Research Article

\(A_p(\phi)\) Weights, \(BMO(\phi)\), and Calderón-Zygmund Operators of \(\phi\)-Type

Ruimin Wu\(^1\) and Songbai Wang\(^2\)

\(^1\)Longqiao College of Lanzhou University of Finance and Economics, Lanzhou 730101, China
\(^2\)College of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China

Correspondence should be addressed to Ruimin Wu; wrml108@163.com

Received 5 July 2017; Revised 19 November 2017; Accepted 3 December 2017; Published 3 January 2018

Academic Editor: Guozhen Lu

Copyright © 2018 Ruimin Wu and Songbai Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce new classes of weights and \(BMO\) functions associated with a nondecreasing function \(\phi\) of upper type \(\beta\) with \(\beta > 0\) and obtain the weighted norm inequalities for Calderón-Zygmund operators of \(\phi\)-type and their commutators.

1. Introduction

For a nonnegative and nondecreasing function \(\phi\) mapping from \([0, \infty)\) to \([1, \infty)\), we shall mean that it is of upper type \(\beta\) with \(\beta > 0\), if there exists a constant \(c_0\) such that

\[
\phi(\theta t) \leq c_0 \theta^\beta \phi(t),
\]

for all \(\theta \geq 1\) and \(t \geq 0\). In this paper, we always assume that \(\phi(1) > 1\).

Let \(T\) be a continuous associated with the kernel function \(K(x, y)\) from \(\delta(\mathbb{R}^n)\) to \(\delta(\mathbb{R}^n)\) that satisfies

\[
T(f)(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy
\]

for all \(f \in C_0^\infty\) and \(x\) not in the support of \(f\) is said to be associated with \(K\). Here, the kernel \(K(x, y)\) is defined on \(\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, x) : x \in \mathbb{R}^n\}\) and satisfies that for any \(N \geq 0\) and some \(A > 0\) the size condition

\[
|K(x, y)| \leq \frac{A}{|x - y|^\beta \left[\phi(|x - y|^\alpha)\right]^N},
\]

and for some \(\delta > 0\) the regularity conditions

\[
|K(x, y) - K(x', y)| \leq \frac{A}{(|x - y| + |x' - y'|)^{n+\delta}} \cdot \frac{1}{\left[\phi\left(|x - y| + |x' - y'|^\alpha\right)\right]^N},
\]

whenever \(|x - x'| \leq (1/2) \max(|x - y|, |x' - y'|)\) and

\[
|K(x, y) - K(x, y')| \leq \frac{A}{(|x - y| + |x - y'|)^{n+\delta}} \cdot \frac{1}{\left[\phi\left(|x - y| + |x - y'|^\alpha\right)\right]^N},
\]

whenever \(|y - y'| \leq (1/2) \max(|x - y|, |x - y'|)\). We also suppose that \(T\) is associated with \(K\) and it can be extended to be a bounded extension on \(L^2(\mathbb{R}^n)\),

\[
\|Tf\|_{L^2} \leq B \|f\|_{L^2}.
\]

In this paper, we will consider weighted estimates for these operators and their commutators.
Remark 1. It is clear that if T satisfies (3), (4), (5), and (6) then T falls within the scope of the Calderón-Zygmund theory. Then T has an extension that maps $L^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$, and by interpolation, T also maps $L^p(\mathbb{R}^n)$ into itself for $1 < p < \infty$.

Remark 2. When $\phi(t) = (1 + t)$, from [1–3], we know that the pseudodifferential operators T_σ with the symbol $\sigma \in S^0_{1,0}$ defined by

$$T_\sigma (f) (x) = \int_{\mathbb{R}^n} \sigma(x, \xi) e^{i x \cdot \xi} \tilde{f}(\xi) \, d\xi$$

satisfy (3), (4), (5), and (6), where $S_{m,0}^0$ denotes the set of all smooth functions $\sigma(x, \xi)$ on $\mathbb{R}^n \times \mathbb{R}^n$ satisfying

$$|\partial^\alpha_x \partial^\beta_\xi \sigma(x, \xi)| \leq C_{\alpha,\beta} (1 + |\xi|)^{m-\beta+\delta}$$

for all multi-indices α and β.

Definition 3. A weight will always mean a positive function which is locally integrable. We say that a weight ω belongs to the class $A_p^\infty(\phi)$ for $\theta \geq 0$ and $1 < p < \infty$, if there is a positive constant C_p such that, for all cubes Q,

$$\left(\frac{1}{|Q|} \int_Q \omega(x) \, dx \right)^{1/p} \leq C_p \left(\frac{1}{|Q|} \int_Q \omega(x)^{1-p'} \, dx \right)^{1/p'}$$

where

$$\int_Q \omega(x) \, dx \leq C \left(\frac{1}{|Q|} \int_Q \omega(x)^{1-p'} \, dx \right)^{1/p'}$$

We also say that a nonnegative function satisfies the $A_p^\infty(\phi)$ condition if there exists a constant $C > 0$ for all cubes Q,

$$\frac{1}{|Q|} \int_Q \omega(x) \, dx \leq C \left(\frac{1}{|Q|} \int_Q \omega(x)^{1-p'} \, dx \right)^{1/p'}$$

We also write $A_p^\infty(\phi) = \cup_{p>0} A_p^\infty(\phi)$, $A_p^\infty(\phi) = \cup_{p>0} A_p^\infty(\phi)$, and $A_p^\infty(\phi) = \cup_{p>0} A_p^\infty(\phi)$.

Remark 4. We remark that $A_p^\infty(\phi)$ coincides with Muckenhoupt’s class of weights A_p for all $1 \leq p < \infty$. However, in general, the class $A_p^\infty(\phi)$ is strictly larger than the class A_p for all $1 \leq p < \infty$. On the other hand, when ϕ is a constant function, $A_p^\infty(\phi)$ also coincides with A_p for any $\theta \in (0, \infty)$. In particular, if $\phi \equiv 1$, $A^\infty_\infty(\phi) = A_\infty$.

Remark 5. It should be noted that $\omega(x) \, dx$ may not be a doubling measure; that is, for each positive constant C, there exists at least a cube Q such that

$$\omega(2Q) \geq C \omega(Q).$$

For example, let $\phi = 1 + |Q|$. If $0 \leq \gamma \leq n\theta$, then $\omega = (1 + |x|)^{-n+\gamma} \in A_\infty$, and $\omega(x) \, dx$ is a non doubling measure, but $\omega = (1 + |x|)^{-n+\gamma} \in A_\infty$; see [1, 4]. We also need to point out that these weights have many differences from Orbitiz–Pérez’s undoubling weights [5] because they are against the reverse Hölder inequality by Proposition 15 (v).

Next we state our main theorem for these operators satisfying (3)–(6) as follows.

Theorem 6. Assume that T satisfies (3), (4), (5), and (6). Let $\omega \in A_p^\infty(\phi)$ with $1 \leq p < \infty$. Then T is bounded from $L^p(\omega)$ to $L^p(\omega)$ for $1 < p < \infty$ and $L^1(\omega)$ to $L^{1,\infty}(\omega)$.

We also consider the commutator of Coifman-Rochberg-Weiss $[b, T]$ defined by

$$[b, T] f (x) = b(x) T (f) (x) - T (b f) (x).$$

Since our operator T is stronger than the standard Carleson–Zygmund operator, we will generalize the symbol b from usual BMO to $BMO^\infty(\phi)$.

Definition 7. A locally integrable function f is said to be in $BMO^\infty(\phi)$ with $p \geq 1$ and $\theta \geq 0$, if there exists a positive constant C such that for any cube Q

$$\left(\frac{1}{|Q|} \int_Q |f(x) - f_Q|^p \, dx \right)^{1/p} \leq C \left(\frac{1}{|Q|} \int_Q \phi(|f(x)|) \, dx \right)^{\theta},$$

where f_Q is the average of f on Q. A norm for $b \in BMO^\infty(\phi)$, denoted by $\|f\|_{BMO^\infty(\phi)}$, is given by the infimum of the constants satisfying (13).

Remark 8. Clearly $BMO^\infty(\phi) \subset BMO(\phi)$ for $\theta_1 \leq \theta_2$ and $BMO(\phi) = BMO$ if $\theta = 0$ or $\phi \equiv$ constant. We define $BMO^{\infty}(\phi) = \cup_{p>0} BMO^\infty(\phi)$.

Remark 9. Recently Harboure et al. [7] established an intimate relationship between these spaces and ϕ-Carleson measures similar to well-known Fefferman-Stein’s theorem. Precisely, let Ψ be a function in δ with a null integral. $f \in BMO^\infty(\phi)$ if and only if $d\mu = |\Psi(x) f(x)| \, dx (dt(x))$ is a ϕ-Carleson measure; that is, $d\mu(Q) \leq |Q| \phi(|\Psi(x)|)$, where Q is a Carleson box.

Theorem 10. Assume that T satisfies (3), (4), (5), and (6). Let $b \in BMO^\infty(\phi)$ for $\theta > 0$ and $\omega \in A_p^\infty(\phi)$ with $1 \leq p < \infty$. Then there exists a positive constant C such that for all $\lambda < \infty$

$$\|b, T\|_{L^p(\omega)} \leq C \|f\|_{L^p(\omega)}.$$

To consider the endpoint case, we introduce the Orlicz norm. For $\Phi(t) = t(1 + \log^t)$ and a cube Q on \mathbb{R}^n, by the Luxemburg norm of f it means that

$$\|f\|_{\Phi, Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q \Phi \left(\frac{|f(x)|}{\lambda} \right) \, dx \leq 1 \right\}.$$

We recall that $\|f\|_{\Phi, Q} > 1$ if and only if $\int_Q \Phi(|f(x)|) \, dx > 1$.

Theorem 11. Assume that T satisfies (3), (4), (5), and (6). Let $b \in BMO^\infty(\phi)$ for $\theta \geq 0$ and $\omega \in A_p^\infty(\phi)$ with $1 \leq p < \infty$.

Then there exists a positive constant C such that for any $1 < p < \infty$
\[
\omega\left(\{x \in \mathbb{R}^n : \|b_T(f)\| > \lambda\}\right) \leq C \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\lambda}\right) \omega(x) \, dx.
\]
(16)

Remark 12. One of our original motivations is to procure some detailed operators that satisfy our conditions like pseudodifferential operators. Restricted with our knowledge, we have found nothing to date.

2. Some Preliminaries and Notations

In this section, we begin with defining the weighted maximal function by
\[
M_\omega f(x) = \sup_{Q \ni x} \frac{1}{\omega(5Q)} \int_Q |f(y)| \omega(y) \, dy.
\]
(17)

Proposition 13. Let $\omega \in A_\infty^\infty(\phi)$. Then
\[
\omega\left(\{x \in \mathbb{R}^n : M_\omega f(x) > \lambda\}\right) \leq C \|f\|_{L^1(\omega)}^p,
\]
(18)

and for $1 < p < \infty$,
\[
\|M_\omega f\|_{L^p(\omega)} \leq C_p \|f\|_{L^p(\omega)}.
\]
(19)

Proof. By the Marcinkiewicz interpolation theorem and the fact that $M_\omega b_\psi$ is bounded on $L^{\infty}(\omega)$, we only need to prove (18). For any $\lambda > 0$, let $E_\lambda = \{x \in \mathbb{R}^n : M_\omega f(x) > \lambda\}$. Fixing $x \in E_\lambda$, there exists a cube $Q_x \ni x$ such that
\[
\frac{1}{\omega(5Q_x)} \int_{Q_x} |f(y)| \omega(y) \, dy > \lambda.
\]
(20)

Thus, $\{Q_x\}_{x \in E_\lambda}$ covers E_λ. By Vitali’s lemma, there exists a class of disjoint cubes $\{Q_{x_j}\}$ such that $Q_{x_j} \subset E_\lambda \subset 5Q_{x_j}$ and
\[
\omega(E_\lambda) \leq \sum_j \omega(5Q_{x_j}) \leq \left(\frac{C}{\lambda}\right) \sum_j \int_{Q_{x_j}} |f(y)| \omega(y) \, dy
\]
(21)

By the boundedness of M_ω and the following covering lemma, we obtain some properties for $A_p(\phi)$.

Lemma 14 (see [8]). There exists a sequence of points $x_j, j \geq 1$ in \mathbb{R}^n so that the family of cubes $\{Q_j\}_{j \geq 1}$ where $Q_j = B(x_j, 1)$, $j \geq 1$, satisfies the following:

(a) $\bigcup_j Q_j = \mathbb{R}^n$.

(b) There exists a constant C such that for any $\sigma > 1$, $\sum_j \chi_{\sigma Q_j} \geq C\sigma^n$.

Proposition 15. The following statements hold:

(i) If $1 \leq p_1 < p_2 < \infty$, then $A_{p_1}(\phi) \subset A_{p_2}(\phi)$.

(ii) $\omega \in A_{p_1}(\phi)$ if and only if $\omega^{1-p'} \in A_{p_1}(\phi)$, where $(1/p) + (1/p') = 1$.

(iii) If $\omega_1, \omega_2 \in A_{p_1}(\phi)$, $\rho \geq 1$, then $\omega_1^{\rho} \omega_2^{1-\rho} \in A_{p_1}(\phi)$ for any $0 < \alpha < 1$.

(iv) If $\omega \in A_{p_1}(\phi)$ for $1 \leq p < \infty$, then
\[
\frac{1}{|\phi(|Q|)|^{1/p}} \int_Q |f(y)| \, dy
\]
(22)

\[
\leq C \left(\frac{1}{\omega(5Q)} \int_{5Q} |f(y)|^p \omega(y) \, dy\right)^{1/p}.
\]
(23)

(v) If $\omega \in A_{p_1}(\phi)$ with $p \geq 1$, then there exist positive numbers δ, η, and C so that for all cubes Q
\[
\left(\frac{1}{|Q|} \int_Q |f(x)|^{1+\delta} \, dx\right)^{1/(1+\delta)}
\]
(24)

\[
\leq C \left(\frac{1}{|Q|} \int_Q \omega(x) \, dx\right)^{1/p}
\]
(25)

Proof. (i), (ii), and (iii) are easy from the definition. We only prove (iv). In fact, note that $\phi(|Q|) \leq 5^{\rho} \phi(|Q|)$; by Hölder’s inequality and $A_{p_1}(\phi)$ condition we then have
\[
\frac{1}{|\phi(|Q|)|^{1/p}} \int_Q |f(y)| \, dy
\]
(26)

\[
\leq C \left(\frac{1}{|\phi(|Q|)|^{1/p}} \int_Q |f(y)|^p \omega(y) \, dy\right)^{1/p}
\]
(27)

\[
\left(\frac{1}{|\phi(|Q|)|^{1/p}} \int_Q \omega(y) \, dy\right)^{-1/p}
\]
(28)

\[
\leq C \left(\frac{1}{\omega(5Q)} \int_{5Q} |f(y)|^p \omega(y) \, dy\right)^{1/p}.
\]
(29)
for all \(p > 1 \). For \(p = 1 \), we note that

\[
\sup_{y \in 2Q} \omega(y)^{-1} \leq \left(\frac{1}{|\phi(5|Q|)|^p} \int_{5|Q|} \omega(y) \, dy \right)^{-1};
\]
(26)
thus it concludes (iv).

For (v), by Lemma 2.4 [1], there exist positive constants \(C > 0 \) and \(\delta > 0 \), such that

\[
\left(\frac{1}{|Q|} \int_Q \omega(x)^{1+\delta} \, dx \right)^{1/(1+\delta)} \leq C \frac{1}{|Q|} \int_Q \omega(x) \, dx
\]
(27)
for any \(Q = Q(x,r) \subset \mathbb{R}^n \) with \(r < 1 \). On the other hand, let \(Q = Q(x,r) \), with \(r > 1 \) and \(\mathcal{F} = \{ j : Q_j \cap B \neq \emptyset \} \), where \(Q_j = Q(x_j, 1) \) and \(\{ x_j \} \) is the sequence of Lemma 14. It is easy to see that \(\cup_j Q_j \subset 5Q \). Now let \(\delta \) be the constant in (27). By using Lemma 14, \(A^p_\phi \) condition, and Hölder’s inequality,

\[
\left(\int_Q \omega(x)^{1+\delta} \, dx \right)^{1/(1+\delta)} \leq \sum_{j \in \mathcal{F}} \left(\int_{Q_j} \omega(x)^{1+\delta} \, dx \right)^{1/(1+\delta)} \leq C \omega(5Q)
\]
(28)
and

\[
\leq C |Q|^p \phi(|Q|)^p \left(\int_Q \omega(x)^{-p'} \, dx \right)^{-1/p'} \leq C \omega(|Q|) \phi(|5Q|)^p \leq C \omega(|Q|) \phi(|5Q|)^p
\]
(29)
we obtain the desired inequality with \(\eta = p - \delta/(1+\delta) \beta \); here \(\beta \) is sufficiently big. And (vi) is a consequence of (v).

Then we also define maximal functions associated with \(\phi \) and \(\eta > 0 \) by

\[
M_{\phi,\eta} f(x) = \sup_{Q \text{ dyadic}} \frac{1}{|Q|} \int_Q |f(y)| \, dy;
\]
(30)
for \(\omega \in A^p_\phi \). From this and using (18) and (19), we can get the following result.

Proposition 17. Let \(1 < p < \infty \) and \(p' = p/(p-1) \) and suppose that \(\omega \in A^p_\phi \). There exists a constant \(C > 0 \) such that

\[
\| M_{\phi,\eta} f \|_{L^p(\omega)} \leq C \| f \|_{L^p(\omega)}.
\]
(31)
As a consequence of Proposition 17, we have the following.

Corollary 18. Let \(1 \leq p < \infty \) and \(\omega \in A^p_\phi \). Let \(\psi \) be a radial, positive function with compact support and total integral 1. Set \(\psi_t(x) = t^{-n} \psi(x/t) \).

(i) \(\sup_{0 < t < 1} |f * \psi_t(x)| \leq C_{\eta} M_{\phi,\eta} f(x) \) for \(f \in L^p(\omega) \) and \(0 < \eta < \infty \);

(ii) \(f * \psi_t(x) \to f(x) \), as \(t \to 0 \), almost every \(f \in L^p(\omega) \);

(iii) \(\| f * \psi_t - f \|_{L^p(\omega)} \to 0 \), as \(t \to 0 \), almost every \(f \in L^p(\omega) \).

Next we define the dyadic maximal function and sharp maximal function \(M^\Delta_{\phi,\eta} \) and \(M^{\Delta\lambda}_{\phi,\eta} \) for \(\eta > 0 \)

\[
M_{\phi,\eta}^\Delta(f)(x) = \sup_{Q \text{ dyadic}} \frac{1}{|Q|} \int_Q |f(y)| \, dy;
\]
(32)

\[
M^{\Delta\lambda}_{\phi,\eta}(f)(x) = \sup_{Q \text{ dyadic}} \int_Q \frac{1}{|Q|} \int_Q |f(y)| \, dy
\]
(33)
and

\[
+ \sup_{Q \text{ dyadic}} \frac{1}{|Q|} \int_Q \int_Q |f(y) - f_Q| \, dy
\]
(34)

Moreover, we have that \(|f(x)| \leq \lambda \) for almost all \(x \in \mathbb{R}^n \setminus \cup_j Q_j \) and \(|\Omega_\lambda| \leq \lambda^{-1} \| f \|_{L^1} \).

Proof. The proof is standard; see Lemma 1 on P. 150 of [9].
Lemma 20. Let \(\omega \in A^p_\infty \) and \(0 < \eta < \infty \). For a locally integrable function \(f \), and for \(b \) and \(\gamma \) positive \(\gamma < b < b_0 = 1/\phi(2^n) \), then there exist positive constants \(C \) and \(\delta_1 \) such that we have the following inequality:

\[
\omega \left(\left\{ x \in \mathbb{R}^n : M_{\phi,\gamma} (f)(x) > \lambda, M_{\phi,\gamma} (f)(x) < \gamma \lambda \right\} \right) \\
\leq C \delta_1^{\delta_1} \omega \left(\left\{ x \in \mathbb{R}^n : M_{\phi,\gamma} (f)(x) > b \lambda \right\} \right),
\]

(36)

for all \(\lambda > 0 \), where \(a = 2^\gamma \gamma/(1 - b/b_0) \).

Proof. The proof is very similar to that of Lemma 2.6 [1]. \(\Box \)

Corollary 21. Let \(1 < p < \infty \), \(\omega \in A^p_\infty \), and \(0 < \theta < \infty \). Then there exists a constant \(C > 0 \) such that

\[
\left\| M_{\phi,\gamma}^\Delta f \right\|_{L^p(\omega)} \leq C \left\| M_{\phi,\gamma} f \right\|_{L^p(\omega)}.
\]

(37)

Note that \(|f(x)| \leq M_{\phi,\gamma} f(x) \) a.e. \(x \in \mathbb{R}^n \) for any \(\theta > 0 \). By Corollary 21, we have the following.

Corollary 22. Let \(1 < p < \infty \), \(\omega \in A^p_\infty \), and \(f \in L^p(\omega) \), and then

\[
\left\| f \right\|_{L^p(\omega)} \leq \left\| M_{\phi,\gamma} f \right\|_{L^p(\omega)} \leq C \left\| M_{\phi,\gamma} f \right\|_{L^p(\omega)}.
\]

(38)

For \(\eta > 0 \) and the Young function \(\Phi(t) = t(1 + \log^+ t) \), we define the maximal function \(M_{L,1}(f) \) by

\[
M_{L,1}(f)(x) = \sup_{Q \ni x} \left[\frac{\Phi(|Q|)}{|Q|} \right]^{1/\eta} \left\| f \right\|_{L_1(Q)}.
\]

(39)

Lemma 23. Let \(0 < \eta < \infty \) and \(M_{\phi,\gamma} f \) be locally integrable. Then there exist positive constants \(C_1 \) and \(C_2 \) independent of \(f \) and \(x \) such that

\[
C_2 M_{\phi,\gamma} M_{\phi,\gamma} f(x) \leq M_{L,1,2}(f)(x) \leq C_1 M_{\phi,\gamma} M_{\phi,\gamma} f(x).
\]

(40)

Proof. On the one hand, we take \(f \) with \(\left\| f \right\|_{L_1} = 1 \) which implies

\[
\left\| f \right\|_{L_1} = 1 \leq C \frac{1}{|Q|} \int_Q |f(y)| \left(1 + \log^+ \left(|f(y)| \right) \right) dy \leq C \frac{1}{|Q|} \int_Q |f(y)| dy,
\]

(41)

On the other hand, for any \(x \in \mathbb{R}^n \) and any fixed cube \(Q \ni x \), write \(f = f_1 + f_2 \), with \(f_1 = f_1(x) \).

\[
\int_Q \Phi(|Q|)^{\theta} |f_1(y)| dy \leq C \Phi(|Q|)^{\theta} |f_2(y)| dy + \frac{1}{|Q|} \int_Q |f(y)| dy,
\]

(42)

Since \(|M(f)||Q| \leq C|Q||g||_{L_1 \log L_1} \) for any \(g \) with \(\text{supp} \, g \subset Q \), we have

\[
I \leq C \Phi(|Q|)^{\theta} \left(|Q| \int_Q |f_1(y)| dy \right) \leq CM_{L,1,2}(f)(x).
\]

(43)

Noting that \(M_{\phi,\gamma}(f_2)(y) \leq CM(f)(z) \) for any two \(y, z \in Q \), then

\[
II \leq C \Phi(|Q|)^{\theta} \left(|Q| \int_Q |f_2(y)| dy \right) \leq CM_{L,1,2}(f)(x).
\]

(44)

The following proposition is a technical result. Its proof copies almost verbatim the proof of Proposition 3 [10] and is omitted.

Proposition 24. Let \(q \geq 1 \). If \(b \in BMO^\theta \) then for all cube \(Q \)

\[
\left(\frac{1}{|Q|} \int_Q |f(x) - f_Q|^q dx \right)^{1/q} \leq C \Phi(|Q|)^{\theta},
\]

(45)

for all \(k \in \mathbb{N} \).

Proposition 25. Supposing that \(f \) is in \(BMO^\theta \), there exist positive constants \(c_1 \) and \(c_2 \) such that

\[
\sup_Q \frac{1}{|Q|} \int_Q \exp \left(\frac{c_1 |f(x) - f_Q|}{\|f\|_{BMO^\theta} \Phi(|Q|)^{\theta}} \right) dx \leq c_2.
\]

(46)
Proof. The proof is classical; we refer to Proposition 4.3 [11].

As we know that $\Psi(t) = e^t - 1$ is also a Young function, the corresponding average is denoted by

$$\|f\|_{\Psi,Q} = \|f\|_{\exp L,Q}.$$ \hfill (47)

Then there is a generalized Hölder inequality

$$\frac{1}{|Q|} \int_Q |f(x)g(x)| \, dx \leq 2 \|f\|_{\exp L,Q} \|g\|_{L^{\log L,Q}}.$$

By Proposition 25 and (48), we can get

$$\frac{1}{|Q|} \int_Q |f(x) - f_Q| |g(x)| \, dx \leq 2 \|f\|_{BMO(\phi)} \|g\|_{L^{\log L,Q}} \frac{1}{|Q|}.$$ \hfill (49)

By Proposition 17 and Lemmas 20 and 21, we have

$$\|Tf(x)\| \leq CM_{\phi,\eta}(\cdot),$$ \hfill (50)

where $M_{\phi,\eta}^{\psi}$ is a variant of dyadic sharp maximal operator

$$M_{\phi,\eta}^{\psi}(f) = M_{\phi,\eta}(|f|^e)^{1/e}. \hfill (51)$$

Proof. Fix $x \in \mathbb{R}^n$ and let a dyadic cube $Q = Q(x_0, r) \ni x$, and we write $f(x) = f_{4Q}(x) + f_{4}\mathbb{Q}(x) = f_1(x) + f_2(x)$. When $0 < r \leq 1$, since $0 < \epsilon < 1$, we have the inequality

$$\left(\frac{1}{|Q|} \int_Q |Tf(x)|^e - |c|^e \right)^{1/e} \leq \left(\frac{1}{|Q|} \int_Q |Tf_1(x)|^e \right)^{1/e}$$

$$+ \left(\frac{1}{|Q|} \int_Q |Tf_2(x)|^e \right)^{1/e} = I + II.$$ \hfill (52)

Applying Kolmogorov's inequality to the term I and the weak $(1, 1)$ boundedness of T, we have

$$I \leq C \|Tf_1\|_{L^{1/\epsilon}(Q, d\epsilon/|Q|)} \leq C \frac{1}{|4Q|} \int_{4Q} |f(x)| \, dx$$ \hfill (53)

$$\leq C \frac{1}{|\phi(4Q)|^{\eta/4}Q} \int_Q |f(x)| \, dx$$

$$\leq CM_{\phi,\eta}(f)(x).$$

Set $c = T(f(x_0))$, for $N = \eta$ in the regularity in (4) and (5), we have

Thus $II \leq CM_{\phi,\eta}(f)(x)$.

When $r > 1$, by Hölder's inequality with $0 < \epsilon < 1$, we have

$$\left(\frac{1}{[\phi(4Q)]^{\eta/4}Q} \int_Q |Tf(x)|^e \, dx \right)^{1/e} \leq \left(\frac{1}{\phi(4Q)]^{\eta/4}Q} \int_Q |Tf(x)| \, dx \right)^{1/e}$$

$$\leq \frac{1}{\phi(4Q)]^{\eta/4}Q} \int_Q |Tf_1(x)| \, dx$$

$$\leq \frac{1}{\phi(4Q)]^{\eta/4}Q} \int_Q |Tf_2(x)| \, dx = III + IV.$$ \hfill (55)

Similar to I, it follows that $III \leq CM_{\phi,\eta}(f)(x)$ with Kolmogorov's inequality to the term I and the weak $(1, 1)$ boundedness of T. For IV, taking $N = \eta + 1$ in the size condition (3), we have

$$IV \leq C \frac{1}{|4Q|} \int_{4Q} |f(x)| \, dx$$

$$\cdot \frac{1}{\phi(4\mathbb{Q})} \int_{4\mathbb{Q}} |f(y)| \, dy$$ \hfill (56)

$$\leq C \sum_{k=1}^{\infty} \frac{1}{4^{k+1}Q} \frac{1}{\phi(4^{k+1}Q)} \int_{4^{k+1}Q} |f(y)| \, dy$$

$$\leq CM_{\phi,\eta}(f)(x).$$

The proof is complete.

Proof of Theorem 6. From Proposition 17 and Lemmas 20 and 26, the standard statement gets the proof of Theorem 6.
To prove Theorem 10, we establish the following pointwise estimate firstly.

Lemma 27. Assume that T satisfies (3), (4), (5), and (6). Let $b \in BMO^q(\phi)$ for $\theta > 0$, $0 < \varepsilon < \gamma < 1$, and $\eta > \theta e/(1 - \varepsilon)$. Then for almost all $x \in \mathbb{R}^n$

\[
M_{\phi, \eta}^\Delta \left([b, T] f \right)(x) \leq C \|b\|_{BMO^q(\phi)} \cdot \left[M_{\phi, \eta}^\Delta (Tf)(x) + M_{L\log L, \phi, \eta} (f)(x) \right],
\]

where $M_{\phi, \eta}^\Delta$ is a variant of dyadic maximal operator

\[
M_{\phi, \eta}^\Delta (f) = M_{\phi, \eta}^\Delta \left(|f|^\gamma \right).
\]

Proof. Fix $x \in \mathbb{R}^n$ and a dyadic cube $Q = Q(x_0, r) \ni x$, we decompose the function f into $f = f_1 + f_2$ with $f_1 = f\chi_Q$, where $\bar{Q} = 4Q$. For $b \in BMO^q(\phi)$, we can write

\[
[b, T] f (x) = (b - b_Q) T f (x) - T \left((b - b_Q) f_1 \right)(x).
\]

When $0 < r < 1$, Since $0 < \varepsilon < 1$, we have

\[
\left(\frac{1}{|Q|} \int_Q \left| [b, T] f (x) \right|^\varepsilon |dx \right)^{1/\varepsilon} \leq \left(\frac{1}{|Q|} \int_Q \left| (b - b_Q) T f (x) \right|^\varepsilon |dx \right)^{1/\varepsilon}
\]

\[
\leq \left(\frac{1}{|Q|} \int_Q \left| (b - b_Q) T f_1 (x) \right|^\varepsilon |dx \right)^{1/\varepsilon} + \left(\frac{1}{|Q|} \int_Q \left| (b - b_Q) f_2 (x) \right|^\varepsilon |dx \right)^{1/\varepsilon}
\]

\[
\leq \frac{1}{|Q|} \int_Q \left| \phi \left(\frac{|x - y|}{r} |dx \right) \leq C \|b\|_{BMO^q(\phi)} \|f\|_{BMO^q(x, \phi)} \leq C \|b\|_{BMO^q(\phi)} \|f\|_{L\log L, \phi, \eta} f(x).
\]

Choosing any $q \in (1, \gamma/\varepsilon)$, by the Hölder inequality and Proposition 24, it estimates that

\[
I_1 \leq \left(\frac{1}{|Q|} \int_Q \left| b (x) - b_Q \right|^q \varepsilon |dx \right)^{1/\varepsilon} \left(\frac{1}{|Q|} \int_Q |T f (x)|^q |dx \right)^{1/q}
\]

\[
\leq \left(\frac{1}{|Q|} \int_Q \left| b (x) - b_Q \right|^q \varepsilon |dx \right)^{1/\varepsilon} \left(\frac{1}{|Q|} \int_Q |T f (x)|^q |dx \right)^{1/q}
\]

\[
\leq C \|b\|_{BMO^q(\phi)} M_{L\log L, \phi, \eta} f(x).
\]

For I_2, we recall that T is a Calderón-Zygmund operator and is of weak type $(1, 1)$. By Komogorov’s inequality, (49), and Proposition 24, we then have

\[
I_2 \leq C \|T \left((b - b_Q) f_1 \right)\|_{L^\infty(Q, dx/|Q|)} \leq C \left(\frac{1}{|Q|} \int_Q \left| b (x) - b_Q \right|^q |dx \right)^{1/q} \left(\frac{1}{|Q|} \int_Q |T f (x)|^q |dx \right)^{1/q}
\]

\[
\leq C \|b\|_{BMO^q(\phi)} \|f\|_{L\log L, \phi, \eta} f(x).
\]

and the last inequality holds by $1 \leq \phi(|Q|) \leq \phi(1)$. It turns to the term I_3. Choosing $\varepsilon = T \left((b - b_Q) f_1 (x_0) \right)$ and using (4), (5), and (49) and Proposition 24, we get that for any $x \in Q$ and $N = \eta + \theta$

\[
|T \left((b - b_Q) f_2 \right)(x) - T \left((b - b_Q) f_2 \right)(x) | = \int_{R^n \setminus Q} \left| K(x, y) - K(x_0, y) \right| \left| b (y) - b_Q \right| |f(y)| dy
\]

\[
\leq \sum_{k=1}^{\infty} \int_{R^n \setminus Q} \left| x - x_0 \right|^\delta |f(y)| dy
\]

\[
\leq \sum_{k=1}^{\infty} \int_{Q_k} \left| x - x_0 \right|^\delta |f(y)| dy
\]

\[
\leq \sum_{k=1}^{\infty} \int_{Q_k} \left| x - x_0 \right|^\delta |f(y)| dy
\]

\[
\leq \sum_{k=1}^{\infty} \int_{Q_k} \left| x - x_0 \right|^\delta |f(y)| dy
\]

\[
\leq \sum_{k=1}^{\infty} \int_{Q_k} \left| x - x_0 \right|^\delta |f(y)| dy
\]

Thus $I_3 \leq C \|b\|_{BMO^q(\phi)} M_{L\log L, \phi, \eta} f(x)$.
When \(r > 1 \), since \(0 < \varepsilon < \gamma < 1 \), we have

\[
\left(\frac{1}{|\phi(Q)|} |Q| \int_Q |b(T f(x))|^r \, dx \right)^{1/r} \\
\leq \frac{1}{|\phi(Q)|} \left(\frac{1}{|Q|} \int_Q \left| \left(b(x) - b_Q \right) T f(x) \right|^r \, dx \right)^{1/r} \\
+ \frac{1}{|\phi(Q)|} \left(\frac{1}{|Q|} \int_Q |T \left((b - b_Q) f_1 \right)(x)|^r \, dx \right)^{1/r} \\
+ \frac{1}{|\phi(Q)|} \left(\frac{1}{|Q|} \int_Q |T \left((b - b_Q) f_2 \right)(x)|^r \, dx \right)^{1/r}
\]

(64)

Choosing any \(q < (1, \gamma/e) \) and denoting \(\eta > \theta \varepsilon / (1 - \varepsilon) > \theta \varepsilon / (\gamma - \varepsilon) \), by the Hölder inequality and Proposition 24, the same estimate with \(I_1 \) is obtained that

\[
I_1 \leq C \frac{1}{|\phi(Q)|} \left(\frac{1}{|Q|} \int_Q \left| \left(b(x) - b_Q \right) T f(x) \right|^q \, dx \right)^{1/q} \\
\leq C \phi \left(\phi \left(\frac{\phi}{\phi} \right) M_{\gamma_0, \eta} \left(T f(x) \right) \right) \\
\leq C \left(\frac{1}{|Q|} \int_Q |T f(x)|^p \, dx \right)^{1/p}
\]

(65)

Also, since \(\eta > \theta \varepsilon / (1 - \varepsilon) \), by Kolmogorov’s inequality, (49), and Proposition 24, we have

\[
I_2 \leq C \frac{1}{|\phi(Q)|} \left(\frac{1}{|Q|} \int_Q \left(b(x) - b_Q \right) f_1 \right)_{L^1(Q,dx)} \\
\leq C \left(\frac{1}{|\phi(Q)|} \int_Q |T f(x)|^q \, dx \right)^{1/q} \\
\leq C \left(\frac{1}{|\phi(Q)|} \int_Q |T f(x)|^q \, dx \right)^{1/q}
\]

(66)

The last term \(I_3 \) remains. Choosing \(c = T((b - b_Q) f_2)(x_0) \) and using (3) and (49) and Proposition 24, we get that for any \(x \in Q \) and \(N = \theta + \eta + 2 \)

\[
I_3 \leq \frac{1}{|\phi(Q)|} \left(\frac{1}{|Q|} \int_Q \left| b(x) - b_Q \right| f(x) \right)_{L^1(Q,dx)} \\
\leq C \left(\frac{1}{|\phi(Q)|} \int_Q |T f(x)|^q \, dx \right)^{1/q} \\
\leq C \left(\frac{1}{|\phi(Q)|} \int_Q |T f(x)|^q \, dx \right)^{1/q}
\]

(67)

We complete the proof.

\[\square \]

Proof of Theorem 10. By Corollary 22, Lemma 27, Lemma 23, and Theorem 6, we have

\[
\left\| T f \right\|_{L^p(\omega)} \leq C \left\| M_{\gamma_0, \eta} \left(T f(x) \right) \right\|_{L^p(\omega)} + \left\| M_{\Lambda, \phi, \eta, \gamma} \left(f(x) \right) \right\|_{L^p(\omega)} \\
\leq C \left\| M_{\gamma_0, \eta} \left(T f(x) \right) \right\|_{L^p(\omega)} + \left\| M_{\Lambda, \phi, \eta, \gamma} \left(f(x) \right) \right\|_{L^p(\omega)}
\]

(68)

\[
\leq C \left\| M_{\gamma_0, \eta} \left(T f(x) \right) \right\|_{L^p(\omega)} + \left\| M_{\Lambda, \phi, \eta, \gamma} \left(f(x) \right) \right\|_{L^p(\omega)}
\]

(69)

Lemma 28. Let \(\omega \in A_1^{\gamma_0}(\phi) \) and \(\eta \geq 2 \theta \). There exists a positive \(C \) such that, for any function \(f \) and \(\lambda > 0 \),

\[
\omega \left(\left\{ x \in \mathbb{R}^n : M_{\Lambda, \phi, \eta, \gamma} f(x) > \lambda \right\} \right) \\
\leq C \int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda} \right) \omega \left(\frac{\omega}{\omega} \right) \omega \left(\frac{\omega}{\omega} \right) \omega \left(\frac{\omega}{\omega} \right)
\]

(70)

Proof. Let \(F \) be any compact subset in \(\{ x \in \mathbb{R}^n : M_{\Lambda, \phi, \eta, \gamma} f(x) > \lambda \} \). For \(x \in F \), there exists a cube \(Q \) with \(x \in Q \) such that

\[
\left\| f \right\|_{A_1(\phi,Q)} = \left\| \phi \left(\phi \right) \right\|_{L^\infty(\omega)} \geq \lambda
\]

(71)

by Vitali covering lemma, we can choose a finite family of disjoint cubes \(\{Q_j\} \) such that \(F \subset \bigcup_{j} \mathcal{S} Q_j \) and \(\{Q_j\} \) satisfies (70). Thus

\[
\left\| \phi \left(\phi \right) \right\|_{A_1(\phi,Q)} = \left\| \phi \left(\phi \right) \right\|_{L^\infty(\omega)} \leq \int_{Q_j} \left(\frac{|f(x)|}{\lambda} \right) \omega \left(\frac{\omega}{\omega} \right) \omega \left(\frac{\omega}{\omega} \right)
\]

(72)
From this, by (iv) in Proposition 15 with \(p = 1 \) and \(E = Q \), we obtain that
\[
\omega(3Q_j) \leq C\Phi\left(\left|Q_j\right|\omega(Q_j)\right)
\]
\[
\leq C\frac{\omega(Q_j)}{\Phi\left(\left|Q_j\right|\right)} \int_{Q_j} \Phi\left(\frac{|f(x)|}{\lambda}\right) \, dx
\]
\[
\leq C \inf_{x \in Q_j} \omega(x) \int_{Q_j} \Phi\left(\frac{|f(x)|}{\lambda}\right) \, dx
\]
\[
\leq C \int_{Q_j} \Phi\left(\frac{|f(x)|}{\lambda}\right) \omega(x) \, dx.
\]
(72)

Thus, (69) holds.

Lemma 29. Let \(b \in BM\Omega^p(\phi) \), \(\eta > 2\theta \), and \(\omega \in A^{\theta}_1(\phi) \).
Then there exists a positive constant \(C \) such that for any smooth function \(f \) with compact support
\[
\sup_{t > 0} \frac{1}{\Phi(t)} \omega\left(\{x \in \mathbb{R}^n : |[b, T](f)(x)| > \lambda\}\right)
\]
\[
\leq C\Phi\left(\|b\|_{BM\Omega^p(\phi)}\right) \sup_{t > 0} \frac{1}{\Phi(t)} \cdot \omega\left(\{x \in \mathbb{R}^n : |M_{L, \log L, \eta}(f)(x)| > \lambda\}\right).
\]
(73)

Proof. Similar to the proof of Lemma 1.5 in [12] or Lemma 4.4 in [1], we can get the desired result by Proposition 16,Lemma 27, and Lemma 23. We omit the details here.

Proof of Theorem II. By homogeneity, we need only to show that
\[
\omega\left(\{x \in \mathbb{R}^n : |[b, T](f)(x)| > 1\}\right)
\]
\[
\leq C \int_{\mathbb{R}^n} \Phi\left(|f(x)|\right) \omega(x) \, dx.
\]
(74)

Now, since \(\Phi \) is submultiplicative, we have by Lemma 28 and Lemma 29
\[
\omega\left(\{x \in \mathbb{R}^n : |[b, T](f)| > 1\}\right) \leq C \sup_{t > 0} \frac{1}{\Phi(t)} \omega\left(\{x \in \mathbb{R}^n : |[b, T](f)(x)| > t\}\right)
\]
\[
\leq C\Phi\left(\|b\|_{BM\Omega^p(\phi)}\right) \sup_{t > 0} \frac{1}{\Phi(t)} \cdot \omega\left(\{x \in \mathbb{R}^n : |M_{L, \log L, \eta}(f)(x)| > t\}\right)
\]
\[
\leq C \int_{\mathbb{R}^n} \Phi\left(|f(x)|\right) \omega(x) \, dx.
\]
(75)

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work is supported by Young Foundation of Education Department of Hubei Province (no. Q20162504).

References

