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Abstract. 
A new subclass  of -valent close-to-convex mappings defined by two-sided inequality is introduced. Some sufficient conditions for functions to be in  are given.



1. Introduction
Let  be the class of functions of the formwhich are -valent analytic in the open unit disk . There and in the following, let , and  be the sets of positive integers, complex numbers, and real numbers, respectively. A function  analytic in  is said to be close-to-convex if there is a convex function  such thatfor all . The concept of close-to-convex was introduced by Kaplan [1] in 1952. A number of results for close-to-convex functions in  have been obtained by several authors (see, e.g., [2–14]).
A function  is said to be in the class  if it satisfies the following two-sided inequality:for  and . Note that if , then  is -valent close-to-convex in . Furthermore, if , then (3) becomes A function  is called -valent close-to-convex of order  and type  in .
Given two functions  and , which are analytic in , we say that the function  is subordinate to  and write  or , if there exists a Schwarz function , analytic in  with  and  such that . In particular, if  is univalent in , we have the following equivalence:
Throughout this paper, we letIn order to prove our main results, we need the following lemmas.
Lemma 1.  The function  defined byis analytic and univalent convex in  and
Proof.  In view of (6), it is easy to see that  and the transformationmaps the convex region conformally onto the right-half -plane  so that  corresponding to . Sincemaps the right-half -plane  onto , from (7), (9), and (11) we find that maps  conformally onto  with . The proof of Lemma 1 is completed.
Lemma 2 (see [15]).  Let the function  be analytic and univalent in  and let the functions  and  be analytic in a domain  containing , with . Setand suppose that(i) is univalent starlike in ,(ii) If  is analytic in  with , , andthen . The function  is the best dominant of (14).
Lemma 3 (see [16]).  Let  be analytic function in  of the form with  in . If there exists a point  such that for  and thenwherewhere  and .
In this paper we shall derive some criteria for a function  to be in the class .
2. Main Results
Our first result is the following theorem.
Theorem 4.  Let  and . Also let  and . If the function  is analytic in  with  and  and satisfieswhereis close-to-convex in , thenThe bounds  and  in (22) are sharp for the function  defined by (7).
Proof.  We choosein Lemma 2. By Lemma 1, the function  is analytic and univalent convex in  andClearly,  and  are analytic in a domain  containing  and , with  when . For the function  given by is univalent starlike in  becauseFurther, we have where  is given by (21) and soFor , it follows from (27) and (29) that The other conditions of Lemma 2 are also satisfied. Therefore, we conclude that and the function  is the best dominant of (20). The proof of the theorem is completed.
Theorem 5.  If  satisfies  andfor all , wherethen . The bounds  and  in (32) are the largest numbers such that (3) holds true.
Proof.  For  satisfying , we define the function  byThen  is analytic in  with  and  for all . Taking the logarithmic differentiations in both sides of (34), we haveandfor all . Putting  and  in Theorem 4 and using (36), we find that ifwhereis (close-to-convex) univalent in , then that is, .
For , , and , we haveandNow we consider the following two cases.
(i) If then we deduce from (38), (40), and (41) that which yieldsLet . Thenand it follows from (44) and (45) that(ii) If , then it follows from (38) to (41) that and soLet . Thenand from (48) and (49) we haveNoting that , we deduce from (46) and (50) that  properly contains the region  in the complex -plane. Therefore, if a function  satisfies (32), then the subordination relation (37) holds true. This shows that .
Furthermore, for the function  defined by (7), we haveHence, by using (46) and (50), we conclude that the bounds  and  in (32) are the best possible ones. The proof of the theorem is completed.
Theorem 6.  Let . Also let  and . If  satisfiesfor , thenIn particular, if , then  or  is -valent close-to-convex of order .
Proof.  We denote Then condition (52) becomesWe want to prove that If there exists a point  such that then, from Lemma 3, we have where ,  and For the case , we havewhere The functionhas a negative derivativeHence Therefore, (60) becomes which contradicts (55). Thus For the case , we have . Applying the same method as the above, we get This contradicts (55). The proof of the theorem is completed.
Applying the same method as the above we can prove the following theorem.
Theorem 7.  Let . Also let  and . If  satisfies for , then In particular, if , then  or  is -valent close-to-convex of order .
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