Commuting Separately Quasihomogeneous Small Hankel Operators on Pluriharmonic Bergman Space

Qi Wu,1 Chuntao Qin,1 Yong Chen,1 and Yile Zhao2

1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China

Correspondence should be addressed to Yong Chen; ychen227@gmail.com

Received 28 November 2017; Revised 17 January 2018; Accepted 28 January 2018; Published 1 March 2018

Academic Editor: Nikolai L. Vasilevski

Copyright © 2018 Qi Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study (semi)commutativity of small Hankel operators with separately quasihomogeneous symbols on the pluriharmonic Bergman space of the unit ball. Some product problems are also concerned.

1. Introduction

Let \mathbb{B}_n be the unit ball in \mathbb{C}^n and its boundary \mathbb{S}_n. Let $d\nu$ denote the normalized Lebesgue volume measure on the unit ball \mathbb{B}_n. Let $L^2(\mathbb{B}_n, d\nu)$ be the Hilbert space of Lebesgue square integrable functions on \mathbb{B}_n with inner product:

$$\langle f, g \rangle = \int_{\mathbb{B}_n} f(z) \overline{g(z)} \, d\nu(z).$$

(1)

The Bergman space $L^2_a(\mathbb{B}_n)$ is a subspace of $L^2(\mathbb{B}_n, d\nu)$ consisting of all holomorphic functions. It is well known that $L^2_a(\mathbb{B}_n)$ is a reproducing function space with reproducing kernel:

$$K_z(w) = \frac{1}{(1 - \langle z, w \rangle)^{n+1}}.$$

(2)

for $z, w \in \mathbb{B}_n$. Let P be the orthogonal projection from $L^2(\mathbb{B}_n, d\nu)$ onto $L^2_a(\mathbb{B}_n)$; then we have

$$ Pf(z) = \langle f, K_z \rangle, \quad f \in L^2(\mathbb{B}_n, d\nu).$$

(3)

The pluriharmonic Bergman space $L^2_h(\mathbb{B}_n)$ is the closed subspace of $L^2(\mathbb{B}_n, d\nu)$ consisting of the pluriharmonic functions on \mathbb{B}_n. It is well known that

$$ L^2_h(\mathbb{B}_n) = L^2_a(\mathbb{B}_n) + \overline{L^2_a(\mathbb{B}_n)},$$

(4)

where $\overline{L^2_a(\mathbb{B}_n)} = \{ \overline{f} \mid f \in L^2_a(\mathbb{B}_n) \}$; then $L^2_h(\mathbb{B}_n)$ is also a reproducing function space with reproducing kernel:

$$ R_z(w) = K_z(w) + \overline{K_z(w)} - 1, \quad z, w \in \mathbb{B}_n.$$

(5)

Let Q denote the orthogonal projection from $L^2(\mathbb{B}_n, d\nu)$ onto $L^2_h(\mathbb{B}_n)$; then

$$ Qf(z) = \langle f, R_z \rangle, \quad f \in L^2(\mathbb{B}_n, d\nu).$$

(6)

Using (5), we have

$$ Qf(z) = Pf(z) + \overline{Pf}(z) - Pf(0).$$

(7)

Let L^∞ be a set of all bounded measurable functions on \mathbb{B}_n. Fix a function $\varphi \in L^\infty$. The Toeplitz operator $T_\varphi : L^2_h(\mathbb{B}_n) \to L^2_h(\mathbb{B}_n)$ and the small Hankel operator $H_\varphi : L^2_h(\mathbb{B}_n) \to L^2_h(\mathbb{B}_n)$ with the symbol φ are defined by

$$ T_\varphi(f) = Q(\varphi f),$$

(8)

$$ H_\varphi(f) = Q(\varphi f),$$

(9)

respectively, where $J : L^2(\mathbb{B}_n, d\nu) \to L^2(\mathbb{B}_n, d\nu)$ is an unitary operator defined by $Jf(z) = f(\overline{z})$. One can verify that $QJ = QJ$, so we see the relation between the Toeplitz operator and small Hankel operator is

$$ H_\varphi = JT_\varphi = T_{\varphi J}.$$
One can easily check $T^*_{\varphi} = T_{\varphi}$, so, by the above relation, we have $H^*_{\varphi} = H_{\varphi}$, and here $\varphi^*(z) = \varphi(\overline{z})$.

We need more notations. Let \mathbb{N} denote the set of all nonnegative integers. For multi-index $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{N}^n$ and point $z = (z_1, z_2, \ldots, z_n) \in \mathbb{B}_n$, we write

$$|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n,$$

$$\alpha! = \alpha_1! \cdots \alpha_n!,$$

$$z^\alpha = z_1^{\alpha_1} \cdots z_n^{\alpha_n}.$$

For two multi-indexes $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$, $\beta = (\beta_1, \beta_2, \ldots, \beta_n) \in \mathbb{N}^n$, the notations $\alpha \geq \beta$ means that $\alpha_j \geq \beta_j$ for every j and $\alpha \perp \beta$ means that

$$\alpha_1 \beta_1 + \alpha_2 \beta_2 + \cdots + \alpha_n \beta_n = 0. \quad (11)$$

Let $\alpha - \beta$ denote $(\alpha_1 - \beta_1, \alpha_2 - \beta_2, \ldots, \alpha_n - \beta_n)$. Note that if $\alpha - \beta \geq 0 = (0, 0, \ldots, 0)$, then $|\alpha - \beta| = |\alpha| - |\beta|$.

For a function $\phi \in L^2(\mathbb{B}_n, d\nu)$, ϕ is said to be radial if $\phi(z) = \phi(|z|)$ and separately radial if $\phi(z_1, z_2, \ldots, z_n) = \phi(|z_1|, |z_2|, \ldots, |z_n|)$.

Let $r = (r_1, r_2, \ldots, r_n)$, $|r| = \sqrt{|r_1|^2 + |r_2|^2 + \cdots + |r_n|^2}$. For $f \in L^2(\mathbb{B}_n, d\nu)$, if there are $\beta, \gamma \in \mathbb{N}^n$ and separately radial function ϕ such that $f(|r|\xi) = \xi^\beta \xi^\gamma \phi(r)$, where $\xi \in \mathbb{S}_n$, then f is called a separately quasihomogeneous function.

The (semi)commutativity of two operators is an important topic in operator theory. In [1], Brown and Halmos completely characterized the commutativity of Toeplitz operators on the classical Hardy space. From then on, many related works on Toeplitz operators or (small) Hankel operators emerged (see, e.g., [2, 3]).

For the case on the Bergman space of the unit disk, the commutativity is more subtle than that on the Hardy space. References [4, 5] obtained the Brown-Halmos type theorems for Toeplitz operators with harmonic symbols. Many subsequent works studied these problems for special symbol classes, such as harmonic symbols, radial symbols, or quasihomogeneous symbols; see [6–9], for example.

On the harmonic Bergman space, there were some studies focusing on the commuting Toeplitz operators with harmonic symbols [10, 11] or quasihomogeneous symbols [12, 13] and showed that the results obtained are also quite different from the case on the Hardy or Bergman space. Recently, [14] studied the algebraic properties of small Hankel operators on the harmonic Bergman space and got very different commutativity of small Hankel operators compared with the case of Toeplitz operators. So in this paper, we want to continue the work and generalize the commuting small Hankel operators to the higher dimension case.

In order to state our main results, we still need the following notations and facts. Denote $r(\mathbb{B}_n)$ as the set

$$\{r = (r_1, \ldots, r_n) = ([z_1], \ldots, [z_n]) : (z_1, \ldots, z_n) \in \mathbb{B}_n\}. \quad (12)$$

If ϕ is a bounded separately radial function, then

$$\int_{\mathbb{B}_n} \phi(z) d\nu(z) = 2^n n! \int_{r(\mathbb{B}_n)} \phi(r) r dr, \quad (13)$$

where $r dr = \prod_{i=1}^n r_i dr_i$. Let \mathcal{R} be the set consisting of all $\phi \in L^2(\mathbb{B}, d\nu)$ which is separately radial. Note that for every $h \in L^2(\mathbb{B}, d\nu)$ we have

$$h(|r|\xi) = \sum_{\beta, \gamma \geq 0} \xi^\beta \xi^\gamma \phi_{\beta, \gamma} (r), \quad (14)$$

where every $\phi_{\beta, \gamma} \in \mathcal{R}$. Moreover, if $h \in L^\infty$, then also each $\xi^\beta \xi^\gamma \phi_{\beta, \gamma} \in L^\infty$. For details, one may see [15].

We will first investigate when two small Hankel operators with a certain symbols commute. For two operators T_1, T_2, their commutator $T_1T_2 - T_2T_1$ is denoted by $[T_1, T_2]$. So T_1 commutes with T_2 means $[T_1, T_2] = 0$.

Theorem 1. Let $p, q, s, t \in \mathbb{N}^n$ and $\phi, \psi \in \mathcal{R} \cap L^\infty$. Then $[H_{\xi^p \phi}, H_{\xi^q \psi}] = 0$ if and only if one of the following holds:

(i) $\phi = 0$ or $\psi = 0$.

(ii) $p - s = q - t$.

Note that $H_{\xi^r \phi}^* = H_{\xi^r \phi}$, so the above theorem implies that $H_{\xi^r \phi}$ is always a normal operator on $L^2(\mathbb{B}_n)$. We also note that it is still open when two Toeplitz operators with separately quasihomogeneous symbols commute.

Theorem 2. Let ϕ be bounded radial and $h \in L^\infty$. Then $[H_{\phi}, H_h] = 0$ if and only if one of the following holds:

(i) $\phi = 0$.

(ii) h is separately radial.

(iii) ϕ is nonzero constant and $Jh = h$.

The above result is also different from the case for two Toeplitz operators with same symbols; see Corollary 5.2 in [15].

In order to get the semicommutativity of small Hankel operators (see Corollaries 12 and 15 in the next section), we turn to characterize when the product of two small Hankel operators is another small Hankel operator. We obtain the following results.

Theorem 3. Let $p, q, s, t \in \mathbb{N}^n$ and $\phi, \psi \in \mathcal{R} \cap L^\infty$, $h \in L^\infty$. Then the following statements are equivalent:

(i) $H_{\xi^p \phi} H_{\xi^q \psi} = H_h$.

(ii) $H_{\xi^q \psi} H_{\xi^p \phi} = H_h$.

(iii) $\phi = 0$ or $\psi = 0$ or $h = \phi$.

Theorem 4. Let ϕ be bounded radial and $g, h \in L^\infty$. Then the following statements are equivalent:

(i) $H_g H_h = H_g$.

(ii) $H_h H_g = H_g$.

(iii) $g = 0$ or $h = g = 0$.

We would like to point out that the above main results also can apply to answer other related questions. For an example in point, by (9), we have
\[
T_g T_h - T_h T_g = f \left(H_g H_h - H_h H_g \right) J, \tag{15}
\]
so one obtains that when $[H_g, H_h] = 0$ can also answer when $T_g T_h = T_h T_g$.
We will give the proofs of above main results in the next section. Meanwhile, several corollaries also will be deduced.

2. Proof of the Main Results

We first recall some known facts.

It is well known that a bounded analytic function on the half plane $\{z \in \mathbb{C} : \Re z > 0\}$ is uniquely determined by its value on an arithmetic sequence of integers. In fact, we have the following classical theorem (see p. 102 of [16]).

Lemma 5. Suppose that f is a bounded analytic function on $\{z \in \mathbb{C} : \Re z > 0\}$ which vanishes at the pairwise distinct points z_1, z_2, \ldots, where $\inf |z| > 0$ and $\sum_{j=1}^\infty \Re(1/z_j) = \infty$, and then f vanishes identically on $\{z \in \mathbb{C} : \Re z > 0\}$.

We will need a similar result in higher dimensions which is proved by the above lemma. First, we give the following notations.

Let $E \subset \mathbb{N}^2$, we say that E satisfies condition (l) if there exists a sequence $\{a_k\}_{k=1}^\infty$ such that $\sum_{i=1}^\infty 1/\alpha_i^k = \infty$, and, for every fixed a'_k, there also exists a sequence $\{b_j^k\}_{j=1}^\infty$ such that $\sum_{j=1}^\infty 1/\alpha_j^k = \infty$ and $\{(a'_k, b_j^k) : j = 1, 2, \ldots \} \subset E$.

One will easily see that for a multi-index $\delta \in \mathbb{N}^2$, if $E \subset \{\alpha \in \mathbb{N}^2 : \alpha \geq \delta\}$ and let E^c be the complement of E in $\{\alpha \in \mathbb{N}^2 : \alpha \geq \delta\}$, then either E or E^c satisfies the condition (l). Using Lemma 5, one may prove the following (also see Corollary 2.7 in [15]).

Lemma 6. Let $p, s \in \mathbb{N}^2$ and $g(r)$ be a bounded function on $\tau(B_2)$. If the set
\[
E = \left\{ \alpha \in \mathbb{N}^2 : \alpha \geq \max(s, 1), \int_{\tau(B_2)} g(r) r^{2\alpha} r^p dr = 0 \right\} \tag{16}
\]
satisfies condition (l), then $g = 0$.

Let $\alpha, p, s \in \mathbb{N}^n$. Set
\[
A(\alpha; \phi; p, s) = 2^n (n + |\alpha + p - s|)! \int_{\tau(B_2)} \phi(r) r^{2\alpha + 2p} r^{-|\alpha|} r^p dr \tag{17}
\]
when $\alpha + p \geq s$ and
\[
B(\alpha; \phi; s, \alpha, \alpha) = 2^n (n + |\alpha - s - p|)! \int_{\tau(B_2)} \phi(r) r^{2\alpha} r^{-|\alpha|} r^p dr \tag{18}
\]
when $\alpha + s \leq s$. The following lemma is immediately from (9) and Lemma 3.4 of [17] and we will use it frequently.

Lemma 7. Let $p, s \in \mathbb{N}^n$ and $\phi \in \mathcal{R}$; then, for any multi-index $\alpha \in \mathbb{N}^n$,
\[
H_{\xi \xi \phi} (\alpha) = \begin{cases} A(\phi; \alpha, p, s) z^{2\alpha + p - s} & \alpha + p \geq s, \\
B(\phi; s, \alpha, p) z^{2\alpha - p} & \alpha + p \leq s, \\
0 & \text{otherwise}, \end{cases} \tag{19}
\]
\[
H_{\psi \xi \phi} (\alpha) = \begin{cases} A(\phi; \alpha, s, p) z^{2\alpha + s - p} & \alpha + s \geq p, \\
B(\phi; p, \alpha, s) z^{2\alpha - s} & \alpha + s \leq p, \\
0 & \text{otherwise}. \end{cases} \tag{20}
\]

Note that, for two nonzero multi-indexes $p, s \in \mathbb{N}^n$ with $p \perp s$, then $\alpha + p \geq s$ if and only if $\alpha + s \geq p$ and there is no $\alpha \in \mathbb{N}^n$ such that $\alpha + p \leq s$. Hence the above lemma gives the following.

Lemma 8. Let $p, s \in \mathbb{N}^n$ with $p, s \neq 0$ and $p \perp s, \phi \in \mathcal{R}$; then, for any multi-index $\alpha \in \mathbb{N}^n$,
\[
H_{\xi \psi \phi} (\alpha) = \begin{cases} A(\phi; \alpha, p, s) z^{2\alpha + p - s} & \alpha + p \geq s, \\
0 & \text{otherwise}, \end{cases} \tag{21}
\]
when $\alpha + t - q, \alpha + t - q + p - s$ and
\[
H_{\psi \xi \phi} (\alpha) = \begin{cases} A(\phi; \alpha, s, p) z^{2\alpha + s - p} & \alpha + s \geq p, \\
0 & \text{otherwise}. \end{cases} \tag{22}
\]

We are ready to prove the first main result.

Proof of Theorem 1. Using Lemma 7, direct calculations show that
\[
H_{\xi \psi \phi} H_{\psi \xi \phi} (\alpha) = A(\psi; \alpha, q, t) A(\phi; \alpha + q - t, s, p) z^{2\alpha + p - s - t + q} \tag{23}
\]
when $\alpha + t - q, \alpha + t - q + p - s$ and
\[
H_{\psi \xi \phi} H_{\xi \psi \phi} (\alpha) = A(\phi; \alpha, p, s) A(\psi; \alpha + p - s, t, q) z^{2\alpha + p - s + t - q} \tag{24}
\]
which implies $p - s = q - t$ or
\[
A(\psi; \alpha, q, t) A(\phi; \alpha + q - t, s, p) = 0 \tag{25}
\]
holds when $\alpha + t - q, \alpha + t - q + p - s$, which induces $\psi = 0$ or $\phi = 0$. In fact, for the sake of simplicity, we only consider the case $n = 2$. Put
\[
E = \left\{ \alpha \in \mathbb{N}^2 : \alpha \geq p + s, A(\psi; \alpha, q, t) = 0 \right\}, \tag{26}
\]
if E satisfies the condition (1); then, by Lemma 6, we can get $\psi = 0$; otherwise E^* will satisfy the condition (1), which by (25) says that the set
\[
\{ \alpha \in \mathbb{N}^2 : \alpha \geq p, s + A(\phi; \alpha + q - t - s, p, s, p) = 0 \}
\]
satisfies the condition (1); thus, by Lemma 6, again we get $\phi = 0$.

Conversely, if $\phi = 0$ or $\psi = 0$, it is clear that $H_{\xi} H_{\xi^F \phi}$ commutes with $H_{\xi} H_{\xi^F \psi}$. Now suppose $p - s = q - t$. When $z > t$ and $\alpha \geq 0$, by (21) and (22), one can easily check
\[
H_{\xi} H_{\xi^F \phi} (z^\alpha) = H_{\xi} H_{\xi^F \psi} (z^\alpha) \tag{28}
\]
where Φ is a separately radial function. Thus for each $h \in L^2(B_n, d\nu)$ denoted as the form (14), we may rewrite $h = h_1 + h_2 + h_3$, where
\[
\begin{align*}
h_1 &= \sum_{p,s \geq 0} \xi^P \phi_{p,s,0}, \\
h_2 &= \sum_{s \geq 0, p \geq 0} \xi^P \phi_{0,s,0}, \\
h_3 &= \sum_{p \geq 0, s \geq 0, p \geq s} \xi^P \phi_{p,s,0}.
\end{align*}
\]

Now we can prove the second main result.

Proof of Theorem 2. Suppose $[H_g, H_h] = 0$. We may write $h = h_1 + h_2 + h_3$, where h_1, h_2, h_3 are given by (32). Using Lemmas 7 and 8, direct calculations give that, for every $\alpha \in \mathbb{N}^n$,
\[
H_g H_h (z^\alpha) = H_g H_h (z^\alpha) + H_g H_h (z^\alpha) + H_g H_h (z^\alpha)
\]
for every $\alpha \in \mathbb{N}^n$.

Before we prove Theorem 2, we introduce the Mellin transform which is one of the most useful tools in studying our problems. The Mellin transform $\tilde{\phi}$ of a function $\phi \in L^1([0,1], \nu dx)$ is defined by $\tilde{\phi}(z) = \int_0^1 \phi(s) s^{z-1} ds$. It is known that $\tilde{\phi}$ is a bounded analytic function in the half plane $\{ \Re z > 2 \}$. In addition, for a radial function ϕ, to compute $\int_{\mathbb{R}^n} \phi(z) |z|^2 d\nu$ using (13), we obtain
\[
A(\phi; \alpha, 0, 0) = (2n + 2 |\alpha|) \tilde{\phi}(2n + 2 |\alpha|). \tag{30}
\]

Let $z = (z_1, \ldots, z_n) = (|z| \xi_1, \ldots, |z| \xi_n) \in B_n$, where $\xi = (\xi_1, \ldots, \xi_n) \in S_n$. Put $r_j = |z_j|$, then $|\xi_j| = r_j/|z|$, $j = 1, \ldots, n$. Let $r = (r_1, \ldots, r_n)$. For every separately quasihomogeneous function $f(z) = f(|r| \xi) = \xi^P \tilde{\phi}(r)$, there is unique $p, s \in \mathbb{N}^n$ with $p \perp s$ such that $p - s = \beta$ and
\[
f(|r| \xi) = \xi^P \tilde{\phi}(r) = \xi^P \phi(r) = \xi^P \Phi(r) \tag{31}
\]
where Φ is a separately radial function. Thus for each $h \in L^2(B_n, d\nu)$ denoted as the form (14), we may rewrite $h = h_1 + h_2 + h_3$, where
\[
\begin{align*}
h_1 &= \sum_{p,s \geq 0} \xi^P \phi_{p,s,0}, \\
h_2 &= \sum_{s \geq 0, p \geq 0} \xi^P \phi_{0,s,0}, \\
h_3 &= \sum_{p \geq 0, s \geq 0, p \geq s} \xi^P \phi_{p,s,0}.
\end{align*}
\]

Comparing the fourth summations in the equalities (33) and (34), it follows from $H_g H_h (z^\alpha) = H_g H_h (z^\alpha)$ that, for every $p \perp s, p, s \neq 0$ and $s \leq \alpha$, we have
\[
A(\phi_{p,s, \alpha, p, \alpha}) A(\phi; \alpha + p - s, 0, 0) = A(\phi_{p,s, \alpha, p, \alpha}) A(\phi; \alpha, 0, 0). \tag{35}
\]
Similarly, comparing the first summation in the equality (33) with the third one in the equality (34), we then get that, for every $p, \alpha \geq 0$,
\[
A(\phi_{p, \alpha, \alpha, p, \alpha}) A(\phi; \alpha + p; 0, 0) = A(\phi_{0, \alpha, \alpha, p, \alpha}) A(\phi; \alpha, 0, 0). \tag{36}
\]
With the same arguments as above, it follows from $H_{\alpha}H_{\beta}(\mathbb{R}^2) = H_{\alpha}H_{\beta}(\mathbb{R}^2)$ that, for every $p \perp s$, $p, s \neq 0$ and $s \leq \alpha$, we have

$$A \left(\phi_{p,s}; \alpha, p, s \right) A \left(\phi; \alpha + p - s; 0, 0 \right) = A \left(\phi_{p,s}; \alpha, p, s \right) A \left(\phi; \alpha, 0, 0 \right)$$

and, for every $p, \alpha \geq 0$,

$$A \left(\phi_{0}; \alpha, p, 0 \right) A \left(\phi; \alpha + p; 0, 0 \right) = A \left(\phi_{0}; \alpha, p, 0 \right) A \left(\phi; \alpha, 0, 0 \right).$$

Similarly, it follows from (36) we can get ϕ is not a constant; hence, by (30), we have

$$A \left(\phi_{p,s}; \alpha, p, s \right) = 0,$$ (40)

which induces that $\phi_{p,s} = \phi_{s,p}$ for every $p \perp s$, $p, s \neq 0$ by Lemma 6. Similarly, it follows from (36) we can get $\phi_{p,0} = \phi_{0,p}$ for every $p \neq 0$. Therefore, we obtain $H \psi = \psi.

In the following, we suppose ϕ is not a constant. It follows from (35) and (37) that, for every $p \perp s$, $p, s \neq 0$, when $\alpha \geq s$,

$$A \left(\phi_{p,s} - \phi_{s,p}; \alpha, p, s \right) \cdot \left[A \left(\phi; \alpha + p - s, 0, 0 \right) + A \left(\phi; \alpha, 0, 0 \right) \right] = 0.$$ (41)

For the sake of simplicity, we only consider the case $n = 2$. For $p \perp s$, $p, s \neq 0$, put

$$E_{p,s} = \left\{ \alpha \in \mathbb{N}^n : \alpha \geq s, A \left(\phi_{p,s} - \phi_{s,p}; \alpha, p, s \right) = 0 \right\}.$$ (42)

If $E_{p,s}$ satisfies the condition (1), then by Lemma 6 we obtain $\phi_{p,s} = \phi_{s,p}$; if $E_{p,s}$ does not satisfy the condition (1), then $E^c_{p,s}$, the complement of $E_{p,s}$ in $[\alpha \in \mathbb{N}^n : \alpha \geq s]$, must satisfy the condition (1). In particular, we have $\sum_{\alpha \in E^c_{p,s}} (1/|\alpha|) = \infty$. So by (41) we have, for $p \perp s$, $p, s \neq 0$,

$$A \left(\phi; \alpha, 0, 0 \right) = -A \left(\phi; \alpha + p - s, 0, 0 \right), \quad \alpha \in E^c_{p,s}.$$ (43)

That is, when $\alpha \in E^c_{p,s}$, using (30), we have

$$(2n + 2|\alpha|) \hat{\phi} \left(2n + 2 \ |\alpha| \right) = - (2n + 2|\alpha + 2|p| - 2|s|) \hat{\phi} \left(2n + 2 \ |\alpha + 2|p| - 2|s| \right).$$ (44)

Denote

$$F(z) = \hat{\phi} \left(z + 2n + 2 \ |p| - 2|s| \right) \hat{\phi} \left(z + 2n \right) + \frac{z + 2n}{z + 2n + 2 \ |p| - 2|s|} \hat{\phi} \left(z + 2n \right).$$ (45)

and then F is a bounded analytic function on $|z \in \mathbb{C} : \text{Re}z > 2|s|]$. Moreover, it follows from (44) that $F(2|\alpha|) = 0$ when $\alpha \in E_{p,s}$. According to Lemma 5 we thus have $F \equiv 0$, which implies

$$(z + 2n) \hat{\phi} (z + 2n) = - (z + 2n + 2 \ |p| - 2|s|) \hat{\phi} \left(z + 2n + 2 \ |p| - 2|s| \right)$$ (46)

for every $z \in |z \in \mathbb{C} : \text{Re}z > 2|s|]$. If $|p| = |s|$, then it follows from the above that $(z + 2n) \hat{\phi} (z + 2n) = 0$, so it is clear that $\phi = 0$, a contradiction. Without loss of generality, we may assume $|p| > |s|$. Replace z by $z + 2|p| - 2|s|$ in (46) and then compare with (46) to obtain

$$(z + 2n) \hat{\phi} (z + 2n) = (z + 2n + 4 \ |p| - 4|s|) \hat{\phi} \left(z + 2n + 4 \ |p| - 4|s| \right),$$ (47)

and thus, as in the proof of Theorem 6 in [6], the above equation gives that ϕ is a constant, which is also a contradiction. Therefore, when ϕ is not a constant, then, for every $p, s \in \mathbb{N}^n$ with $p \perp s$ and $s \neq 0$, $\phi_{p,s} = \phi_{s,p}$. Putting them into (35), we get that, for $p \perp s$, $p, s \neq 0$,

$$A \left(\phi_{p,s}; \alpha, p, s \right) \left[A \left(\phi; \alpha + p - s; 0, 0 \right) - A \left(\phi; \alpha, 0, 0 \right) \right] = 0$$ (48)

when $\alpha \geq s$. Since ϕ is not a constant, then similar argument as before we get $\phi_{p,s} = 0$; hence $\phi_{p,s} = \phi_{s,p}$ for $p \perp s$, $p, s \neq 0$. With same arguments, using (36) and (38), we can get $\phi_{p,0} = \phi_{0,p} = 0$ for $p \neq 0$. So $h = \phi_{0,0}$, a separately radial function.

Conversely, if $\phi = 0$, then clearly $[H_{\phi}H_{\phi}] = 0$; if h is separately radial, then Theorem 1 gives $[H_{\phi}H_{\phi}] = 0$; if $\phi = c$, a nonzero constant, and $H_{\phi} = h$, then using (9) we have

$$H_{\phi}H_{\phi} = cH_{\phi}h = cH_{\phi}h = H_{\phi}H_{\phi},$$ (49)

as desired. The proof is complete.

Before we prove the last two main results, we should note that, for every small Hankel operator H_{ϕ} with $\phi \in L^\infty$, it is easy to check that H_{ϕ} is a complex symmetric operator with complex conjugate C which is defined as $Cf(z) = \overline{f(z)}$ for $f \in L^2(\mathbb{D}, dv)$, that is, $H_{\phi}^* = CH_{\phi}C$. Hence we have the following analogous result as Proposition 18 in [14].

Lemma 9. Let $f, g, h \in L^\infty$. Then $H_{f}H_{g}H_{h} = H_{h}$ if and only if $H_{f}H_{g}H_{h} = H_{h}$, and each case implies $[H_{f}^*, H_{g}] = 0$.

We also need the following partial result of zero product characterization which has independent interest.

Theorem 10. Let $p, s \in \mathbb{N}^n$, $\phi \in \mathcal{A} \cap L^\infty$, $h \in L^\infty$. Then the following statements are equivalent:

(i) $H_{\phi}^\epsilon_{\psi} H_{h} = 0$.

(ii) $H_{h} H_{\phi}^\epsilon_{\psi} = 0$.

(iii) $\phi = 0$ or $h = 0$.

Corollary 11. Let \(p, s \in \mathbb{N}^n \) and \(0 \neq \phi \in \mathcal{R} \cap L^\infty \), \(g, h \in L^2 \). Then the following statements are equivalent:

(i) \(H_{\zeta \xi} \phi \; H_g = H_{\zeta \xi} \phi \; H_h \);

(ii) \(g = h \); \(\phi \neq 0 \);

(iii) \(g = h = 0 \).

Now we turn to prove the third main result.

Proof of Theorem 3. By Lemma 9 we only need to show (i) \(\Rightarrow \) (iii). Write \(h \) as the form (14). When \(\alpha \geq s - p \), by Lemma 7, we have

\[
H_{\zeta \xi} \phi \; (\zeta^\alpha) = A(\phi; \alpha, p, s) \; \zeta^{\alpha + p - s}.
\]

(50)

Using Lemma 7 again we get that the analytic part of \(H_{\zeta \xi} \phi \; (\zeta^\alpha) \) is given by

\[
\sum_{\beta + \gamma + \delta = \alpha} A(\phi; \alpha, p, s) \; A(\phi_{\beta, \gamma}; \alpha + p - s, \gamma, \beta) \; \zeta^{\alpha + p - s + \gamma - \beta},
\]

(51)

and hence \(H_{\zeta \xi} \phi \; (\zeta^\alpha) = 0 \) will give that, for each \(\beta, \gamma \in \mathbb{N}^n \),

\[
A(\phi; \alpha, p, s) \; A(\phi_{\beta, \gamma}; \alpha + p - s, \gamma, \beta) = 0
\]

holds for any \(\alpha \geq s - p \) and \(\alpha \geq \beta, \gamma + p - s \). Therefore, with the same arguments as done in the proof of Theorem 1 we can get \(\phi = 0 \) or \(\phi_{\beta, \gamma} = 0 \) for each \(\beta, \gamma \), as the assertion. We finish the proof.

The next rephrasing of above result is a cancellation law for small Hankel operators with separately quasihomogeneous symbols.

Corollary 12. Let \(p, s, q, t \in \mathbb{N}^n \) and \(\phi, \psi \in \mathcal{R} \cap L^\infty \). Then the following statements are equivalent:

(i) \(H_{\zeta \xi} \phi \; H_{\xi \xi} \psi = H_{\zeta \xi} \phi \; H_{\xi \xi} \psi \);

(ii) \(H_{\zeta \xi} \phi \; H_{\xi \xi} \psi = H_{\zeta \xi} \phi \; H_{\xi \xi} \psi \);

(iii) \(\phi = 0 \) or \(\psi = 0 \).

Now it is left to prove the last main result. We need the following lemma which is a generalization of Lemma 19 in [14] to higher dimension case.

Lemma 14. Let \(g, h \in L^\infty \). Then \(T_h = H_g \) if and only if \(g = 0 \).

Proof. Let \(T_h = H_g \). Then \(T_h \) and \(H_g \) are Toeplitz operator and small Hankel operator on the Bergman space \(L^2_n(\mathbb{B}_n) \), respectively. It is easy to verify that

\[
T_{z_j} T_h = T_{z_j} H_g, \quad j = 1, \ldots, n.
\]

(54)

Suppose \(T_h = H_g \); then \(T_g = H_h \). Applying the above equations we get

\[
T_{z_j} T_g = T_{z_j} T_h = T_{z_j} H_g = T_{z_j} T_{z_j} = T_{z_j} T_{z_j} = T_{z_j} T_{z_j}
\]

(55)

to obtain \(T_{z_j} T_{z_j} T_{z_j} = 0 \), which gives \((\mathcal{S}_j - z_j) g = 0 \), and so \(g = 0 \). It follows from \(H_h = T_{z_j} = 0 \) that \(h = 0 \). The proof is complete.

Proof of Theorem 4. Supposing \(H_g \; H_h = H_g \), then by Lemma 9 we get \([H_g, H_h] = 0 \). So Theorem 2 tells that one of the following cases may occur.

Case (a). \(\phi = 0 \). In this case, we get \(\phi = g = 0 \).

Case (b). \(h \) is a separately radial function. In this case, by Theorem 3, we have \(\phi = g = 0 \) or \(h = 0 \).

Case (c). \(\phi \) is a nonzero constant and \(J_h = h \). Without loss of generality, we assume \(\phi = 1 \). Combining with (9) we have \(H_g = H_h = J_h = T_h \). Hence by Lemma 14 we get \(g = h = 0 \).

The remaining of the proof is clear. We complete the proof.

The following semicommutativity is obtained easily by Theorem 4.

Corollary 15. Let \(\phi \) be bounded radial and \(g \in L^\infty \). Then the following statements are equivalent:
(i) \(H_\phi H_g = H_{\phi g} \).
(ii) \(H_g H_\phi = H_{\phi g} \).
(iii) \(\phi = 0 \) or \(g = 0 \).

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
The first three authors were supported by NSFC (nos. 11771401 and 11471113) and ZJNSFC (no. LY14A010013). The last author was supported by ZJNSFC (no. LY13A010021).

References