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Abstract. 
In this paper, we consider the effective reducibility of the quasi-periodic linear Hamiltonian system , , where  is a constant matrix with possible multiple eigenvalues and  is analytic quasi-periodic with respect to . Under nonresonant conditions, it is proved that this system can be reduced to , , where  is exponentially small in , and the change of variables that perform such a reduction is also quasi-periodic with the same basic frequencies as .



1. Introduction
The question about the reducibility of quasi-periodic systems plays an important role in the theory of ordinary differential equations. In general, in order to understand the qualitative behavior of a system, we need to obtain the information about the existence and stability of solutions. During the last two decades, the study of the existence of solutions for differential equations has attracted the attention of many researchers; see [1–10] and the references therein. Some classical tools have been used to study the existence of solutions for differential equations in the literature, including the method of upper and lower solutions, degree theory, some fixed point theorems in cones for completely continuous operators, Schauder’s fixed point theorem, and a nonlinear Leray-Schauder alternative principle.
Compared with the existence of solutions, the study on the dynamical stability behaviors of such equations is more difficult, and the results are fewer in the literature. Here we refer the reader to [11–16].
Before stating our problem, we give some definitions and notations. A function  is said to be a quasi-periodic function with a vector of basic frequencies  if , where  is  periodic in all its arguments and  for  Moreover, if  is analytic on , we say that  is analytic quasi-periodic on .
It is well known that an analytic quasi-periodic function  can be expanded as Fourier series with Fourier coefficients defined by We denote by  the norm An  matrix  is said to be analytic quasi-periodic on  with frequencies , if all  are analytic quasi-periodic on  with frequencies . Define the norm of  by It is easy to see that  If  is a constant matrix, write  for simplicity. Denote the average of  by , where for the existence of the limit, see [17].
Let  be an  quasi-periodic matrix; the differential equations , are called reducible if there exists a nonsingular quasi-periodic change of variables , such that  and  are quasi-periodic and bounded, which changes  to , where  is a constant matrix. The well-known Floquet theorem states that any periodic differential equations  can be reduced to constant coefficient differential equations  by means of a periodic change of variables with the same period as . But this is not true for the quasi-periodic coefficient system; see [18]. Johnson and Sell [19] proved that  is reducible if the quasi-periodic coefficient matrix  satisfies "full spectrum" condition.
Recently, many authors [20–23] considered the reducibility of the following system which is close to constant coefficients matrix:This problem was first considered by Jorba and Simó in [20]. Suppose that  is a constant matrix with different eigenvalues; they proved that if the eigenvalues of  and the frequencies of  satisfy some nonresonant conditions, then for sufficiently small , there exists a nonempty Cantor set , such that, for any , system (6) is reducible. Moreover, the relative measure of the set  in  is exponentially small in . In [23], Xu obtained the similar result for the multiple eigenvalues case.
In [21], Jorba and Simó extended the conclusion of the linear system to the nonlinear systemSuppose that  has  different nonzero eigenvalues; they proved that, under some nonresonant conditions and nondegeneracy conditions, there exists a nonempty Cantor set , such that, for all , system (7) is reducible. Later, in [24], Wang and Xu considered the nonlinear quasi-periodic systemand they proved without any nondegeneracy condition that one of two results holds: (1) system (8) is reducible to  for all ; (2) there exists a nonempty Cantor set , such that system (8) is reducible to  for all .
These papers above all deal with a total reduction to constant coefficients. In [25], instead of a total reduction to constant coefficients, Jorba, Ramirez-ros, and Villanueva considered the effective reducibility of the following quasi-periodic system:where  is a constant matrix with different eigenvalues. They proved that, under nonresonant conditions, by a quasi-periodic transformation, system (9) is reducible to a quasi-periodic system where  is exponentially small in . In [26], Li and Xu obtained the similar result for Hamiltonian systems.
In this paper, we consider the case that  has multiple eigenvalues. Under some nonresonant conditions, we can obtain the effective reducibility for system (9) similar to [25, 26].
Now we are in a position to state the main result.
Theorem 1.  Consider the following linear Hamiltonian system:where  is a constant matrix with eigenvalues ,  is an analytic quasi-periodic function on  with the frequencies , and  is a small parameter.
If  and  satisfy the nonresonant conditions, for all , , where  is a small constant and . In addition, we assume that  has  different eigenvalues , and  is a positive constant independent of .
Then there exists some  such that, for any , there is an analytic quasi-periodic symplectic transformation  on , where  has same frequencies as , which changes system (11) into the following linear system:where  is a constant matrix with  is an analytic quasi-periodic function on  with the frequencies , and Furthermore, a general explicit computation of  and  is possible: where  is the condition number of a matrix  such that  is diagonal, that is, , and the constant  is the bound of  on , that is, .
Remark 2.  In general,  depends on , so does the average . Below for simplicity, we do not indicate this dependence explicitly.
Remark 3.  In Hamiltonian system (11),  is an even number. In fact, a Hamiltonian system is -dimensional; moreover, the eigenvalues  of a  Hamiltonian matrix may be ordered so that 
Now we give some remarks on this result. Firstly, here we deal with the Hamiltonian system and have to find the symplectic transformation, which is different from that in [20, 23, 25]. Secondly, compared with [26], we can allow the matrix  to have multiple eigenvalues. Of course, if the eigenvalues of  are different, the nondegeneracy condition holds naturally, then our result is just the same as in [26].
2. Some Lemmas
We need some lemmas which are provided in this section for the proof of Theorem 1.
Lemma 4.  Let  be analytic quasi-periodic on  with frequencies . Let ,  and , where . Then we have the following results:
(1) , , .
(2) , .
This lemma can be seen in [25].
The next lemma will be used to show the convergence.
Lemma 5.  Let , , and  be sequences defined by with initial values . Then  is decreasing to zero and ,  are increasing and convergent to some values  and , respectively, with , .
The proof of this lemma can be found in [25].
Lemma 6.  Let  be an  diagonal matrix with different eigenvalues , and  Then if  verifies , the following conditions hold:
(1)  has n different eigenvalues  and 
(2) There exists a regular matrix  such that  satisfying 
This lemma can be seen in [20].
3. Proof of Theorem 1
By the assumptions of Theorem 1,  has  different eigenvalues , then there exists a symplectic matrix  such that Under the change of variables , system (11) is changed intowhere ; it is easy to see that .
Now we can consider the iteration step.
In the -th step, we consider the systemwhere , ,  are Hamiltonian. Suppose , , and  are Hamiltonian. Assumewhere , , , and  are defined in Lemma 5.
Let the change of variables be ; under this symplectic transformation, system (21) is changed to where and 
We would like to have and this is equivalent to
Now we want to solve (27) to obtain an analytic quasi-periodic Hamiltonian solution  on  with the frequencies .
From (22), it follows that Thus by Lemma 6,  has  different eigenvalues  andSince  is Hamiltonian, from the discussion in Section 15 of [17], it follows that there exists a symplectic matrix  such that moreover, , where we let , 
Iffor , , where ,  are constants.
Making the change of variable  and defining , (27) becomesExpand  and  into Fourier series where  and 
Thus the coefficients must be By (31), we have which implies
Now we prove that  is Hamiltonian. To this end, we only need to prove that  is Hamiltonian. Since  and  are Hamiltonian, then  and , where  and  are symmetric. Let , if  is symmetric, then  is Hamiltonian. Below we prove that  is symmetric. Substituting  into (32) yields thatand transposing (37), we get It is easy to see that  and  are solutions of (32); moreover,  Since the solution of (32) with  is unique, we have that , which implies that  is Hamiltonian. Since  is symplectic, it is easy to see that  is Hamiltonian.
Thus, under the symplectic transformation , system (21) is changed into the systemwhere System (39) can be written in the following system:where , , and  are Hamiltonian and analytic quasi-periodic on  with the frequencies .
Now we prove the convergence of the iteration as 
We first prove (22) holds by mathematical induction. By Lemma 4, it is easy to verify that where , , , , 
Assume that (22) holds at the -th step. By (22) and (36), we have Hencewhere  is a constant. It is easy to see that ThusFrom (22), (44), (46), Lemmas 4 and 5, it follows that where  is a positive constant, By the mathematical induction, then (22) holds.
Below we prove (31) holds. If  and , from the nonresonant conditions of Theorem 1 and (29), it follows that where  and  So for any , (31) holds.
Consequently, the iterative process can be carried out. The composition of all of the changes  is convergent because  That is, there exists an analytic quasi-periodic function  on  with the frequencies , such that the composition of all of the changes  converges to  as .
From (22) and Lemma 5, it follows that By (22) and (41), we have Hence, according to Lemma 5,  and  are convergent as . Let Then the final equation isBy (22) and Lemma 5, we have and where .
Under the change of variables , system (53) is changed into (13) with Moreover, where .
Thus, under the symplectic transformation , Hamiltonian system (11) is changed into Hamiltonian system (13). Therefore, Theorem 1 is proved completely.
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