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Abstract. 
We prove new Hermite-Hadamard inequalities for conformable fractional integrals by using convex function, -convex, and coordinate convex functions. We prove new Montgomery identity and by using this identity we obtain generalized Hermite-Hadamard type inequalities.



1. Introduction
The class of convex functions is well known in the literature and is usually defined in the following way: let  be an interval in ; then a function  is said to be convex on  if the inequalityholds for all  and  Also, we say that  is concave, if the inequality in (1) holds in the reverse direction. There are several generalizations of the convex function. Here we mention basic definition of -convex function and coordinate convex function. In the paper [1], Hudzik and Maligranda considered a generalization of convex function, which is known as -convex function in the second sense. This class of function is defined in the following way: a function  is said to be -convex in the second sense ifholds for all  and  and for some fixed . The class of -convex functions in the second sense is usually denoted by .
In [2], the concept of convex functions defined on the coordinates of the bidimensional interval of the plane of two variables was introduced.
Definition 1.  Let us consider the bidimensional interval  in  with  and  A function  is called convex on the coordinates if the partial mappings  defined as  and  defined as  are convex for all  and .
Remark 2.  Note that every convex function  is convex on the coordinates, but the converse is not generally true [2].
Many important inequalities have been obtained for this class of functions but here we will present only one of them.
If  is a convex function on the interval , then, for any  with , we have the following double inequality:
Both inequalities hold in reverse direction if the function  is concave on the interval . This remarkable result was given in ([3], 1893) and is well known in the literature as Hermite-Hadamard inequality. Since its discovery, this inequality has become the center of interest for many prolific researchers and received a considerable attention. Also, a number of extensions, generalizations, and variants of (3) have been provided in the theory of mathematical inequalities. For example, see [4–12] and the references cited therein.
Now we recall some definitions and important results in the theory of conformable fractional calculus. For detailed treatment of the results, we refer the interested readers to [13–20].
Definition 3 (see [20]).  Given a function , the conformable fractional derivative of  of order  is defined byfor all  and . If the conformable fractional derivative of  of order  exists, then we say that  is -differentiable. Let  be -differentiable in , and  exists; then defineWe will, sometimes, write  and  for  to denote the conformable fractional derivatives of  of order .
Theorem 4 (see [20]).  Let  and  be -differentiable at a point . Then we have the following: (1), for all .(2), for all constant functions (3), for all (4)(5)(6), for  differentiable at  If, in addition, the function  is differentiable, then
Also, it is important to note the following:(1)(2)(3)(4)(5)(6)(7)(8)
Definition 5 (see [21] (conformable fractional integral)).  Let  and . A function  is -fractional integrable on  if the integralexists and is finite. All -fractional integrable functions on  are indicated by 
Remark 6.  Note that the relation between the Riemann integral and conformable fractional integral is given byThe -fractional integrable functions are strongly related to fractional Lebesgue and Sobolev spaces. General definitions of fractional Lebesgue and Sobolev spaces can be found in the monograph [22]. Moreover, in recent years, they have been widely used in the theory of regularity for PDE. For interested readers, we recommend [23–25] and some of the references therein.
Theorem 7 (see [13]).  Let  be differentiable and  Then, for all , one has
Theorem 8 (see [13] (integration by parts)).  Let  be two functions such that  is differentiable. Then
Theorem 9 (see [13]).  Assume that  such that  is continuous and  Then, for all , one has
Very recently, Anderson [21] investigated the following conformable integral version of Hermite-Hadamard inequality.
Theorem 10 (see [21]).  Let  and let  be an -differentiable function with , such that  is increasing; then one has the following inequality:Moreover, if the function  is decreasing on , then one has
Remark 11.  It is obvious that if we choose , then inequalities (12) and (13) reduce to inequality (3).
Several important variants of Hermite-Hadamard inequality have been provided in the literature, such as the versions established by Anderson [21] and Sarikaya et al. [26] and so forth.
In this paper, we prove new Hermite-Hadamard inequalities for conformable fractional integrals by using convex function, -convex, and coordinate convex functions. We prove new Montgomery identity for conformable fractional integral. By using this identity, we obtain Hermite-Hadamard type inequalities. These results give us the generalizations of the earlier results.
2. Hermite-Hadamard Inequalities
Theorem 12.  Let  be a convex function defined on , where ; then the following double inequality holds: 
Proof.  Let us define a function  on  byObviously the function  is increasing and continuous function on . Therefore, and henceNowBy changing of variable and convexity of , we get Hence,Now let us define a function  on  byClearly the function  is decreasing and continuous on . Therefore, and henceNowHence,From (20) and (25), we deduce the right-hand side of (14).
Now we prove left inequality in (14).
It is well known thatAlso from the functions  and  as defined in (15) and (21), respectively, we have Therefore,By using (28) in (26), we obtainNow, by changing of variable and using the fact that  for , we obtainSimilarly,NowCombining (29), (30), (31), and (32), we get which is equivalent to the left inequality in (14).
Corollary 13.  Under the assumptions of Theorem 12, if we put , we get the following well-known Hermite-Hadamard inequality for convex function:
Now we prove Hermite-Hadamard inequality for conformable fractional integral by using -convex function.
Theorem 14.  Let  and let  be an -convex function defined on , where ; then the following double inequality holds: where  is Euler beta function defined for 
Proof.  By definition of -convex function, we haveLet  be defined in (15). Then, as in the proof of Theorem 12, we have NowBy changing of variable and -convexity of , we get Hence,Let  be defined in (21). Then similar proof leads toNowHence,From (41) and (44), we deduce the right-hand side of (35).
Now we prove left inequality in (35).
It is well known thatAlso from the functions  and  as defined in (15) and (21), respectively, we have Therefore,By using (47) in (45), we obtainSimilar to (30), we haveAlso,Now, using -convexity of , we haveCombining (48), (49), (50), and (51), we getwhich is equivalent to the left inequality in (35).
Corollary 15.  Under the assumptions of Theorem 14, if we put , we get the following well-known Hermite-Hadamard inequality for -convex function [27]:
In the following theorem, we prove Hermite-Hadamard inequality for conformable fractional integral by using coordinate convex function.
Theorem 16.  Let  and let  be a convex function on the coordinates on , where  and ; then the following double inequality holds: 
Proof.  Since  is convex on the coordinates, it follows that the mapping , , is convex on  for all  Then, by Theorem 12, we havethat is,Integrating (56) on , we haveSimilarly, using the mapping , , we getSumming inequalities (57) and (58), we deduce the left-hand side of (54).
Now we prove right inequality in (54).
Also, by Theorem 12, using inequality (20), we haveSimilarly, using inequality (25), we haveSumming inequalities (59) and (60), we deduce the right-hand side of (54).
Remark 17.  Under the assumptions of Theorem 16, if we put , we get the Hermite-Hadamard inequality for coordinate convex function obtained by Dragomir in [2].
Remark 18.  Under the assumptions of Theorem 16, using inequalities (57), (58), (59), and (60), the following double inequality holds: 
3. Generalization of Hermite-Hadamard Type Inequalities
Now, we are in position to find some new estimations for the left-hand side of Hermite-Hadamard inequality for conformable fractional integral as given in Theorem 12 by using a new Montgomery identity.
Lemma 19 (new Montgomery identity).  Let  with , and let  be -fractional differentiable function, where  Thenwhere
Proof.  Integrating by parts, we have Adding and solving for  yields the required result.
Theorem 20.  Let  be an -fractional differentiable function such that  is a convex function, where  and  Then, for  and , one has where
Proof.  Using Lemma 19 with  defined in (63), convexity of , Hölder’s inequality, and property of the modulus, we have
Theorem 21.  Let  be -fractional differentiable and  is a convex function, where  and  Then, for , one haswhereand  are defined as in Theorem 20.
Proof.  Using Lemma 19 with  defined in (63), convexity of , the well-known power mean inequality, and property of the modulus, we have
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