Research Article
Convexity of Certain Integral Operators Defined by Struve Functions

Shahid Mahmood,1 Sana Mahroz,2 Ayesha Rafiq,3 Sarfraz Nawaz Malik2, and Mohsan Raza4
1Department of Mechanical Engineering, Sarhad University of Science and Information Technology, Ring Road, Peshawar, Pakistan
2COMSATS Institute of Information Technology, Wah Cantt, Pakistan
3Institute of Space Technology, Islamabad, Pakistan
4Department of Mathematics, Government College University, Faisalabad, Pakistan
Correspondence should be addressed to Sarfraz Nawaz Malik; snmalik110@yahoo.com
Received 4 December 2017; Accepted 28 January 2018; Published 1 March 2018
Academic Editor: Henryk Hudzik
Copyright © 2018 Shahid Mahmood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article deals with some functional inequalities involving Struve function, generalized Struve function, and modified Struve functions. We aim to find the convexity of the integral operator defined by Struve function, generalized Struve function, and modified Struve functions.

1. Introduction

We denote by A the class of functions f which are analytic in the open unit disc $U = \{z : |z| < 1\}$ and of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \quad (1)$$

Let A^* denote the class of all functions in A which are univalent in U. Also let A^* and C_* be the subclasses of A consisting of all functions which map U onto a star shaped with respect to origin and convex domains, respectively. These classes are defined as

$$A^* = \left\{ f : f \in A, \text{Re} \frac{zf'(z)}{f(z)} > 0, z \in U \right\},$$

$$C_* = \left\{ f : f \in A, \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0, z \in U \right\}. \quad (2)$$

Ozaki [1] showed that if a function f is analytic in U and of the form (1) such that $f(z)f'(z)/z \neq 0$ and if either

$$\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) \geq -\frac{1}{2}, \quad z \in U \quad (3)$$

or

$$\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) \leq \frac{3}{2}, \quad z \in U, \quad (4)$$

then f is univalent and convex in at least one direction in U. It shows that the constants $-1/2$ and $3/2$ are, in a certain sense, the best possible constants. In [2], for $\beta \in \mathbb{R}$, consider the class $\mathcal{G}(\beta)$ consisting of locally univalent functions $f \in A$ that satisfy the condition $\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) < 1 + \frac{\beta}{2}$ for $0 < \beta \leq 1$. That is,

$$\mathcal{G}(\beta) = \left\{ f \in A : \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) < 1 + \frac{\beta}{2}, \quad 0 < \beta \leq 1 \right\}. \quad (5)$$

It can be seen that $\mathcal{G}(\beta) \neq \emptyset$ if and only if $\beta > 0$. Since $\mathcal{G}(\beta_1) \subset \mathcal{G}(\beta_2)$ whenever $\beta_1 < \beta_2$, it readily follows that the class $\mathcal{G}(\beta)$ is in A^*, for $\beta \in (0, 1]$, so in particular, the functions in $\mathcal{G}(\beta)$ are univalent functions. For some more detail about these conditions, see [3, 4].

Now we consider the second-order inhomogeneous differential equation
\[z^2 w''(z) + zw'(z) - \left(z^2 + v^2 \right) w(z) = 4 \frac{(z/2)^{v+1}}{\sqrt{\Gamma(v+1/2)}}. \]

The solution of the homogeneous part is Bessel functions of order \(v \), where \(v \) is real or complex number. For some more details, see [5]. The particular solution of the inhomogeneous equation defined in (6) is called the Struve function of order \(v \). It is given as

\[K_v(z) = \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)2n+v+1}{\Gamma(n+1/2) \Gamma(n+3/2) \Gamma(n+v+3/2)}. \]

Now we consider the differential equation

\[z^2 w''(z) + zw'(z) - \left(z^2 + v^2 \right) w(z) = 4 \frac{(z/2)^{v+1}}{\sqrt{\Gamma(v+1/2)}}. \]

Equation (8) differs from (6) in the coefficients of \(w \). Its particular solution is called the modified Struve functions of order \(v \) and is given by

\[L_v(z) = -ie^{-iz/2} K_v(iz) = \sum_{n=0}^{\infty} \frac{(z/2)^{2n+v+1}}{\Gamma(n+1/2) \Gamma(n+3/2) \Gamma(n+v+3/2)}. \]

Again consider the second-order in-homogenous differential equation

\[z^2 w''(z) + bw'w'(z) + \left(cz^2 - y^2 + (1-b)v \right) w(z) = 4 \frac{(z/2)^{v+1}}{\sqrt{\Gamma(v+b/2)}}, \]

where \(b, c, v \in \mathbb{C} \). Equation (10) generalizes (6) and (8). In particular for \(b = 1, c = 1 \), we obtain (6) and for \(b = 1, c = -1 \), we obtain (8). Its particular solution has the series form

\[w_{b,c,v}(z) = \sum_{n=0}^{\infty} \frac{(z/2)^{2n+v+1}}{\Gamma(n+3/2) \Gamma(n+v+b+2)/2}. \]

and is called the generalized Struve function of order \(v \). This series is converges everywhere. We take the transformation

\[u_{b,c,v}(z) = 2^{b} \sqrt{\Gamma(v+b+2)/2} z^{(v-1)/2} w_{b,c,v}(\sqrt{z}) \]

where \(l = v + (b+2)/2 \neq 0, -1, -2, \ldots \) and \(\gamma(n)= \Gamma\gamma(y+n)/\Gamma\gamma(y) = \gamma(y+1)\cdots(\gamma+n-1) \), where \(\Gamma(\gamma) \) denotes the Gamma function. The function \(u_{b,c,v} \) is analytic in the whole complex plane and satisfies the differential equation

\[4z^2 u''(z) + 2(2p+b+3)zu'(z) + \left[cz + 2p + b \right] w(z) = 2p + b. \]

The function \(u_{b,c,v} \) unifies the Struve functions and modified Struve functions.

The function \(u_{b,c,v} \) was introduced and studied by Orhan and Yagmur [6] and further investigated by [7–9]. In last few years, many mathematicians have set the univalence criteria of several integral operators which preserve the class \(\mathcal{S} \). By using a variety of different analytic techniques, operators, and special functions, several authors have studied univalence criterion. Recently Din et al. [10] studied the univalence of integral operators involving generalized Struve functions. These operators are defined as follows:

\[\mathcal{F}_{\alpha_{1},\alpha_{2},\alpha_{3}}(z) = \beta \int_{0}^{\pi} \frac{\Gamma(n+1) \Gamma(n+\gamma(t))}{\Gamma(n+\gamma)} dt, \]

\[\mathcal{G}_{\alpha_{1},\alpha_{2},\alpha_{3}}(z) = \int_{0}^{\pi} \frac{\Gamma(n+1) \Gamma(n+\gamma(t))}{\Gamma(n+\gamma)} dt, \]

In this paper, our main aim is to study the convexity and univalence of the integral operators

\[W_{b,c,d}(z) = \int_{0}^{\pi} \frac{\Gamma(n+1) \Gamma(n+\gamma(t))}{\Gamma(n+\gamma)} dt, \]

\[G_{b,c,d}(z) = \int_{0}^{\pi} \frac{\Gamma(n+1) \Gamma(n+\gamma(t))}{\Gamma(n+\gamma)} dt. \]

Applications of Struve functions occur in water wave and surface wave problems, unsteady aerodynamics, resistive MHD instability theory, and optical diffraction. More recently, Struve functions appeared in particle quantum dynamic studies of spin decoherence and nanotubes electro-dynamics, potential theory, and optics. For more details, we refer to see [11].

Lemma 1 (see [6]). If \(b, v \in \mathbb{R} \) and \(c \in \mathbb{C} \), \(l = v + (b + 2)/2 \) are so constrained that \(l > \max[0, 7|c|/24] \), then the function \(u_{b,c,v} : \mathbb{U} \rightarrow \mathbb{C} \) satisfies the following inequalities:

\[i) \left| z u_{b,c,v}'(z) / u_{b,c,v}(z) - 1 \right| \leq |c|(|6l - |c||)/3(4l - |c||)(3l - |c||), \]

\[ii) \left| z u_{b,c,v}''(z) / u_{b,c,v}(z) \right| \leq 6|c|/(12l - 7|c||). \]

2. Main Results

In this section, we find the convexity of these integral operators defined by generalized Struve functions, by using above lemma and the following inequalities. We also use Ozaki’s condition for the univalence of these operators.
2.1. Convexity Criteria for Integral Operators

Theorem 2. Let \(v_1, \ldots, v_n, b \in \mathbb{R} \) and \(c \in \mathbb{C} \) be so constrained that \(v_i > |c|/24 \), where \(l_i = v_i + (b + 2)/2 \) (\(i = 1, 2, \ldots, n \)). Consider the function \(u_{v_i,b,c} : \mathcal{A} \rightarrow \mathcal{C} \), defined as

\[
 u_{v_i,b,c}(z) = 2^n \sqrt{\pi} I_n \left(\frac{v_i + b + 2}{2} \right) z^{-(1-\gamma)/2} \omega_{v_i,b,c}(z).
\]

(17)

Also suppose that \(l = \min\{l_1, l_2, \ldots, l_n\} \) and \(\gamma_1, \gamma_2, \ldots, \gamma_n \) be positive real number and that satisfies the inequality

\[
 0 \leq 1 - \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \sum_{i=1}^n y_i < 1,
\]

(18)

then \(W_{v_i,b,c,y_i}(z) : \mathcal{A} \rightarrow \mathcal{C} \) defined in (15) is in class \(\mathcal{C}(\alpha) \) and

\[
 \alpha = 1 - \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \sum_{i=1}^n y_i.
\]

(19)

Proof. It is clear that \(u_{v_i,b,c} \in \mathcal{A} \) as it satisfies the condition

\[
 u_{v_i,b,c}(0) = u'_{v_i,b,c} - 1 = 0.
\]

(20)

Differentiating (15), we obtain

\[
 W'_{v_i,b,c,y_i}(z) = \prod_{i=1}^n \left(\frac{u_{v_i,b,c}(z)}{z} \right)^{y_i}.
\]

(21)

Clearly

\[
 W_{v_i,b,c,y_i}(0) = W'_{v_i,b,c,y_i}(0) - 1 = 0.
\]

(22)

Differentiating logarithmically and after simple calculations, it follows that

\[
 \Re \left(1 + \frac{z W''_{v_i,b,c,y_i}(z)}{W'_{v_i,b,c,y_i}(z)} \right) = \sum_{i=1}^n y_i \Re \left(\frac{u_{v_i,b,c}(z)}{u_{v_i,b,c}(z)} \right) + \left(\sum_{i=1}^n y_i \right).
\]

(23)

By putting the above inequality in (23), we have

\[
 \Re \left(1 + \frac{z W''_{v_i,b,c,y_i}(z)}{W'_{v_i,b,c,y_i}(z)} \right) > 1 - \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \sum_{i=1}^n y_i.
\]

(26)

For \(z \in \mathcal{A} \) and \(l_i = v_i + (b + 2)/2 > |c|/24 \), \(\forall i = 1, \ldots, n \), we consider that the function

\[
 \Omega : \left(\frac{7|c|}{24}, \infty \right) \rightarrow \mathbb{R},
\]

(27)

defined by

\[
 \Omega(x) = \frac{|c| (6x - |c|)}{3 (4x - |c|) (3x - |c|)},
\]

(28)

is decreasing \(\forall i = 1, \ldots, n \), and therefore

\[
 \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \leq \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)}.
\]

(29)

Hence

\[
 \Re \left(1 + \frac{z W''_{v_i,b,c,y_i}(z)}{W'_{v_i,b,c,y_i}(z)} \right) > 1 - \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \sum_{i=1}^n y_i,
\]

(30)

which completes the proof that \(W_{v_i,b,c,y_i}(z) \in \mathcal{C}(\alpha) \). \(\square \)

Theorem 3. Let \(v_1, \ldots, v_n, b \in \mathbb{R} \) and \(c \in \mathbb{C} \) be so constrained that \(l_i > |c|/24 \) where \(l_i = v_i + (b + 2)/2 \) (\(i = 1, 2, 3, \ldots, n \)). Consider the function \(u_{v_i,b,c} : \mathcal{A} \rightarrow \mathcal{C} \), defined as

\[
 u_{v_i,b,c}(z) = 2^n \sqrt{\pi} I_n \left(\frac{v_i + b + 2}{2} \right) z^{-(1-\gamma)/2} \omega_{v_i,b,c}(z).
\]

(31)

Also suppose that \(l = \min\{l_1, l_2, \ldots, l_n\} \) and \(\gamma_1, \gamma_2, \ldots, \gamma_n \) be positive real number and that satisfies the inequality

\[
 0 \leq 1 - \frac{6|c|}{12l - 7|c|} \sum_{i=1}^n y_i < 1,
\]

(32)

then \(G_{v_i,b,c,y_i}(z) : \mathcal{A} \rightarrow \mathcal{C} \) defined in (16) is in class \(\mathcal{C}(\alpha) \), where

\[
 \alpha = 1 - \frac{6|c|}{12l - 7|c|} \sum_{i=1}^n y_i.
\]

(33)
Proof. Differentiating (16), we obtain
\[G'_{v,b,c,Y}(z) = \prod_{i=1}^{n} \left(u'_{v,b,c}(z) \right)^{y_i}. \]
(34)

Clearly
\[G'_{v,b,c,Y}(0) = G''_{v,b,c,Y}(0) - 1 = 0. \]
(35)

Differentiating logarithmically and after simple calculations, we obtain
\[
\Re \left(1 + \frac{z G''_{v,b,c,Y}(z)}{G'_{v,b,c,Y}(z)} \right) = \sum_{i=1}^{n} y_i \Re \left(\frac{z'_{v,b,c}(z)}{l'_{v,b,c}(z)} \right) + 1.
\]
(36)

By using inequality (ii) of Lemma 1, we have
\[\left| \frac{z u''_{v,b,c}(z)}{u'_{v,b,c}(z)} \right| \leq \frac{6 |c|}{12l - 7 |c|}. \]
(37)

so
\[\Re \left(\frac{z u''_{v,b,c}(z)}{u'_{v,b,c}(z)} \right) > - \frac{6 |c|}{12l - 7 |c|}. \]
(38)

Using above relation in (36), we have
\[
\Re \left(1 + \frac{z G''_{v,b,c,Y}(z)}{G'_{v,b,c,Y}(z)} \right) > \sum_{i=1}^{n} y_i \left(- \frac{6 |c|}{12l - 7 |c|} + 1 \right) + 1
= 1 - \sum_{i=1}^{n} y_i \left(\frac{6 |c|}{12l - 7 |c|} \right).
\]
(39)

For \(z \in \mathcal{U} \) and \(l_i = v_i + b + 2 / > (7 |c| / 24) (i = 1, \ldots, n) \), we consider the function
\[\Psi: \left(\frac{7 |c|}{24}, \infty \right) \to \mathbb{R}, \]
(40)

defined by
\[\Psi(x) = \frac{6 |c|}{12x - 7 |c|}. \]
(41)

is decreasing \(\forall i = 1, \ldots, n \), and therefore
\[\frac{6 |c|}{12l - 7 |c|} \leq \frac{6 |c|}{12l - 7 |c|}. \]
(42)

Hence
\[
\Re \left(1 + \frac{z G''_{v,b,c,Y}(z)}{G'_{v,b,c,Y}(z)} \right) > 1 - \sum_{i=1}^{n} y_i \frac{6 |c|}{12l - 7 |c|}.
\]
(43)

We have \(\alpha = 1 - (6|c|/(12l - 7|c|)) \sum_{i=1}^{n} y_i \), which completes the proof that \(G_{v,b,c,Y}(z) \in \mathcal{C}(\alpha) \). \(\square \)

3. Some Special Cases of Struve Functions and Modified Struve Functions

3.1. Struve Functions. By setting \(b = c = 1 \) in (11), we obtain the Struve function of first kind of order \(v \), denoted by \(K_v(z) \) defined in (7). Let \(\mathcal{K}_v: \mathcal{U} \to \mathbb{C} \) be defined as
\[\mathcal{K}_v(z) = 2^v \sqrt{\pi} \left(n + \frac{b + 2}{2} \right) z^{-1-v/2} K_v(\sqrt{z}). \]
(44)

We observe that
\[
\mathcal{K}_{-1/2}(z) = \sqrt{z} \sin(\sqrt{z}), \quad \mathcal{K}_{1/2}(z) = 2 (1 - \cos(\sqrt{z})), \quad \mathcal{K}_{3/2}(z) = 4 \left(1 + \frac{2}{z} \right) - 8 \left(\frac{\sin(\sqrt{z})}{\sqrt{z}} + \cos(\sqrt{z}) \right).
\]
(45)

Corollary 4. Let \(v_1, \ldots, v_n > -1.75 \), where \(n \in \mathbb{N} \). Consider the function \(\mathcal{K}_v(z) : \mathcal{U} \to \mathbb{C} \) defined by
\[\mathcal{K}_{v_i}(z) = 2^v \sqrt{\pi} \left(v_i + \frac{3}{2} \right) z^{(v_i-1)/2} K_{v_i}(\sqrt{z}). \]
(46)

Also let \(v = \min\{v_1, v_2, \ldots, v_n\} \) and \(y_1, y_2, \ldots, y_n \) be positive real numbers. Suppose that these numbers satisfy the following inequality:
\[0 \leq 1 - \frac{4 (3v + 4)}{3 (24v^2 + 58v + 35)} \sum_{i=1}^{n} y_i < 1, \]
(47)

then the function \(W_{v,Y}(z) : \mathcal{U} \to \mathbb{C} \) defined as
\[W_{v,Y}(z) = \sum_{i=1}^{n} \prod_{i=1}^{n} \left(\mathcal{K}_{v_i}(t) \right)^{y_i} dt \]
(48)

is in class \(\mathcal{C}(\alpha) \), where
\[\alpha = 1 - \frac{4 (3v + 4)}{3 (24v^2 + 58v + 35)} \sum_{i=1}^{n} y_i. \]
(49)

In particular

(i) First at \(v = -1/2 \), the function
\[
W_{-1/2,Y}(z) = \int_{0}^{z} \left(\frac{\mathcal{K}_{-1/2}(t)}{t} \right)^{y_1} dt
= \int_{0}^{z} \left(\frac{\sin(\sqrt{t})}{\sqrt{t}} \right)^{y_1} dt
\]
(50)

is in class \(\mathcal{C}(\alpha_1) \) for \(y \leq 18/5 \), where
\[\alpha_1 = 1 - \frac{5}{18} y. \]
(51)

(ii) For \(v = 1/2 \), then the function
\[
W_{1/2,Y}(z) = \int_{0}^{z} \left(\frac{\mathcal{K}_{1/2}(t)}{t} \right)^{y_1} dt
= \int_{0}^{z} \left(2 (1 - \cos(\sqrt{t})) \right)^{y_1} dt
\]
(52)

is in class \(\mathcal{C}(\alpha_2) \) for \(y \leq 105/11 \), where \(\alpha_2 = 1 - (11/105)y. \)
is in class $C(\alpha_3)$ for $\gamma \leq 264/17$, where $\alpha_3 = 1 - (17/264)\gamma$.

Corollary 5. Let $v_1, \ldots, v_n > -1.75$ where $n \in \mathbb{N}$. Consider the function $K_n(z) : \mathcal{U} \to \mathbb{C}$ defined by (46) and $v = \min\{v_1, v_2, \ldots, v_n\}$ be positive real numbers such that these numbers satisfy the inequality

$$0 \leq 1 - \frac{6}{12v + 11} \sum_{i=1}^{n} v_i < 1,$$

then the function $G_{v, y_1}(z) : \mathcal{U} \to \mathbb{C}$ defined as

$$G_{v, y_1}(z) = \int_{0}^{z} \left(\sum_{i=1}^{n} \left(K_{i}(t) \right)^{y_i} \right) dt$$

is in class $C(\alpha)$, where $0 \leq \alpha < 1$ and

$$\alpha = 1 - \frac{6}{12v + 11} \sum_{i=1}^{n} y_i.$$ (56)

In particular, one has the following:

(i) For $v = -1/2$, then

$$G_{-1/2, y}(z) = \int_{0}^{z} \left(\mathcal{R}_{-1/2}(t) \right)^{y} \ dt$$

$$= \int_{0}^{z} \left(\frac{1}{2} \sqrt{t} \right) \ dt$$

is in class $C(\alpha_1)$ for $\gamma \leq 5/6$, where $\alpha_1 = 1 - (6/5)\gamma$.

(ii) For $v = 1/2$, the function

$$G_{1/2, y}(z) = \int_{0}^{z} \left(\mathcal{R}_{1/2}(t) \right)^{y} \ dt$$

$$= \int_{0}^{z} \left(\frac{\sin \left(\sqrt{t} \right)}{\sqrt{t}} \right) \ dt$$

is in class $C(\alpha_2)$ for $\gamma \leq 17/6$, where $\alpha_2 = 1 - (6/17)\gamma$.

(iii) For $v = 3/2$, the function

$$G_{3/2, y}(z) = \int_{0}^{z} \left(\mathcal{R}_{3/2}(t) \right)^{y} \ dt$$

$$= \int_{0}^{z} \left(\frac{8}{t^2} - \frac{\sin \left(\sqrt{t} \right)}{2t \sqrt{t}} - \frac{\sin \left(\sqrt{t} \right)}{2t} \right) \ dt,$$

is in class $C(\alpha_3)$ for $\gamma \leq 29/6$, where $\alpha_3 = 1 - (6/29)\gamma$.

3.2. Modified Struve Functions. We obtain the modified Struve function of first kind of order v, denoted by $L_v(z)$, defined by (9), by putting $b = -c = 1$ in (11). Define a function $\mathcal{L}_v(z) : \mathcal{U} \to \mathbb{C}$ by

$$\mathcal{L}_v(z) = 2^{v} \sqrt{\pi} \Gamma \left(v + \frac{3}{2} \right) z^{-(v-1)/2} L_v \left(\sqrt{z} \right).$$ (60)

We observe that

$$\mathcal{L}_1(z) = 2 \left(\cosh \sqrt{z} - 1 \right).$$ (61)

By making use of this particular value, we have the following assertions.

Corollary 6. Let $v_1, \ldots, v_n > -1.75$ where $n \in \mathbb{N}$. Consider the function $\mathcal{L}_v(z) : \mathcal{U} \to \mathbb{C}$ defined by

$$\mathcal{L}_v(z) = 2^{v} \sqrt{\pi} \Gamma \left(v + \frac{3}{2} \right) z^{-(v-1)/2} L_v \left(\sqrt{z} \right),$$ (62)

and $v = \min\{v_1, v_2, \ldots, v_n\}$ be positive real numbers. Suppose that these numbers satisfy the inequality

$$0 \leq 1 - \frac{4(3v + 4)}{3(24v^2 + 58v + 35)} \sum_{i=1}^{n} y_i < 1,$$

then the function $W_{v, y_1}(z) : \mathcal{U} \to \mathbb{C}$ defined as

$$W_{v, y_1}(z) = \int_{0}^{z} \left(\mathcal{L}_v(t) \right)^{y_i} \ dt,$$ (64)

is in class $C(\alpha)$, where

$$\alpha = 1 - \frac{4(3v + 4)}{3(24v^2 + 58v + 35)} \sum_{i=1}^{n} y_i.$$ (65)

(i) In particular for $v = 1/2$, the integral operator

$$W_{1/2, y}(z) = \int_{0}^{z} \left(\frac{\mathcal{L}_{1/2}(t)}{t} \right)^{y_i} \ dt$$

is in class $C(\alpha)$ for $\gamma \leq 105/11$, where $\alpha = 1 - (11/105)\gamma$.

Corollary 7. Let $v_1, \ldots, v_n > -1.75$ where $n \in \mathbb{N}$. Consider the function $\mathcal{L}_v(z) : \mathcal{U} \to \mathbb{C}$ defined by

$$\mathcal{L}_v(z) = 2^{v} \sqrt{\pi} \Gamma \left(v + \frac{3}{2} \right) z^{-(v-1)/2} L_v \left(\sqrt{z} \right),$$ (67)

$v = \min\{v_1, v_2, \ldots, v_n\}$, and y_1, y_2, \ldots, y_n be positive real numbers. Suppose that these numbers satisfy the relation

$$0 \leq 1 - \frac{6}{12v + 11} \sum_{i=1}^{n} y_i < 1,$$

then the function $G_{v, y_1}(z) : \mathcal{U} \to \mathbb{C}$ defined as

$$G_{v, y_1}(z) = \int_{0}^{z} \left(\frac{\mathcal{L}_v(t)}{t} \right)^{y_i} \ dt$$

(69)
is $\mathcal{C}(\alpha)$, where
\[\alpha = 1 - \frac{6}{12v + 11} \sum_{i=1}^{n} \gamma_i. \]
(70)

In particular for $v = 1/2$, the function
\[G_{1/2, \gamma}(z) = \int_{0}^{z} \left(\mathcal{L}_{1/2}(t) \right)^{\gamma} dt = \int_{0}^{z} \left(\frac{\sinh \left(\frac{\sqrt{t}}{\sqrt{t}} \right) \right)^{\gamma} dt \]
(71)
is in class $\mathcal{C}(\alpha_1)$ for $\gamma \leq 17/6$, where $\alpha_1 = 1 - (6/17)^{\gamma}$.

4. Locally Univalence Criteria

Now, we find the locally univalent criteria of the integral operators involving generalized S̆erf functions defined in (15), (16).

Theorem 8. Let $v_1, \ldots, v_n, b \in \mathbb{R}$ and $c \in \mathbb{C}$ such that $l_i > 7|c|/24$, where $l_i = v_i + (b + 2)/2$ $(i = 1, \ldots, n)$. Consider the function $u_{v,b,c} : \mathcal{U} \to \mathbb{C}$, defined as
\[u_{v,b,c}(z) = 2^{v} \sqrt{\pi \Gamma(v)} \left(v_i + \frac{b + 2}{2} \right) z^{(-1-v)/2} \omega_{v,b,c}(z). \]
(72)
Also suppose that $l = \min\{l_1, l_2, \ldots, l_n\}$ and $\gamma_1, \gamma_2, \ldots, \gamma_n$ be positive real number and that satisfies the inequality
\[0 < \frac{8|c|}{12l - 7|c|} \sum_{i=1}^{n} \gamma_i \leq 1, \]
(73)
then $G_{v,b,c,y}(z) : \mathcal{U} \to \mathbb{C}$ defined in (16) is in class $\mathcal{C}(\beta)$, where
\[\beta = \frac{8|c|}{12l - 7|c|} \sum_{i=1}^{n} \gamma_i. \]
(74)
Proof. Differentiating (16), we obtain
\[G_{v,b,c,y}(z) = \prod_{i=1}^{n} \left(u_{v,b,c}(z) \right)^{\gamma_i}. \]
(75)
Differentiating logarithmically, we obtain
\[\Re \left(1 + \frac{zG_{v,b,c,y}''(z)}{G_{v,b,c,y}'(z)} \right) = \sum_{i=1}^{n} \Re \left(\frac{zu_{v,b,c}''(z)}{u_{v,b,c}'(z)} \right) + 1. \]
(76)
By using (ii) of Lemma 1, it follows that
\[\Re \left(\frac{zu_{v,b,c}''(z)}{u_{v,b,c}'(z)} \right) \leq \frac{6|c|}{12l - 7|c|}. \]
(77)
Therefore, we have
\[\Re \left(1 + \frac{zG_{v,b,c,y}''(z)}{G_{v,b,c,y}'(z)} \right) \leq \sum_{i=1}^{n} \left(\frac{6|c|}{12l - 7|c|} \right) + 1 \]
\[< 1 + \frac{2 \sum_{i=1}^{n} \gamma_i (6|c| / (12l - 7|c|))}{2} \]
\[< 1 + \frac{\sum_{i=1}^{n} \gamma_i (8|c| / (12l - 7|c|))}{2}. \]
(78)
For $z \in \mathcal{U}$ and $l_i > (7|c|/24) \forall i = 1, \ldots, n$, we consider the function
\[\Phi : \left[\frac{7|c|}{24}, \infty \right) \to \mathbb{R}, \]
defined by
\[\Phi(x) = \frac{1}{2} \frac{8|c|}{12x - 7|c|}, \]
is decreasing $\forall i = 1, \ldots, n$; therefore
\[\frac{1}{2} \frac{8|c|}{12l_i - 7|c|} \leq 1 \frac{8|c|}{24l_i - 7|c|} \]
(81)
This implies that
\[\Re \left(1 + \frac{zG_{v,b,c,y}''(z)}{G_{v,b,c,y}'(z)} \right) < 1 + \frac{\beta}{2}. \]
(84)
Here $\beta = 8|c|/(12l - 7|c|) \sum_{i=1}^{n} \gamma_i$, which completes the proof. \hfill \Box

Theorem 9. Let $v_1, \ldots, v_n, b \in \mathbb{R}$ and $c \in \mathbb{C}$ be such that $l_i > 7|c|/24$, where $l_i = v_i + (b + 2)/2$ $(i = 1, \ldots, n)$. Consider the function $u_{v,a,b} : \mathcal{U} \to \mathbb{C}$, defined as
\[u_{v,a,b}(z) = 2^{v} \sqrt{\pi \Gamma(v)} \left(v_i + \frac{b + 2}{2} \right) z^{(-1-v)/2} \omega_{v,a,b}(z). \]
(85)
Also suppose that $l = \min\{l_1, l_2, \ldots, l_n\}$ and $\gamma_1, \gamma_2, \ldots, \gamma_n$ be positive real number and that satisfies the inequality
\[0 < \frac{2|c| (6l - |c|)}{3(4l - |c|)} \sum_{i=1}^{n} \gamma_i \leq 1, \]
(86)
then $W_{v,a,b,c}(z) : \mathcal{U} \to \mathbb{C}$ defined in (15) is in class $\mathcal{C}(\beta)$, where
\[\beta = \frac{2|c| (6l - |c|)}{3(4l - |c|)} \sum_{i=1}^{n} \gamma_i. \]
(87)
Proof. Differentiating (15), we have
\[W_{v,a,b,c}(z) = \sum_{i=1}^{n} \left(\frac{u_{v,a,b}(z)}{z} \right)^{\gamma_i}. \]
(88)
Differentiating logarithmically, we obtain
\[\Re \left(1 + \frac{zW_{v,a,b,c}''(z)}{W_{v,a,b,c}'(z)} \right) \]
\[= \sum_{i=1}^{n} \Re \left(\frac{zu_{v,a,b}''(z)}{u_{v,a,b}'(z)} \right) + \left(1 - \sum_{i=1}^{n} \gamma_i \right). \]
(89)
Now consider (i) of Lemma 1, we obtain
\[
\Re \left\{ \frac{z^{n} u_{v, b, c} (z)}{u_{v, b, c}(z)} \right\} < 1 + \frac{|c| (6l - |c|)}{3 (4l - |c|) (3l - |c|)}.
\]
(90)

Therefore
\[
\Re \left(1 + \frac{z W'_{v, b, c, \gamma} (z)}{W_{v, b, c, \gamma} (z)} \right)
\leq \sum_{i=1}^{n} \gamma_i \left(1 + \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \right) + 1 - \sum_{i=1}^{n} \gamma_i.
\]
(91)

For \(z \in \mathbb{U} \) and \(l_i > (7|c|/24) \) for all \(i = 1, \ldots, n \), we consider the function
\[
\Lambda : \left(\frac{7|c|}{24}, \infty \right) \to \mathbb{R},
\]
(92)

defined by
\[
\Lambda (x) = \frac{1}{2} \frac{2 |c| (6x - |c|)}{3 (4x - |c|) (3x - |c|)},
\]
(93)

therefore
\[
\frac{1}{2} \sum_{i=1}^{n} \gamma_i \left(1 + \frac{|c| (6l_i - |c|)}{3 (4l_i - |c|) (3l_i - |c|)} \right) + \frac{1}{2} \frac{2 |c| (6x - |c|)}{3 (4x - |c|) (3x - |c|)} \sum_{i=1}^{n} \gamma_i.
\]
(94)

This implies that
\[
\Re \left(1 + \frac{z W'_{v, b, c, \gamma} (z)}{W_{v, b, c, \gamma} (z)} \right)
< 1 + \frac{2 |c| (6l - |c|)}{3 (4l - |c|) (3l - |c|)} \sum_{i=1}^{n} \gamma_i.
\]
(95)

Let
\[
0 \leq \frac{2 |c| (6l - |c|)}{3 (4l - |c|) (3l - |c|)} \sum_{i=1}^{n} \gamma_i < 1.
\]
(96)

Hence
\[
\Re \left(1 + \frac{z W'_{v, b, c, \gamma} (z)}{W_{v, b, c, \gamma} (z)} \right) < 1 + \frac{\beta}{2}.
\]
(97)

Here \(\beta = 2 |c| (6l - |c|) / 3 (4l - |c|) (3l - |c|) \sum_{i=1}^{n} \gamma_i \), which completes the proof. \(\Box \)

Acknowledgments

The authors would like to acknowledge the heads of their institutions for their supportive role and research facilities. This research is conducted under the Project of Higher Education Commission of Pakistan (Project Ref: 5689/Punjab/NRPU/R&D/2016) and is partially supported by Sarhad University of Science and Information Technology, Peshawar, Pakistan.

References

