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Abstract. 
In this article, we present exponential-type inequalities for positive linear mappings and Hilbert space operators, by means of convexity and the Mond-Pečarić method. The obtained results refine and generalize some known results. As an application, we present extensions for operator-like geometric and harmonic means inequalities.



1. Introduction
Let  be the  algebra of bounded linear operators on a complex Hilbert space  If  is positive, we write  Further, we use the notation  for the cone of all positive operators in  For two self-ajoint operators , we write  if . For a real-valued function  of a real variable and a self-adjoint operator , the value  is understood by means of the functional calculus.
Let  be a real interval of any type. A continuous function  is said to be operator convex if  holds for each  and every pair of self-adjoint operators , with spectra in . The notation  will be used in the sequel to denote the class of all positive operators  satisfying , for some positive scalars  and . A linear map  is said to be positive if  whenever . If, in addition, , it is said to be normalized.
If  is operator convex, then, for any normalized positive linear map , we have [1, 2]while we have the reversed inequality if  is operator concave, for any self-adjoint operator  with spectrum in .
Inequality (1) is not true if  is a convex function (rather than operator convex). However, in the interesting paper [3], various complementary inequalities have been presented for convex and concave functions. For example, it is shown that, for any positive number , one can find a constant  such thatfor the twice differentiable convex function  and any self-adjoint operator  on  with spectrum in 
Earlier, it has been shown that, for any continuous real valued function , one can find positive constants  and  such that [4]
In Proposition 10, we present a special case of (2) for a particular choice of ; however we present a simple proof for completeness. Then as an application, we present several improvements and extensions of (2) and (3) for a log-convex function .
In the sequel, we adopt the following notations. For a given function , definewhereIf no confusion arises, we will simply write  and 
Also, for , defineprovided that  exists.
It is clear that, for a convex function , one haswhile the inequalities are reversed for a concave function .
Remark 1.  Notice that if  is convex on an interval  containing , then (7) is still valid for any . That is,  does not need to be in 
Now, if  is log-convex, we have the inequality , which simply reads as followswhere the second inequality is due to the arithmetic-geometric inequality. We refer the reader to [5] for some detailed discussion of (8).
Another useful observation about log-convex functions is the following. If  is log-convex on  and if  is such that , (7) implies Simplifying this inequality implies the following.
Lemma 2.  Let  be log-convex. If  is differentiable at , then 
In this article, we present several inequalities for log-convex functions based on the Mond-Pečarić method. In particular, we present inequalities that can be viewed as exponential inequalities for log-convex functions. More precisely, we present inequalities among the quantities and 
Another interest in this paper is to present inequalities for operator-like means when filtered through normalized positive linear maps. That is, it is known that, for an operator mean  and two positive invertible operators , one has [6] In particular, we show complementary inequalities for the geometric  and harmonic  operator-like means, when  Of course, when , these are not operator means. Our results can be considered as extensions of [7, Theorem 2.2].
2. Main Results
Now we proceed to the main results, starting with a complementary result of [8, Corollary 2.5] and [5, Proposition 2.1].
Proposition 3.  Let  be log-convex, , and  be a normalized positive linear map. Thenwhere
Proof.  The first and the second inequalities follow from [5, Proposition 2.1] and the fact that . So we have to prove the other inequalities. Applying a standard functional calculus argument for the operator  in (8), we getFollowing [8], we have, for , where  That is, By setting , we obtain  With this choice of , we have , which, together with (16), complete the proof.
Notice that Proposition 3 can be regarded as an operator extension of [9, Theorem 2.5] and a refinement of [8, Corollary 2.5].
Corollary 4.  Let  and  be a normalized positive linear map. Then, for ,where the generalized Kantrovich constant is defined by 
Proof.  The result follows immediately from Proposition 3, by letting 
Remark 5.  Corollary 4 presents a refinement of the corresponding result in [10, Lemma 2].
As another application of Proposition 3, we have the following bounds for operator means. To simplify our statement, we will adopt the following notations. For a given function  and two positive operators  and  satisfying , we write 
Corollary 6.  Let  be such that  for some positive scalars  Then, for any linear map  (not necessarily normalized) and any log-convex function , 
Proof.  From the assumption , we have  Therefore, if  is log-convex on , Proposition 3 impliesfor any normalized positive linear map  In particular, for the given , define Then,  is a normalized linear mapping and the above inequalities imply, upon conjugating with , the desired inequalities.
In particular, Corollary 6 can be utilized to obtain versions for the geometric and harmonic operator means, as follows.
Corollary 7.  Let  be such that  for some positive scalars  Then, for any linear map  (not necessarily normalized) and for , where  and  is as in Corollary 4.
Proof.  Noting that the function  is log-convex on  for , the result follows by direct application of Corollary 6.
Remark 8.  Recently in [7, Theorem 2.2], the authors proved that if  are two positive operators, thenTherefore, Corollary 7 can be regarded as an extension and a reverse for the above inequality, under the assumption  with .
Corollary 9.  Let  be such that  for some positive scalars  Then, for any linear map  (not necessarily normalized) and for , where  and 
Proof.  Noting that the function  is log-convex on  for , provided that , the result follows by direct application of Corollary 6.
We should remark that the mapping  is a decreasing function for  In particular, 
Further, utilizing (8), we obtain the following. In this result and later in the paper, we adopt the notations: 
The following proposition gives a simplified special case of [3, Theorem 2.1].
Proposition 10.  Let  be convex, , and  be a normalized positive linear map. If  is either increasing or decreasing on , then, for any ,andprovided that  exists and  Further, both inequalities are reversed if  is concave.
Proof.  We give the proof for the reader’s convenience. Notice first that  being either increasing or decreasing ensures that  Using a standard functional calculus in (7) with  and applying  to both sides implyOn the other hand, applying the functional calculus argument with  impliesNoting that  and  have the same sign, both desired inequalities follow from (33) and (34).
Now if  was concave, replacing  with  and noting linearity of  imply the desired inequalities for a concave function.
As an application, we present the following result, which has been shown in [3, Corollary 2.8].
Corollary 11.  Let . Then, for a normalized positive linear mapping ,and
Proof.  Let  Then  is convex and monotone on  Letting , direct calculations show that ,  Then inequality (31) implies the first inequality. The second inequality follows similarly by letting 
Manipulating Proposition 10 implies several extensions for log-convex functions, as we shall see next.
We will adopt the following constants in Theorem A.
, , ,  for  and , , , and  for 
The first two inequalities of the next result should be compared with Proposition 3, where a reverse-type is presented now.
Theorem A.  Let  be log-convex, , and  be a normalized positive linear map. Then, for any , 
Proof.  For , we clearly see that  is convex and monotone on . Notice that This proves the first two inequalities. Now, for the third inequality, assume that  and let  Then the second inequality can be viewed asSince , it follows that  is operator concave. Therefore, noting (39) and (1), we have which is the desired inequality in the case 
Now, if , the function  is convex and monotone. Therefore, taking in account (39) and (31), we obtain which completes the proof.
For the same parameters as Theorem A, we have the following comparison too, in which the first two inequalities have been shown in Theorem A.
Corollary 12.  Let  be log-convex, , and  be a normalized positive linear map. Then 
Proof.  We prove the last inequality. Letting  be a normalized positive linear map and noting that  is order preserving, the fourth inequality of Proposition 3 implies which is the desired inequality.
For the next result, the following constants will be used.
, , ,  for  and , , , and  for 
Theorem B.  Let  be log-convex, , , and  be a normalized positive linear map. If , On the other hand, if , 
Proof.  Letting  and , we have which completes the proof for the case 
Now if , we have which completes the proof.
Remark 13.  In both Theorems A and B, the constants  and  can be selected to be 1, as follows. Noting that the function  in both theorems is continuous on  and differentiable on , the mean value theorem ensures that  for some  This implies , since we use the notation . A similar argument applies for  These values of  can be easily found.
Moreover, one can find  so that , providing a multiplicative version. Since this is a direct application, we leave the tedious computations to the interested reader.
Utilizing Lemma 2, we obtain the following exponential inequality.
Proposition 14.  Let  be log-convex, , , and  be a normalized positive linear map. Then and where  and  for 
Proof.  By Lemma 2, we have A functional calculus argument applied to this inequality with  implies which completes the proof of the first inequality. The second inequality follows similarly using (31).
3. Further Refinements
The above results are all based on basic inequalities for convex functions. Therefore, refinements of convex functions inequalities can be used to obtain sharper bounds. We give here some examples. In [11], the following simple inequality was shown for the convex function ,This inequality can be used to obtain refinements of (31) and (32) as follows. First, we note that the function  is a continuous function. Further, noting that one can apply a functional calculus argument on (52). With this convention, we will use the notation The following is a refinement of Proposition 10. Since the proof is similar to that of Proposition 10 utilizing (52), we do not include it here.
Proposition 15.  Let  be convex, , and  be a normalized positive linear map. If  is either increasing or decreasing on , then, for any ,andprovided that  exists and 
Notice that applying this refinement to the convex function  implies refinements of both inequalities in Corollary 11 as follows.
Corollary 16.  Under the assumptions of Corollary 11, we haveand
Remark 17.  Inequality (52) has been studied extensively in the literature, where numerous refining terms have been found. We refer the reader to [12, 13], where a comprehensive discussion has been made therein. These refinements then can be used to obtain further refining terms for Proposition 10.
Further, these refinements can be applied to log-convex functions too. This refining approach leads to refinements of most inequalities presented in this article; where convexity was the key idea. We leave the detailed computations to the interested reader.
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