|^{1/p} |b|^{1/q}}.
\]

For any \(n > 1/(\sigma_1 - \sigma) \) \((n \in \mathbb{N})\), \(\sigma_1 - \sigma + 1/n < 0 \), it follows that
\[
\int_0^1 \nu^{\sigma_1 - 1} |d| \nu = \infty.\]
In view of \(\int_0^\infty \nu^{\rho_1 - 1}|d| \nu = \infty \), we obtain
\[
\int_0^\infty \int_0^\infty h(e^{ax + by}) f_n(x) g_n(y) dx dy \leq M I_2
\]
\[
= \frac{M n}{|a|^{1/p} |b|^{1/q}}.
\]

For \(n > 1/(\sigma_1 - \sigma) \) \((n \in \mathbb{N})\), \(\sigma_1 - \sigma - 1/n > 0 \), it follows that
\[
\int_0^1 \nu^{\sigma_1 - 1} |d| \nu = \infty.\]
By (20), in view of \(\int_0^1 \nu^{\rho_1 - 1} |d| \nu = \infty \), we have \(\infty \leq M n |a|^{1/p} |b|^{1/q} \), which is a contradiction.
Hence, we conclude that \(\sigma_1 = \sigma \).

The lemma is proved.

For \(\sigma_1 = \sigma \), we have the following.

Lemma 3. If there exists a constant \(M \), such that for any nonnegative measurable functions \(f(x) \) and \(g(y) \) in \(\mathbb{R} \), the following inequality
\[
I = \int_0^\infty \int_0^\infty h(e^{ax + by}) f(x) g(y) dx dy
\]
\[
\leq M \left(\int_0^\infty (f(x))^p dx \right)^{1/p} \left(\int_0^\infty (g(y))^q dy \right)^{1/q}
\]
holds true, then we have \(M \geq K_{\lambda}(\sigma)(> 0) \).

Proof. By (12), for \(\sigma_1 = \sigma \), we obtain
\[
I_1 = \frac{1}{|ab|} \int_0^1 \nu^{1/n - 1} \left(\int_0^\nu h(u) u^{\sigma_1 - 1} |d| \nu \right) du + \frac{1}{|ab|}
\]
\[
\cdot \int_0^1 \nu^{1/n - 1} \left(\int_0^\nu h(u) u^{\sigma_1 - 1} |d| \nu \right) du = \frac{n}{|ab|} \left(\int_0^1 h(u) u^{\sigma_1 - 1/|d| \nu} du \right)
\]
\[
\cdot \int_0^1 h(u) u^{\sigma_1 - 1/|d| \nu} du.
\]

We use inequality \(I_1 \leq M \bar{I}_2 \) (for \(\sigma_1 = \sigma \)) as follows:
\[
\frac{|a|^{1/p} |b|^{1/q}}{n} I_1 = \frac{1}{|a|^{1/p} |b|^{1/q}} \left(\int_0^1 h(u) u^{\sigma_1 - 1/|d| \nu} du \right)
\]
\[
+ \int_0^\infty h(u) u^{\sigma_1 - 1/|d| \nu} du \leq M.
\]

By Fatou lemma (cf. [24]) and (23), it follows that
\[
K_{\lambda}(\sigma) = \frac{1}{|a|^{1/p} |b|^{1/q}} \left(\int_0^1 \lim_{n \to \infty} h(u) u^{\sigma_1 - 1/|d| \nu} du \right)
\]
\[
+ \int_0^\infty \lim_{n \to \infty} h(u) u^{\sigma_1 - 1/|d| \nu} du \leq \frac{\lim_{n \to \infty} |a|^{1/p} |b|^{1/q}}{n} I_1 \leq M.
\]

The lemma is proved.
3. Main Results and Some Corollaries

Theorem 4. If \(M \) is a constant, then the following statements (i), (ii), and (iii) are equivalent:

(i) For any nonnegative measurable function \(f(x) \) in \(\mathbb{R} \), we have the following inequality:

\[
J := \left[\int_{-\infty}^{\infty} e^{\lambda y} \left(\int_{-\infty}^{\infty} h(e^{ax+by}) f(x) \, dx \right)^p \, dy \right]^{1/p} \leq M \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}.
\]

(ii) For any nonnegative measurable functions \(f(x) \) and \(g(y) \) in \(\mathbb{R} \), we have the following inequality:

\[
I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(e^{ax+by}) f(x) g(y) \, dx \, dy \leq M \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} \cdot \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda y}} \right)^q \, dy \right]^{1/q}.
\]

(iii) \(\sigma_1 = \sigma \), and \(M \geq K_\lambda(\sigma)(>0) \).

Proof. (i) \(\Rightarrow \) (ii). By Hölder’s inequality (see [25]), we have

\[
I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(e^{ax+by}) f(x) g(y) \, dx \, dy \leq J \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{\lambda y}} \right)^q \, dy \right]^{1/q}.
\]

Then by (25), we have (26).

(ii) \(\Rightarrow \) (iii). By Lemma 2, we have \(\sigma_1 = \sigma \). Then by Lemma 3, we have \(M \geq K_\lambda(\sigma)(>0) \).

(iii) \(\Rightarrow \) (i). Setting \(u = e^{ax+by} \), we obtain the following weight functions: for \(y, x \in \mathbb{R} \),

\[
\omega(\sigma, y) := e^{by} \int_{-\infty}^{\infty} h(e^{ax+by}) e^{ax} \, dx = \frac{1}{|a|} \int_{-\infty}^{\infty} h(u) u e^{-\sigma u} \, du = \frac{1}{|a|} K_\lambda(\sigma),
\]

\[
\omega(\sigma, x) := e^{ax} \int_{-\infty}^{\infty} h(e^{ax+by}) e^{by} \, dy = \frac{1}{|b|} K_\lambda(\sigma).
\]

By Hölder’s inequality with weight and (28), we have

\[
\left(\int_{-\infty}^{\infty} h(e^{ax+by}) f(x) \, dx \right)^p = \left[\int_{-\infty}^{\infty} h(e^{ax+by})^p \, dx \right]^{1/p} \cdot \left(\int_{-\infty}^{\infty} f(x) \, dx \right)^p \leq \int_{-\infty}^{\infty} h(e^{ax+by})^p \, dx \cdot \int_{-\infty}^{\infty} f(x)^p \, dx \cdot \int_{-\infty}^{\infty} h(e^{ax+by})^p \, dx
\]

\[
= \left[\int_{-\infty}^{\infty} \omega(\sigma, x) e^{-\sigma x} f(x) \, dx \right]^{1/p} \cdot \left(\int_{-\infty}^{\infty} \omega(\sigma, x) e^{-\sigma x} \, dx \right)^{1/p} \cdot \left(\int_{-\infty}^{\infty} f(x)^p \, dx \right)^{1/p} \cdot \left(\int_{-\infty}^{\infty} h(e^{ax+by})^p \, dx \right)^{1/p}.
\]

For \(K_\lambda(\sigma) \leq M \), we have (25). Therefore, the statements (i), (ii), and (iii) are equivalent. The theorem is proved.

Theorem 5. The following statements (i) and (ii) are valid and equivalent:

(i) For any \(f(x) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (f(x))^p \, dx < \infty \), we have the following inequality:

\[
J_1 = \left(\int_{-\infty}^{\infty} e^{\lambda y} \left[\int_{-\infty}^{\infty} \left(\max \left\{ e^{ax+by}, 1 \right\} \right)^{\alpha+\beta} f(x) \, dx \right]^p \, dy \right)^{1/p} \leq K_\lambda(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}.
\]
(ii) For any $f(x) \geq 0$, satisfying $0 < \int_{-\infty}^{\infty} (f(x)/e^{ax})^p \, dx < \infty$ and $g(y) \geq 0$, satisfying $0 < \int_{-\infty}^{\infty} (g(y)/e^{by}) \, dy < \infty$, we have the following inequality:

$$I = \int_{-\infty}^{\infty} \left(\frac{e^{ax} y}{e^{ax}} - 1 \right)^{\alpha \psi} \left(\frac{e^{ax} y}{e^{ax}} \right)^{\beta} \, dx \, dy$$

$$< K_1(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} \cdot \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{by}} \right)^q \, dy \right]^{1/q}.$$ \hspace{1cm} (33)

Moreover, the constant factor $K_1(\sigma)$ in (32) and (33) is the best possible.

In particular, for $\alpha = \beta = 0, \sigma > 0, \sigma + \mu = \lambda < 1$

$$K_1(\sigma) := \frac{1}{|a|^{1/1} |b|^{1/p}} (B(1, \lambda, \sigma) + \zeta(1, \lambda, \mu)),$$ \hspace{1cm} (34)

we have the following equivalent inequalities with the best possible constant factor $K_1(\sigma)$:

$$\left[\int_{-\infty}^{\infty} e^{by} \left(\int_{-\infty}^{\infty} \frac{f(x)}{e^{by}} \, dx \right)^p \, dy \right]^{1/p}$$

$$< K_1(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p},$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \, dx \, dy < K_1(\sigma)$$

$$\cdot \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} \cdot \int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{by}} \right)^q \, dy \right]^{1/q}. \hspace{1cm} (36)$$

Proof. We first prove that (32) is valid. If (30) takes the form of equality for a $y \in \mathbb{R}$, then (see [25]), there exist constants A and B, such that they are not all zero, and

$$A \frac{e^{by}}{e^{ax} y} \, f^p(x) = B \frac{e^{ax}}{e^{by} y/p} \text{ a.e. in } \mathbb{R}. \hspace{1cm} (37)$$

We suppose that $A \neq 0$ (otherwise $B = A = 0$). Then it follows that

$$\left(\frac{f(x)}{e^{ax}} \right)^p = e^{-by} \frac{B}{A} \text{ a.e. in } \mathbb{R}, \hspace{1cm} (38)$$

which contradicts the fact that $0 < \int_{-\infty}^{\infty} (f(x)/e^{ax})^p \, dx < \infty$. Hence, (30) takes the form of strict inequality. For $\sigma_1 = \sigma$ by the proof of Theorem 4, we obtain (32).

(i) => (ii). By (27) (for $\sigma_1 = \sigma$) and (32), we have (33).

(ii) => (i). We set the following function:

$$g(y) := e^{by} \left(\int_{-\infty}^{\infty} h(x)e^{ax} \, dx \right)^{p-1} \hspace{1cm} (y \in \mathbb{R}). \hspace{1cm} (39)$$

If $J_1 = \infty$, then it is impossible since (32) is valid; if $J_1 = 0$, then (32) is trivially valid. In the following, we suppose that $0 < J_1 < \infty$. By (33), we have

$$0 < \int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{by}} \right)^q \, dy = J_1^p = I < K_1(\sigma)$$

$$\cdot \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} \cdot \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{by}} \right)^q \, dy \right]^{1/q}$$

$$< \infty, \hspace{1cm} (40)$$

$$J_1 = \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{by}} \right)^q \, dy \right]^{1/p} < K_1(\sigma)$$

$$\cdot \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}; \hspace{1cm} (36)$$

namely, (32) follows, which is equivalent to (33).

Hence, Statements (i) and (ii) are valid and equivalent.

If there exists a constant $M \leq K_1(\sigma)$, such that (33) is valid when replacing $K_1(\sigma)$ by M, then by Lemma 3, we have $K_1(\sigma) \leq M$. Hence, the constant factor $M = K_1(\sigma)$ in (33) is the best possible.

The constant factor $K_1(\sigma)$ in (32) is still the best possible. Otherwise, by (29) (for $\sigma_1 = \sigma$), we would reach a contradiction that the constant factor $K_1(\sigma)$ in (33) is not the best possible.

The theorem is proved. \hfill \Box

For $g(y) = e^{-by} G(y)$, and $\mu_1 = \lambda - \sigma_1$ in Theorems 4 and 5, then replacing $b (G(y))$ by $-b (g(y))$, setting

$$k_1 \left(e^{ax}, e^{by} \right) = \frac{\left(\max \{e^{ax}, e^{by} \} \right)^{\alpha \psi}}{\left| e^{ax} - e^{by} \right|^{\lambda \alpha \psi} \left(\min \{e^{ax}, e^{by} \} \right)^{\beta}} \hspace{1cm} (41)$$

$$\left(x, y \in \mathbb{R} \right),$$

we have the following corollaries.

Corollary 6. If M is a constant, then the following statements (i), (ii), and (iii) are equivalent:

(i) For any nonnegative measurable function $f(x)$ in \mathbb{R}, we have the following inequality:

$$\left[\int_{-\infty}^{\infty} e^{by \cdot by} \left(\int_{-\infty}^{\infty} k_1 \left(e^{ax}, e^{by} \right) f(x) \, dx \right) \, dy \right]^{1/p} \hspace{1cm} (42)$$

$$\leq M \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}. \hspace{1cm} (42)$$

(ii) For any nonnegative measurable functions $f(x)$ and $g(y)$ in \mathbb{R}, we have the following inequality:
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k_\lambda(e^{ax}, e^{by}) f(x) g(y) \, dx \, dy \\
\leq M \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} \\
\cdot \left[\int_{-\infty}^{\infty} \left(\frac{g(y)}{e^{by}} \right)^q \, dy \right]^{1/q},
\]
(43)

(ii) For any \(f(x) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (f(x)/e^{ax})^p \, dx < \infty \), and \(g(y) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (g(y)/e^{by})^q \, dy < \infty \), we have the following inequality:
\[
\left[\int_{-\infty}^{\infty} \left(\max \left\{ e^{ax}, e^{by} \right\} \right)^{\alpha \beta} f(x) \, dx \right]^{1/p} \\
\cdot \left[\int_{-\infty}^{\infty} \left(e^{ax} - e^{by} \right)^{\beta} \left(\min \left\{ e^{ax}, e^{by} \right\} \right) \, dx \right]^{1/q} < K_\lambda(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}.
\]
(45)

Moreover, the constant factor \(K_\lambda(\sigma) \) in (44) and (45) is the best possible.

In particular, for \(\alpha = \beta = 0, \sigma, \mu > 0, \sigma + \mu = \lambda < 1 \), we have the following equivalent inequalities with the best possible constant factor \(K_\lambda(\sigma) \):
\[
\left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} < K_\lambda(\sigma)
\]
(46)

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \, dx \, dy < K_\lambda(\sigma)
\]
(47)

Corollary 8. If \(\sigma, \mu > 0, \sigma + \mu = \lambda < 1 \), then the following statements (i) and (ii) are valid and equivalent:

(iii) \(\mu_1 = \mu, \) and \(M \geq K_\lambda(\sigma)(> 0) \).

Corollary 7. The following statements (i) and (ii) are valid and equivalent:

(i) For any \(f(x) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (f(x)/e^{ax})^p \, dx < \infty \), we have the following inequality:
\[
\left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} < K_\lambda(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}.
\]
(44)

(i) For any \(f(x) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (e^{[\lambda/2-\sigma]ax} f(x))^p \, dx < \infty \), we have the following inequality:
\[
\left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} < K_\lambda(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}.
\]
(48)

(ii) For any \(f(x) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (e^{[\lambda/2-\sigma]ax} f(x))^p \, dx < \infty \) and \(g(y) \geq 0 \), satisfying \(0 < \int_{-\infty}^{\infty} (e^{[\lambda/2-\sigma]by} g(y))^q \, dy < \infty \), we have the following inequality:
\[
\left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p} < 2K_\lambda(\sigma) \left[\int_{-\infty}^{\infty} \left(\frac{f(x)}{e^{ax}} \right)^p \, dx \right]^{1/p}.
\]
(49)

Moreover, the constant factor \(2K_\lambda(\sigma) \) in (48) and (49) is the best possible.

4. Operator Expressions

We set the following functions: \(\varphi(x) := e^{-\rho ax}, \psi(y) := e^{-\rho by}, \phi(y) := e^{\gamma by}, \) wherefrom, \(\psi^{-\rho}(y) = e^{\rho by}, \phi^{-\rho}(y) = e^{\rho by}(x, y \in \mathbb{R}), \) and define the following real normed linear spaces:
\[
L_{p, \varphi}(\mathbb{R}) := \left\{ f : \|f\|_{p, \varphi} = \left(\int_{-\infty}^{\infty} \varphi(x) |f(x)|^p \, dx \right)^{1/p} < \infty \right\}.
\]
wherefrom,
\[
L_{q,\psi}(R) = \left\{ g : \| g \|_{q,\psi} := \left(\int_{-\infty}^{\infty} \psi(y) |g(y)|^q dy \right)^{1/q} < \infty \right\},
\]
\[
L_{q,\phi}(R) = \left\{ g : \| g \|_{q,\phi} := \left(\int_{-\infty}^{\infty} \phi(y) |g(y)|^q dy \right)^{1/q} < \infty \right\},
\]
\[
L_{p,\psi^{1-\gamma}}(R) = \left\{ h : \| h \|_{p,\psi^{1-\gamma}} = \left(\int_{-\infty}^{\infty} \psi^{1-p}(y) |h(y)|^p dy \right)^{1/p} < \infty \right\},
\]
\[
L_{q,\phi^{1-\gamma}}(R) = \left\{ h : \| h \|_{q,\phi^{1-\gamma}} = \left(\int_{-\infty}^{\infty} \phi^{1-p}(y) |h(y)|^p dy \right)^{1/p} < \infty \right\}.
\]
(a) In view of Theorem 5, for \(f \in L_{p,\phi}(R) \), setting
\[
h_1(y) = \int_{-\infty}^{\infty} h(e^{ax+by}) f(x) dx \quad (y \in R),
\]
by (34), we have
\[
\| h_1 \|_{p,\psi^{1-\gamma}} = \left(\int_{-\infty}^{\infty} \psi^{1-p}(y) H_1^p(y) dy \right)^{1/p} \leq K_\lambda(\sigma) \| f \|_{p,\psi} < \infty.
\]

Definition 9. Define a Hilbert-type integral operator with the nonhomogeneous kernel \(T^{(1)} : L_{p,\phi}(R) \rightarrow L_{p,\psi^{1-\gamma}}(R) \) as follows: for any \(f \in L_{p,\phi}(R) \), there exists a unique representation
\[
T^{(1)} f = h_1 \in L_{p,\psi^{1-\gamma}}(R),
\]
satisfying for any \(y \in R, T^{(1)} f(y) = h_1(y) \).

In view of (53), it follows that
\[
\| T^{(1)} f \|_{p,\psi^{1-\gamma}} = \| h_1 \|_{p,\psi^{1-\gamma}} \leq K_\lambda(\sigma) \| f \|_{p,\phi},
\]
and then the operator \(T^{(1)} \) is bounded satisfying
\[
\| T^{(1)} \| = \sup_{f(\theta) \in L_{p,\phi}(R)} \| T^{(1)} f \|_{p,\psi^{1-\gamma}} \leq K_\lambda(\sigma).
\]

If we define the formal inner product of \(T^{(1)} f \) and \(g \) as follows:
\[
(T^{(1)} f, g) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} h(e^{ax+by}) f(x) dx \right) g(y) dy,
\]
then we can rewrite Theorem 5 as follows.

Theorem 10. The following statements (i) and (ii) are valid and equivalent:

(i) For any \(f(x) \geq 0, f \in L_{p,\phi}(R) \), satisfying \(\| f \|_{p,\phi} > 0 \), we have the following inequality:
\[
\| T^{(1)} f \|_{p,\psi^{1-\gamma}} < K_\lambda(\sigma) \| f \|_{p,\phi}.
\]

(ii) For any \(f(x), g(y) \geq 0, f \in L_{p,\phi}(R), g \in L_{q,\psi}(R) \), satisfying \(\| f \|_{p,\phi} > 0 \), and \(\| g \|_{q,\psi} > 0 \), we have the following inequality:
\[
(T^{(1)} f, g) < K_\lambda(\sigma) \| f \|_{p,\phi} \| g \|_{q,\psi}.
\]

Moreover, the constant factor \(K_\lambda(\sigma) \) in (57) and (58) is the best possible, namely,
\[
\| T^{(1)} \| = K_\lambda(\sigma).
\]

(b) In view of Corollary 7, for \(f \in L_{p,\phi}(R) \), setting
\[
h_2(y) = \int_{-\infty}^{\infty} k_\lambda(e^{ax}, e^{by}) f(x) dx \quad (y \in R),
\]
by (44), we have
\[
\| h_2 \|_{p,\psi^{1-\gamma}} = \left(\int_{-\infty}^{\infty} \psi^{1-p}(y) h_2^p(y) dy \right)^{1/p} \leq K_\lambda(\sigma) \| f \|_{p,\phi} < \infty.
\]

Definition 11. Define a Hilbert-type integral operator with the homogeneous kernel \(T^{(2)} : L_{p,\phi}(R) \rightarrow L_{p,\psi^{1-\gamma}}(R) \) as follows: for any \(f \in L_{p,\phi}(R) \), there exists a unique representation
\[
T^{(2)} f = h_2 \in L_{p,\psi^{1-\gamma}}(R),
\]
satisfying for any \(y \in R, T^{(2)} f(y) = h_2(y) \).

In view of (61), it follows that
\[
\| T^{(2)} f \|_{p,\psi^{1-\gamma}} = \| h_2 \|_{p,\psi^{1-\gamma}} \leq K_\lambda(\sigma) \| f \|_{p,\phi},
\]
and then the operator \(T^{(2)} \) is bounded satisfying
\[
\| T^{(2)} \| = \sup_{f(\theta) \in L_{p,\phi}(R)} \frac{\| T^{(2)} f \|_{p,\psi^{1-\gamma}}}{\| f \|_{p,\phi}} \leq K_\lambda(\sigma).
\]

If we define the formal inner product of \(T^{(2)} f \) and \(g \) as follows:
\[
(T^{(2)} f, g) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} k_\lambda(e^{ax}, e^{by}) f(x) dx \right) g(y) dy,
\]
then we can rewrite Corollary 7 as follows.

Corollary 12. The following statements (i) and (ii) are valid and equivalent:

(i) For any \(f(x) \geq 0, f \in L_{p,\phi}(R) \), satisfying \(\| f \|_{p,\phi} > 0 \), we have the following inequality:
\[
\| T^{(2)} f \|_{p,\psi^{1-\gamma}} < K_\lambda(\sigma) \| f \|_{p,\phi}.
\]

(ii) For any \(f(x), g(y) \geq 0, f \in L_{p,\phi}(R), g \in L_{q,\psi}(R) \), satisfying \(\| f \|_{p,\phi} > 0 \), and \(\| g \|_{q,\psi} > 0 \), we have the following inequality:
\[
(T^{(2)} f, g) < K_\lambda(\sigma) \| f \|_{p,\phi} \| g \|_{q,\psi}.
\]
(ii) For any $f(x), g(y) \geq 0$, $f \in L_{p,\phi}(\mathbb{R}), g \in L_{q,\phi}(\mathbb{R})$, satisfying $\|f\|_{p,\phi} > 0$, and $\|g\|_{q,\phi} > 0$, we have the following inequality:

$$\langle f^{(2)}, g \rangle < K_\lambda(\sigma) \|f\|_{p,\phi} \|g\|_{q,\phi}.$$ \hspace{1cm} (66)

Moreover, the constant factor $K_\lambda(\sigma)$ in (65) and (66) is the best possible, namely,

$$\|f^{(2)}\| = K_\lambda(\sigma).$$ \hspace{1cm} (67)

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science Foundation (nos. 61370186 and 61640222) and Science and Technology Planning Project Item of Guangzhou City (no. 201707010229). We are grateful for this help.

References

Submit your manuscripts at
www.hindawi.com