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Abstract. 
We present a fixed point theorem for generalized -Meir-Keeler type contractions in the setting of generalized -metric spaces. The presented results improve, generalize, and unify many existing famous results in the corresponding literature.



1. Introduction and Preliminaries
The idea of a -metric has been introduced in the papers [1, 2]. Very recently, this idea was extended in [3] to a generalized -metric space in the following manner.
Definition 1.  Let  be a nonempty set and  be a fixed constant. A function  is called a generalized -metric space (in brief, gbms) if and only if for  the conditions are satisfied:(d1)  if and only if .(d2) .(d3) .
A triple  is called a generalized -metric space.
On the other hand, Meir and Keeler [4] have proved the following very general result on the existence of fixed points of Meir-Keeler contraction mappings in metric spaces.
Theorem 2 (see [4]).  Let  be a complete metric space and  satisfy the following condition: (d)Given , there exists  such that  has a unique fixed point . Moreover, for any , where  denotes the th iteration of  at a point .
This result has been generalized and extended in many directions; see [5–15]. Using some auxiliary functions, the main purpose of this paper is to extend and generalize this result on generalized -metric spaces.
For the sake of explicitness, we recall some notations. The symbols  denote the natural and real numbers, respectively. Furthermore,  and .
Berinde [16] characterized comparison functions to define the contraction mappings in the setting of -metric spaces.
Definition 3.  Let  be a real number. A function  is called a -comparison function if (1) is increasing;(2)there exist , , and a convergent nonnegative series  such that , for  and any .
Denote  as the set of -comparison functions. We will need the following essential properties in our further discussion.
Lemma 4 (see [16–18]).  For a -comparison function , the following statements hold: (1)The series  converges for any .(2)The function  defined by , , is increasing and continuous at .(3)Each iterate  of  for  is also a -comparison function.(4) is continuous at .(5) for any .
Inspired by Popescu [19], we introduce the concept of generalized -orbital admissible mappings.
Definition 5.  Let  be a mapping and  be a function. We say that  is a generalized -orbital admissible if 
Notice that each -orbital admissible mapping [19] is generalized -orbital admissible.
Based on the concept of generalized -orbital admissibility, we are the first who establish a fixed point result for a Meir-Keeler type contraction in the setting of generalized -metric spaces.
2. Main Results
We start with this definition.
Definition 6.  For an arbitrary constant , let  be a self-mapping defined on a generalized -metric space . Then  is called an -Meir-Keeler contractive mapping if there exist two auxiliary mappings  and  such that
Remark 7.  For  and  with , from (4) we derive that
Our main result is as follows.
Theorem 8.  Let  be a fixed constant and  be a complete generalized -metric space. Suppose that a self-mapping  is an -Meir-Keeler type contraction. Assume also that (i) is generalized -orbital admissible;(ii)there exists  such that ;(iii) is continuous. Then for such , one of the following statements holds: ()For every , ()There exists  such that  and . In this case, there exists  such that .
Proof.  On account of assumption (ii), there exists  such that . We suppose that case () is not satisfied. Consequently, we have to examine case (). Consequently, there exists  such that  and . If , the proof is completed. Assume that . By property of  and Remark 7, we haveSince  is a generalized -orbital admissible mapping, by (ii), we derive that  Recursively, we obtain thatApplying (10) in (8), we getThusAgain, on account of (10) and (12) in (8), by induction, one getsConsequently, for , by (13) we haveFinally,for all . By (15) and the fact that , it follows that  is a Cauchy sequence of elements of .
Since  is complete, there exists  with Since  is continuous, we get  and  is a fixed point of , which ends the proof.
Definition 9.  Let  be a fixed constant. We say that a generalized -metric space  is regular if  is a sequence in  such that  for all  and  as ; then there exists a subsequence  of  such that  and  for all .
Theorem 10.  Let  be a fixed constant and  be a complete generalized -metric space. Suppose that a self-mapping  is an -Meir-Keeler type contraction. Assume also that (i) is a generalized -orbital admissible mapping;(ii)there exists  such that ;(iii) is regular. Then for such , one of the following statements holds: ()For every , ()There exists  such that  and . In this case, there exists  such that .
Proof.  In case (), following the proof of Theorem 8, we know that the sequence  converges to some . By Definition 9 and condition (iii), there exists a subsequence  of  such that  and  for all . Applying (5) for all , we get thatLetting  in the above equality, we get ; that is, .
For the uniqueness of a fixed point of an -Meir-Keeler type contraction mapping  in , we shall consider the following condition:()For all , we have , where  denotes the set of fixed points of .
Theorem 11.  By adding condition  to the hypotheses of Theorem 8 (resp., Theorem 10),  has at most one fixed point in .
Proof.  Let  be an -Meir-Keeler type contraction. Owing to Theorem 8 (resp., Theorem 10),  has a fixed point .
Now, we shall show that  has at most one fixed point in . We argue by contradiction. For this, assume that there exist two distinct fixed points  and  of , where ; that is, We deduce By condition ,  and since , in view of (5), one writes which is a contradiction, so . This completes the proof.
3. Consequences
3.1. Meir-Keeler Contraction Mappings in gbms
In this section, we present our main result. By letting  and , we get the following result.
Theorem 12.  Let  be a generalized complete -metric space and  satisfy the following: given , there exists  such that
Let . Then one of the following alternatives holds:()For every  ( being the set of all nonnegative integers), ()There exists  such that .
 In case , we assert the following:(i)The sequence  is Cauchy in .(ii)There exists a point  such that  and .(iii) is the unique fixed point of  in .(iv)For every , 
Remark 13.  Unfortunately, if  is a metric space, we do not get the result of Meir-Keeler [4].
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