Research Article

Uniqueness of Successive Positive Solution for Nonlocal Singular Higher-Order Fractional Differential Equations Involving Arbitrary Derivatives

Qiuyan Zhong,1 Xingqiu Zhang2,3 Xinyi Lu,4 and Zhengqing Fu1

1Center for Information Technology, Jining Medical College, Jining, Shandong 272067, China
2School of Medical Information Engineering, Jining Medical College, Rizhao, Shandong 276826, China
3Department of Mathematics, Chizhou University, Chizhou, Anhui 247100, China
4College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Correspondence should be addressed to Xingqiu Zhang; zhxq197508@163.com

Received 15 June 2018; Accepted 14 August 2018; Published 6 September 2018

Academic Editor: Liguang Wang

In this article, by means of fixed point theorem on mixed monotone operator, we establish the uniqueness of positive solution for some nonlocal singular higher-order fractional differential equations involving arbitrary derivatives. We also give iterative schemes for approximating this unique positive solution.

1. Introduction

We are interested in investigating the existence and iterative schemes of the unique positive solution for the following fractional differential equation (FDE):

\[D_0^\alpha u(t) + f(t, u(t), D_0^\delta u(t)) = 0, \quad 0 < t < 1, \]
\[D_0^\delta u(0) = D_0^{\delta+1} u(0) = \cdots = D_0^{\delta+n-2} u(0) = 0, \]
\[D_0^\varphi u(1) = \lambda \int_0^\eta h(t) D_0^\varrho u(t) \, dt, \]

where \(D_0^\alpha \) is the standard Riemann-Liouville derivative, \(n-1 < \alpha \leq n, n \geq 3, \delta - \varphi \geq 1, \alpha - \delta > 0, 0 \leq \delta < 1, 0 < \eta \leq 1, \)
\(\lambda \) is a positive parameter with \(0 \leq \lambda \Gamma(\alpha - \varrho) \int_0^\eta h(t) t^{\alpha-\varrho-1} \, dt < \Gamma(\alpha - \varphi), f \in C(I \times R^+ \times R^+, R^+), I = (0, 1), R^+ = (0, +\infty), R^+ = [0, +\infty), 0 < \lambda \Gamma(\alpha - \varrho) \int_0^\eta h(t) t^{\alpha-\varrho-1} \, dt < \Gamma(\alpha - \varphi), h \in L^1[0, 1] \)
is nonnegative, \(f(t, x_1, x_2) \) permits singularities at \(x_i = 0 \) \((i = 1, 2) \), and \(f \) is either continuous or singular. Very recently, in [16], we give two uniqueness results of solution for the following FDE:

\[D_0^\alpha u(t) + f(t, u(t)) = 0, \quad 0 \leq t \leq 1, \]
\[u(0) = u'(0) = \cdots = u^{(n-2)}(0) = 0, \]
\[D_0^\varphi u(1) = \lambda \int_0^\eta h(t) D_0^\varrho u(t) \, dt, \]

where \(f \in C(I \times R, R), I = [0, 1), R = (-\infty, +\infty), \) and \(h \in L^1[0, 1] \) is nonnegative. The whole discussion is based on fractional calculus and fractional models play more and more significant role in describing a wide spectrum of nonlinear phenomena in natural sciences, engineering, economics, biology, and signal and image processing; see books and monographs [1–3] and references [4–32] to name a few. More and more attention has been paid to nonlocal problem of fractional differential equation because of its wide applications to applied mathematics and physics such as chemical engineering, underground water flow, heat conduction, thermoelasticity, and plasma physics. Under different conjugate type integral conditions such as no parameters, only one or two parameters involved in boundary conditions, [8–16, 33, 34] investigate the existence, uniqueness, and multiplicity of positive solutions for FDEs when \(f \) is either continuous or singular.
on the Banach contraction map principle and the theory of u_0-positive linear operator.

Motivated by the above papers, in this article we aim to obtain the uniqueness result of solution for BVP (1) by means of theory on monated monotor operator. This article admits some new features. First, compared to [6–16] the problem considered in this paper performs more general form since another parameter δ is contained in boundary conditions. Second, the nonlinearity f is not only singular on space variable u but also relative with δ-order derivative of an unknown variable u. Finally, the method used in this paper is different from that in [16].

2. Preliminaries and Several Lemmas

Definition 1 (see [3]). The Riemann-Liouville fractional integral of order $\alpha > 0$ of a function $x : (0, \infty) \rightarrow \mathbb{R}$ is given by

$$I_0^\alpha x(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} x(s) \, ds$$

(3)

provided the right-hand side is pointwise defined on $(0, \infty)$.

Definition 2 (see [3]). The Riemann-Liouville fractional derivative of order $\alpha > 0$ of a continuous function $x : (0, \infty) \rightarrow \mathbb{R}$ is given by

$$D_0^\alpha x(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_0^t \frac{x(s)}{(t-s)^{\alpha-1}} ds$$

(4)

where $n = \lceil \alpha \rceil + 1$, $\lceil \alpha \rceil$ denotes the integer part of the number α, provided that the right-hand side is pointwise defined on $(0, \infty)$.

Lemma 3 (see [23]). (1) If $x \in L(0, 1)$, $\nu > \sigma > 0$, then

$$I_0^\nu I_0^\sigma x(t) = I_0^{\nu+\sigma} x(t)$$

$$D_0^\nu D_0^\sigma x(t) = I_0^{\nu-\sigma} x(t)$$

(5)

(2) If $\nu > 0$, $\sigma > 0$, then

$$D_0^\nu I_0^\sigma x(t) = \int_0^t \frac{(s-t)^{\nu-1}}{\Gamma(\nu)} I_0^{\sigma} x(s) \, ds.$$

(6)

Let $u(t) = I_0^\delta x(t), x(t) \in C[0, 1]$. According to the definition of Riemann-Liouville derivative and Lemma 3, we have

$$D_0^\alpha u(t) = \frac{d^n}{dt^n} \int_0^t \frac{(t-s)^{n-\alpha}}{(t-s)^{n-\alpha}} x(s) \, ds$$

$$= \frac{d^n}{dt^n} I_0^{n-\alpha} x(t) = D_0^{n-\alpha} x(t);$$

$$D_0^\delta u(t) = D_0^\delta I_0^\delta x(t) = x(t);$$

$$D_0^{\delta+1} u(t) = x'(t), \cdots, D_0^{\delta+n-2} u(t) = x^{(n-2)}(t);$$

$$D_0^{\delta+\delta} u(t) = D_0^\delta x(t),$$

$$D_0^{\gamma+\delta} u(t) = D_0^\gamma x(t).$$

(7)

Let $\beta = \theta - \delta, \gamma = \nu - \delta$. Then, by (7), BVP (1) can reduce to the following modified fractional boundary value problems (MFBVP):

$$D_0^{\delta+\delta} x(t) + f\left(t, I_0^\delta x(t), x(t)\right) = 0, \quad 0 < t < 1,$$

$$x(0) = x'(0) = \cdots = x^{(n-2)}(0) = 0,$$

(8)

$$D_0^\gamma x(1) = \lambda \int_0^\gamma h(t) D_0^\delta x(t) \, dt.$$

In a similar way, we can transform (8) into the form (1). Thus, MFBVP (8) is equivalent to BVP (1).

Lemma 4. Let $u(t) = I_0^\delta x(t), x(t) \in C[0, 1]$. Then BVP (1) can transform to (8). In addition, if $x \in C[0, 1]$ is a positive solution for (8), then $I_0^\delta x$ is a positive solution for BVP (1).

Proof. Substituting $u(t) = I_0^\delta x(t)$ into (1), we know from Lemma 3 and (7) that

$$D_0^\alpha u(t) = D_0^{\delta+\delta} x(t);$$

$$D_0^\delta u(t) = x(t);$$

$$D_0^{\delta+1} u(t) = x'(t), \cdots, D_0^{\delta+n-2} u(t) = x^{(n-2)}(t);$$

(9)

$$D_0^\gamma u(t) = D_0^\delta x(t),$$

$$D_0^\gamma u(t) = D_0^\delta x(t).$$

Considering this together with the boundary value conditions, we have

$$x(0) = D_0^\delta u(0) = 0,$$

$$x(i) = D_0^\delta u(0) = 0,$$

$$i = 1, 2, \cdots, n-2;$$

(10)

$$D_0^\gamma x(1) = \lambda \int_0^\gamma h(t) D_0^\delta u(t) \, dt$$

and

$$D_0^{\delta+\delta} x(t) = f\left(t, I_0^\delta x(t), x(t)\right).$$

(11)

Thus, (1) is converted to (8).

Additionally, suppose that $x \in C[0, 1]$ is a positive of (8). Let $u(t) = I_0^\delta x(t)$. Then, by Lemma 3, one gets

$$D_0^\alpha u(t) = D_0^{\delta+\delta} x(t) = D_0^{\delta+\delta} x(t)$$

$$= -f\left(t, I_0^\delta x(t), x(t)\right)$$

(12)

$$= -f\left(t, u(t), D_0^\delta u(t)\right).$$
The boundary condition $x(0) = x'(0) = \cdots = x^{(n-2)}(0) = 0$,
$D_0^{\delta}x(1) = \lambda \int_0^1 h(t)D_0^{\delta}x(t) \, dt$ together with (9) implies that
\begin{align}
D_0^{\delta}u(0) = D_0^{\delta+1}u(0) = \cdots = D_0^{\delta+n-2}u(0) = 0, \\
D_0^{\delta}u(1) = \lambda \int_0^\eta h(t)D_0^{\delta}u(t) \, dt.
\end{align}
That is to say, $I_0^\delta x(t)$ is a positive solution of BVP (1).

Remark 5. Direct computation implies that
\begin{align}
I_0^\delta t^{\alpha-\delta-1} = \frac{1}{\Gamma(\delta)} \int_0^t (t-s)^{\alpha-\delta-1} s^{\alpha-1} ds \\
= \frac{B(\delta, \alpha-\delta)}{\Gamma(\delta)} \alpha-1 = \frac{\Gamma(\alpha) \Gamma(\alpha-\delta)}{\Gamma(\alpha-\delta-1)}.
\end{align}
The following two lemmas are isomorphic forms of those in [16].

Lemma 6. (see [16]). Assume that $\lambda \Gamma(\alpha-\delta-\beta) \int_0^\eta h(t)t^{\alpha-\delta-\gamma-1} dt \neq \Gamma(\alpha-\delta-\gamma)$. Then for any $y \in L(0, 1)$, the unique solution of the boundary value problems
\begin{align}
D_0^{\alpha-\delta}x(t) + y(t) = 0, \quad 0 < t < 1, \\
x(0) = x'(0) = \cdots = x^{(n-2)}(0) = 0,
\end{align}
solves
\begin{align}
x(t) = \int_0^1 G(t, s) y(s) \, ds, \quad t \in [0, 1],
\end{align}
where
\begin{align}
G(t, s) &= G_1(t, s) + G_2(t, s), \\
G_1(t, s) &= \begin{cases} \\
\frac{\Gamma(\alpha-\delta) t^{\alpha-\delta-1}}{\Gamma(\alpha-\delta-\beta)} (1-s)^{\alpha-\delta-\beta-1} - \frac{\Gamma(\alpha-\delta)}{\Gamma(\alpha-\delta-1)} (s-t)^{\alpha-\delta-1}, & 0 \leq s \leq t \leq 1, \\
\frac{\Gamma(\alpha-\delta) t^{\alpha-\delta-1}}{\Gamma(\alpha-\delta-\beta)} (1-s)^{\alpha-\delta-\beta-1}, & 0 \leq t \leq s \leq 1,
\end{cases}
\end{align}
\begin{align}
G_2(t, s) &= \frac{\lambda \Gamma(\alpha-\delta) t^{\alpha-\delta-1}}{\Gamma(\alpha-\delta-\gamma) - \lambda \Gamma(\alpha-\delta-\beta)} \int_0^\eta h(t) t^{\alpha-\delta-\gamma-1} dt \int_0^s h(t) H(t, s) \, dt,
\end{align}
\begin{align}
H(t, s) &= \begin{cases} \\
\frac{\Gamma(\alpha-\delta) t^{\alpha-\delta-1}}{\Gamma(\alpha-\delta-\beta)} (1-s)^{\alpha-\delta-\beta-1} - \frac{\Gamma(\alpha-\delta)}{\Gamma(\alpha-\delta-1)} (s-t)^{\alpha-\delta-1}, & 0 \leq s \leq t \leq 1, \\
\frac{\Gamma(\alpha-\delta) t^{\alpha-\delta-1}}{\Gamma(\alpha-\delta-\beta)} (1-s)^{\alpha-\delta-\beta-1}, & 0 \leq t \leq s \leq 1,
\end{cases}
\end{align}
Here, $G(t, s)$ is called the Green function of BVP (15). Obviously, $G(t, s)$ is continuous on $[0, 1] \times [0, 1]$.

Clearly, x is a positive solution of BVP (8) if and only if $x \in C_0[0, 1]$ is a solution of the following nonlinear integral equation:
\begin{align}
x(t) = \int_0^1 G(t, s) f \left(s, I_0^\delta x(s), x(s) \right) \, ds.
\end{align}

Lemma 7 (see [16]). The functions $G_i(t, s)$ and $G(t, s)$ given by (18) and (17), respectively, admit the following properties:
\begin{itemize}
\item[(a1)] $G_i(t, s) \geq (1/\Gamma(\alpha-\delta)) t^{\alpha-\delta-1} s^{\alpha-\delta-1} - (1-\sigma) t^{\alpha-\delta-1} \forall t, s \in [0, 1]$
\item[(a2)] $G(t, s) \geq (1/\Gamma(\alpha-\delta)) t^{\alpha-\delta-1} s^{\alpha-\delta-1} - \sigma t^{\alpha-\delta-1} \forall t, s \in [0, 1]$
\end{itemize}

Definition 8 (see [35]). Assume that $A : Q_x \times Q_x \rightarrow Q_x$. A is said to be mixed monotone if $A(x, y)$ is nondecreasing in x and nonincreasing in y, i.e., if $x_1 \leq x_2$ and $y_1 \leq y_2$ implies $A(x_1, y_1) \leq A(x_2, y_2)$ for any $x_1, x_2 \in Q_x$ and $y_1, y_2 \in Q_x$ implies $A(x, y_1) \leq A(x, y_2)$ for any $x \in Q_x$. The element $x^* \in Q_x$ is said to be a fixed point of A if $A(x^*, x^*) = x^*$.

Lemma 9 (see [17]). Suppose that $A : Q_x \times Q_x \rightarrow Q_x$ is a mixed monotone operator and there exists a constant σ, $0 \leq \sigma < 1$, such that
\begin{align}
A \left(\frac{tx + y}{t} \right) \geq \sigma^2 A(x, y), \quad \forall x, y \in Q_x,
0 < t < 1.
\end{align}
Then A has a unique fixed point $x^* \in Q_x$. Moreover, for any $(x_0, y_0) \in Q_x \times Q_x$,
\begin{align}
x_k &= A(x_{k-1}, y_{k-1}), \\
y_k &= A(y_{k-1}, x_{k-1}),
\end{align}
satisfy
\begin{align}
x_k & \rightarrow x^*, \\
y_k & \rightarrow x^*,
\end{align}
where
\begin{align}
\|x_k - x^*\| & = o \left(1 - r^k \right), \\
\|y_k - x^*\| & = o \left(1 - r^k \right),
\end{align}
where, r is a constant, $0 < r < 1$, and dependent on x_0, y_0.
3. Main Result

Throughout this paper, we adopt the following assumptions:

\((H_1)\) \(f(t,x_1,x_2) = \phi(t,x_1,x_2) + \psi(t,x_1,x_2)\), where, \(\phi, \psi : J \times R^2 \rightarrow R\) is continuous, \(\phi(t,x_1,x_2)\) is nondecreasing on \(x_1\) and \(\psi(t,x_1,x_2)\) is nonincreasing on \(x_1\) (\(i = 1,2\)).

\((H_2)\) There exists \(\sigma \in J\) such that for \(x_1 > 0\) (\(i = 1,2\), \(t,c \in J\))

\[
\psi(t,c^{-1}x_1,c^{-1}x_2) < c^\sigma \psi(t,x_1,x_2). \tag{27}
\]

\((H_3)\)

\[
0 < \int_0^1 (1-s)^{\alpha-\delta} - \sigma(s) \psi(s,1,1) ds < +\infty; \tag{28}
\]

\[
0 < \int_0^1 (1-s)^{\alpha-\delta} \phi(s,1,1) ds < +\infty.
\]

Remark 10. According to \((H_2)\), for any \(t \in J\), \(c \geq 1, x > 0\) (\(i = 1,2\)), one has

\[
\phi(t,cx_1,cx_2) \leq c^\sigma \phi(t,x_1,x_2); \tag{29}
\]

\[
\psi(t,c^{-1}x_1,c^{-1}x_2) \leq c^\sigma \psi(t,x_1,x_2).
\]

Theorem 11. Assume that \((H_1)-(H_3)\) hold. Then, the BVP (1) has a unique solution \(u^*\), and there exists a constant \(D > 1\) such that

\[
\frac{\Gamma(\alpha-\delta)}{\Gamma(\alpha)} u^*(t) \leq \frac{D\Gamma(\alpha-\delta)}{\Gamma(\alpha)} u^*(t), \quad \forall t \in [0,1].
\]

Moreover, for any \(u_0\), we construct a successive sequence

\[
u_{k+1}(t) = I^\rho_0 \left\{ \int_0^1 G(t,s) \left[\phi(s,u_k(s),D^\rho_0 u_k(s)) + \psi(s,u_k(s),D^\rho_0 u_k(s)) \right] ds \right\}, \quad k = 1,2, \ldots,
\]

and we have \(\|u_k - u^*\| \rightarrow 0\) as \(k \rightarrow \infty\); the convergence rate is

\[
\|u_k - u^*\| = \|I^\rho_0 x_k - I^\rho_0 x^*\| = o\left(1-r^k\right),
\]

where \(r\) is a constant with \(0 < r < 1\) and is dependent on \(u_0\).

Proof. Let \(e(t) = t^{\alpha-\delta-1}\), and we define

\[
Q_\sigma = \left\{ x \in C[0,1] \mid \frac{1}{D} e(t) \leq x(t) \leq D e(t) \right\}, \tag{33}
\]

where

\[
D > \max \left\{ \left[\frac{1}{\Gamma(\alpha-\delta)} \int_0^1 (1-s)^{\alpha-\delta-1} \left(\rho^\sigma s^{\sigma(\alpha-1)} \phi(s,1,1) + 2^{-\sigma} b^{-\sigma} \psi(s,1,1) \right) ds \right]^{1/(\sigma-1)}, 1,2\rho, \right. \tag{34}
\]

\[
\frac{\Lambda}{\Gamma(\alpha-\delta)} \int_0^1 (1-s)^{\alpha-\delta-1} \left(2^\sigma b^\sigma \phi(s,1,1) + \rho^{-\sigma} s^{-\sigma(\alpha-1)} \psi(s,1,1) \right) ds \right]^{1/(1-\sigma)}, \quad \sigma \in [1,\infty).
\]

where \(b = \max[\Gamma(\alpha-\delta)/\Gamma(\alpha),1], \rho = \min[1,\Gamma(\alpha-\delta)/\Gamma(\alpha)]\).

We consider the existence of positive solution for (8). For any \(x, y \in Q_\sigma\), define an operator \(T\) as follows:

\[
T(x,y)(t) = \int_0^1 G(t,s) \left[\phi(s,I^\rho_0 x(s),y(s)) + \psi(s,I^\rho_0 x(s),y(s)) \right] ds. \tag{35}
\]

It is clear that \(x\) is a positive solution of BVP (8) if and only if \(x \in C[0,1]\) is a fixed point of the operator \(T\).

First, we are in position to show that \(T : Q_\sigma \times Q_\sigma \rightarrow Q_\sigma\) is well defined. By \((H_2)\) and Remark 5, for any \(x, y \in Q_\sigma\) we have

\[
\phi(s,I^\rho_0 x(s),y(s)) \leq \phi(s, D^\sigma I^\rho_0 (s)^{\sigma-1}, D^{\sigma-1} s), \tag{36}
\]

\[
\psi(s,I^\rho_0 x(s),y(s)) \leq \psi(s, D^\sigma I^\rho_0 (s)^{\sigma-1}, D^{\sigma-1} s), \tag{37}
\]

and

\[
\phi(s, D^\sigma I^\rho_0 (s)^{\sigma-1}, D^{\sigma-1} s) \leq \phi(s, D^\sigma I^\rho_0 (s)^{\sigma-1}, D^{\sigma-1} s), \quad s \in (0,1),
\]

\[
\psi(s, D^\sigma I^\rho_0 (s)^{\sigma-1}, D^{\sigma-1} s) \leq \psi(s, D^\sigma I^\rho_0 (s)^{\sigma-1}, D^{\sigma-1} s), \quad s \in (0,1).
\]
Considering the fact that \((\rho/D)s^{\alpha-1} < 1\), we have from (34), (H2), and Remark 5 that
\[
\phi \left(s, I_0^\rho, x(s), x(s) \right) \geq \phi \left(s, \frac{\Gamma(\alpha-\delta)}{D} s^{\alpha-1} \cdot \frac{1}{D} s^{\alpha-\delta-1} \right) \\
\geq \phi \left(s, \frac{\rho}{D} s^{\alpha-1} \cdot \frac{D}{D} s^{\alpha-\delta-1} \right) \\
\geq \phi \left(s, \frac{\rho}{D} s^{\alpha-1} \cdot \frac{D}{D} s^{\alpha-1} \right) \\
\geq \left(\frac{\rho}{D} \right)^{\alpha-1} \phi \left(s, 1, 1 \right) \\
\geq \rho^\alpha D^{-\delta} s^{\alpha-1} \phi \left(s, 1, 1 \right), \\
\quad s \in (0, 1),
\]
and
\[
\psi \left(s, I_0^\rho, y(s), y(s) \right) \\
\geq \psi \left(s, \frac{D \Gamma(\alpha-\delta)}{\Gamma(\alpha)} s^{\alpha-1} \cdot \frac{1}{D} s^{\alpha-\delta-1} \right) \\
\geq \psi \left(s, D^b s^{\alpha-1} \cdot D^b s^{\alpha-\delta-1} \right) \geq \psi \left(s, D^b + 1 \right) \\
\geq (D^b + 1)^{-\sigma} \psi \left(s, 1, 1 \right) \geq 2^{-\sigma} b^{-\sigma} D^{-\delta} \psi \left(s, 1, 1 \right), \\
\quad s \in (0, 1).
\]
Thus, it follows from (36), (37), Lemma 7, and (H3) that
\[
\int_0^1 G(t, s) \left[\phi \left(s, I_0^\rho, x(s), x(s) \right) + \psi \left(s, I_0^\rho, y(s), y(s) \right) \right] ds \leq \frac{1}{\Gamma(\alpha-\delta)} \\
\cdot \frac{\alpha^{\alpha-\delta-1}}{2} \int_0^1 (1-s)^{\alpha-\delta-1} \left[2^\sigma b^\sigma D^\sigma \phi \left(s, 1, 1 \right) + \rho^{-\sigma} D^\sigma s^{-\sigma(a-1)} \psi \left(s, 1, 1 \right) \right] ds < \infty, \\
\quad \forall t \in [0, 1].
\]
This means that \(T : Q_e \times Q_e \rightarrow P\) is well defined.

On the other hand, we can easily see from (34) and (40) that
\[
T(x, y)(t) \leq Dt^{\alpha-\delta-1} = De(t), \quad \forall t \in [0, 1].
\]
At the same time, by (38), (39), and Lemma 7, we know that
\[
T(x, y)(t) = \int_0^1 G(t, s) \left[\phi \left(s, I_0^\rho, x(s), x(s) \right) + \psi \left(s, I_0^\rho, y(s), y(s) \right) \right] ds \geq \frac{1}{\Gamma(\alpha-\delta)} \\
\cdot \frac{\alpha^{\alpha-\delta-1}}{2} \int_0^1 (1-s)^{\alpha-\delta-1} \left[\rho^{\alpha^\alpha} D^\alpha s^{\alpha(a-1)} \phi \left(s, 1, 1 \right) + 2^{-\sigma} b^{-\sigma} D^{-\delta} \psi \left(s, 1, 1 \right) \right] ds = \frac{1}{\Gamma(\alpha-\delta)} \\
\cdot \frac{\alpha^{\alpha-\delta-1}}{2} \int_0^1 (1-s)^{\alpha-\delta-1} \left[\rho^{\alpha^\alpha} D^\alpha s^{\alpha(a-1)} \phi \left(s, 1, 1 \right) + 2^{-\sigma} b^{-\sigma} D^{-\delta} \psi \left(s, 1, 1 \right) \right] ds \geq \frac{1}{\Gamma(\alpha-\delta)}
\]
\cdot e(t), \quad \forall t \in [0, 1].
\]
It follows from (40)-(42) that \(T : Q_e \times Q_e \rightarrow Q_e\) is well defined.

Next, we shall prove that \(T : Q_e \times Q_e \rightarrow Q_e\) is a mixed monotone operator. To this end, let \(x_1, x_2 \in Q_e\), with \(x_1 \leq x_2\). For any \(y \in Q_e\), it follows from (H1) together with the monotonicity of the operator \(I_0^\rho\), that
\[
T(x_1, y)(t) = \int_0^1 G(t, s) \left[\phi \left(s, I_0^\rho, x_1(s), x_1(s) \right) + \psi \left(s, I_0^\rho, y(s), y(s) \right) \right] ds \leq \int_0^1 G(t, s) \\
\cdot \left[\phi \left(s, I_0^\rho, x_2(s), x_2(s) \right) + \psi \left(s, I_0^\rho, y(s), y(s) \right) \right] ds = T(x_2, y)(t),
\]
which implies that \(T(x, y)\) is nondecreasing in \(x\) for any \(y \in Q_e\). In a similar manner, for any \(x, y_1, y_2 \in Q_e\), with \(y_1 \leq y_2\), we have
\[
T(x, y_1)(t) = \int_0^1 G(t, s) \left[\phi \left(s, I_0^\rho, x(s), x(s) \right) + \psi \left(s, I_0^\rho, y_1(s), y_1(s) \right) \right] ds \geq \int_0^1 G(t, s) \\
\cdot \left[\phi \left(s, I_0^\rho, x(s), x(s) \right) + \psi \left(s, I_0^\rho, y_2(s), y_2(s) \right) \right] ds = T(x, y_2)(t).
\]
This is to say, \(T(x, y)\) is nonincreasing in \(y\) for any \(x \in Q_e\). Thus, \(T : Q_e \times Q_e \rightarrow Q_e\) is a mixed monotone operator. Finally, by (H2), one has
\[
T(cx, c^{-1}y)(t) = \int_0^1 G(t, s) \left[\phi \left(s, cI_0^\rho, x(s), cx(s) \right) + \psi \left(s, c^{-1}I_0^\rho, y(s), c^{-1}y(s) \right) \right] ds \geq \int_0^1 G(t, s)
\]
\cdot e(t), \quad \forall t \in [0, 1].
where \(\alpha = 9/2, n = 5, \delta = 1/4, \theta = 7/4, \iota = 3/2, \lambda = 2/3, h(t) = t^{-3/4}, \)

\[
\int_{t}^{u(t)} D_{0^+}^{1/4} u(t) \, dt = \begin{cases}
\left(t^{-3/4} + \cos t \right) u^{1/8} (t) \\
+ t^{-3/4} u^{-1/9} (t)
\end{cases}
\]

By simple computation, we have \(\lambda \Gamma(\alpha - \theta) \int_{0}^{1} h(t) t^{a - 1} \, dt = 2/3 \times \Gamma(11/4) \times \int_{0}^{4/5} t^{-3/4} \cdot t^2 \, dt = 2/3 \times 1.6084 \times 0.2690 = 0.2884 < 2 = \Gamma(\alpha - \iota). \) It is easy to know that (H\(_1\)) holds for

\[
\phi(t, x_1, x_2) = (t^{-2/3} + \cos t) x_1^{1/8} + 6t^{4/5} x_2^{1/7},
\]

(51)

At the same time, for any \((t, x_1, x_2) \in J \times R_+ \times R_+ \) and \(c \in I \), one has

\[
\phi(t, cx_1, cx_2) = c^{1/8} \left(t^{-2/3} + \cos t \right) x_1^{1/8} + c^{1/17} 6t^{4/5} x_2^{1/7} \\
\geq c^{1/17} \phi(t, x_1, x_2),
\]

(52)

(53)

Thus, (H\(_2\)) is valid for \(\sigma = 1/7 \). Notice that \(\phi(s, 1, 1) = s^{-2/3} + \cos s + 6s^{4/5}, \psi(s, 1, 1) = s^{-1/4} + (3 - 2s), \) and one gets

\[
\int_{0}^{1} \left(1 - s \right)^{a - 1} s^{-\alpha (s-1)} \psi(s, 1, 1) \, ds = 5.9264
\]

(54)

\[
\int_{0}^{1} (1 - s)^{\sigma - 1} \phi(s, 1, 1) \, ds = 3.0765
\]

(55)

which implies that (H\(_3\)) is also satisfied. Thus, by Theorem 11 we know that BVP (50) has a unique positive solution.
In addition, for any initial \(u_0 = t_0^{1/4}x_0 \in Q_\varepsilon\), we construct a successive sequence

\[
\begin{align*}
 x_{k+1}(t) &= \int_0^1 G(t,s) \left[\phi \left(s, t_0^{1/4}x_k(s), x_k(s) \right) \right. \\
 &\quad + \left. \psi \left(s, t_0^{1/4}x_k(s), x_k(s) \right) \right] \text{ds}, \quad k = 1, 2, \cdots ,
\end{align*}
\]

and

\[
\begin{align*}
 u_{k+1}(t) &= I_{t_0}^{1/4} x_{k+1}(t); \text{ then}
\end{align*}
\]

and we have \(\|u_k - u^*\| = \|t_0^{1/4}x_k - t_0^{1/4}x^*\| \longrightarrow 0 \text{ as } k \longrightarrow \infty\); the convergence rate is

\[
\|u_k - u^*\| = \left\| t_0^{1/4}x_k - t_0^{1/4}x^* \right\| = o \left(1 - r^{(1/7)^k} \right),
\]

where \(r\) is a constant with \(0 < r < 1\) and is dependent on \(u_0\).

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All the authors read and approved the final manuscript.

Acknowledgments

The project is financially supported by the National Natural Science Foundation of China (11571296, 11571197, 11371221), a Project of Shandong Province Higher Educational Science and Technology Program (J18KA217), the Foundation for NSFC Cultivation Project of Jining Medical University (2016-05), the Natural Science Foundation of Jining Medical University (JY2015BS07, 2017JYQD22), and the Natural Science Foundation of Shandong Province of China (ZR2015AL002).

References

