Inversion of Riesz Potentials for Dunkl Transform

Moyi Liu, Futao Song, and Rongxin Wang

1 School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China
2 School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050000, China

Correspondence should be addressed to Futao Song; ftsonghrb@163.com

Received 14 May 2018; Accepted 27 August 2018; Published 1 October 2018

Abstract

The inversion of Riesz potentials for Dunkl transform when $G = \mathbb{Z}^d$ is given by using the generalized wavelet transforms. It is also proved that the Riesz potentials I^α_n are automorphisms on the Semyanistyi-Lizorkin spaces.

1. Introduction

Dunkl transform is a generalization of the Fourier transform associated with a family of weight functions, h_α, invariant under a finite reflection group. Many papers devote to study the Dunkl transform; see [1–6] and the references therein.

In [7], the Riesz potentials I^α_n for Dunkl transform were defined by the generalized translation operators, τ_n. The explicit expression and boundedness of τ_n are known only in some special cases such as when $G = \mathbb{Z}^d$ and the case when the kernel is a suitable radial function. The boundedness of I^α_n was given only in the two cases mentioned above. Gorbachev et al. [8] studied the weighted (L^p, L^q)-boundedness properties of Riesz potentials for Dunkl transform represented by the Stein-Weiss inequality. In this paper, we will study the inversion of I^α_n in the case when $G = \mathbb{Z}^d$. The paper is organized as follows. In Section 2, some necessary facts in Dunkl’s theory are reviewed. Section 3 is devoted to introduce the Semyanistyi-Lizorkin spaces associated with the reflection-invariant measure $h_\alpha(x)dx$. In the final section, the inversion of the Riesz potentials I^α_n will be given by the generalized wavelet transforms defined by the generalized translation operators.

2. Preliminaries

2.1. Dunkl Operator and Dunkl Transform. Let G be a finite reflection group on \mathbb{R}^d with a fixed positive root system R_+, normalized so that $\langle v, v \rangle = 2$ for all $v \in R_+$, where $\langle x, y \rangle$ denotes the usual Euclidean inner product. Let κ be a nonnegative multiplicity function defined on R_+ with the property that $\kappa_a = \kappa_+$ whenever a is conjugate to σ_{κ_+} in G; then $\nu \mapsto \kappa_\nu$ is a G-invariant function. The weight function is positive homogeneous of degree $\gamma_\nu := \sum_{\nu \in \mathbb{R}} \kappa_\nu$, defined by

$$h_\kappa(x) = \prod_{\nu \in \mathbb{R}_+} |\langle x, \nu \rangle|^{\gamma_\nu}, \quad x \in \mathbb{R}^d. \tag{1}$$

Note that h_κ is invariant under the reflection group G.

Let D_i be Dunkl’s differential-difference operators defined in [1] as

$$D_i f(x) = \partial_i f(x) + \sum_{\nu \in \mathbb{R}} \kappa_\nu \frac{f(x) - f(x\sigma_{\nu})}{\langle x, \nu \rangle} (\nu, \epsilon_i), \quad 1 \leq j \leq d, \tag{2}$$

where $\epsilon_1, \epsilon_2, \ldots, \epsilon_d$ are the standard unit vectors of \mathbb{R}^d and σ_{ν} denotes the reflection with respect to the hyperplane perpendicular to ν, $x\sigma_{\nu} := x - 2(\langle x, \nu \rangle / \|\nu\|^2)\nu$, $x \in \mathbb{R}^d$. The operators D_i, $1 \leq j \leq d$, map \mathcal{D} to \mathcal{D}^{-1}, where \mathcal{D} denotes the space of homogeneous polynomials of degree n in d variables, and they mutually commute; that is, $\mathcal{D}_j \mathcal{D}_i = \mathcal{D}_i \mathcal{D}_j$, $1 \leq i, j \leq d$. For example, when $d = 1$, the Dunkl operator is

$$D f(x) = f'(x) + \left(\kappa + \frac{1}{2}\right) \frac{f(x) - f(-x)}{x}. \tag{3}$$
The intertwining operator V_k is a linear operator determined uniquely by
\begin{equation}
V_k \mathcal{D} \mathcal{D}^{-1} \subset \mathcal{D} \mathcal{D}^{-1}, \quad V_k 1 = 1,
\end{equation}
where $\mathcal{D} = \partial_x$. Let $E(x,y) = V(\sqrt{\epsilon}) \mathcal{D}^{-1}$, where the super-
script means that V_k is applied to the x variable. For $f \in L^1(\mathbb{R}^d, h_k^2)$, the Dunkl transform is defined by
\begin{equation}
\hat{f}(y) = c_k \int_{\mathbb{R}^d} f(x) E(x,-iy) h_k^2(x) \, dx
\end{equation}
where c_k is the constant defined by $c_k^{-1} = \int_{\mathbb{R}^d} h_k^2(x) e^{-1|x|^2/2} \, dx$.

Define $\mathcal{S}_k(\mathbb{R}^d) = \{ f \in L^1(\mathbb{R}^d, h_k^2) : \hat{f} \in L^1(\mathbb{R}^d, h_k^2) \}$, and, for the sake of simplicity, set $(f,g)_k = \int_{\mathbb{R}^d} f(x)g(x) h_k^2(x) \, dx$ whenever the integral exists and denote $A_k = 2d + d$.

The Dunkl transform shares many of the important properties with the usual Fourier transform, part of which are listed as follows ([2, 3]).

Proposition 1. (i) If $f \in L^1(\mathbb{R}^d, h_k^2)$, then $\hat{f} \in C_0(\mathbb{R}^d)$ and $\| f \|_{L^1} \leq \| \hat{f} \|_{L^\infty}$.

(ii) If $f \in \mathcal{S}_k(\mathbb{R}^d)$, then $f(x) = \hat{\hat{f}}(-x)$.

(iii) The Dunkl transform $f \rightarrow \hat{f}$ is a topological automorphism on $\mathcal{S}(\mathbb{R}^d)$.

(iv) For $f \in \mathcal{S}(\mathbb{R}^d)$, then $\mathcal{D}_i \hat{f} = iM_i \hat{f}$ and $M_j \hat{f} = \mathcal{D}_j \hat{f}$, where $M_j f(x) = x_j f(x)$, $j = 1, 2, \ldots, d$.

(v) For all $f, g \in L^1(\mathbb{R}^d, h_k^2)$, we have $(\hat{f}, \hat{g})_k = (\hat{f}, g)_k$.

(vi) There exists a unique extension of the Dunkl transform to $L^2(\mathbb{R}^d, h_k^2)$ with $\| \hat{f} \|_{L^2} = \| f \|_{L^2}$.

2.2. Generalized Translation Operator and Generalized Con-
volution. Let $y \in \mathbb{R}^d$ be given. The generalized translation operator $f \rightarrow \tau_y f$ is defined on $L^2(\mathbb{R}^d, h_k^2)$ by $\tau_y f = E(y,-ix) f(x)$, $x \in \mathbb{R}^d$.

For $f, g \in L^1(\mathbb{R}^d, h_k^2)$, the generalized convolution operator is defined by
\begin{equation}
(f *_y g)(x) = \int_{\mathbb{R}^d} f(y) \tau_y g(y) h_k^2(y) \, dy
\end{equation}
where $\bar{g}(y) = g(-y)$. The main properties of the generalized translation operator and the generalized convolution are collected below [6, 9, 10].

Proposition 2. (i) For $f \in \mathcal{S}_k(\mathbb{R}^d)$ and $g \in L^1(\mathbb{R}^d, h_k^2)$ being bounded, then
\begin{equation}
\int_{\mathbb{R}^d} \tau_y f(\xi) \bar{g}(\xi) h_k^2(\xi) \, d\xi
\end{equation}
(ii) For $f \in \mathcal{S}(\mathbb{R}^d)$,
\begin{equation}
\int_{\mathbb{R}^d} \tau_y f(\xi) \bar{g}(\xi) h_k^2(\xi) \, d\xi
\end{equation}
When $G = \mathbb{Z}^d$,
(iii) for $f \in L^1(\mathbb{R}^d, h_k^2)$, $1 \leq p \leq \infty$, $\| \tau_y f \|_{L^p} \leq \| f \|_{L^p}$,
(iv) for $f, g \in L^p(\mathbb{R}^d, h_k^2)$, we have $\overline{\tau_y f * g} = \overline{\hat{f} \cdot \hat{g}}$ and $f *_y g = f * g$,
(v) let $p, q, r \geq 1$ and $1/p + 1/r = 1/p + 1/q - 1$. For $f \in L^p(\mathbb{R}^d, h_k^2)$, $g \in L^q(\mathbb{R}^d, h_k^2)$, $\| f *_y g \|_{L^r} \leq c\| f \|_{L^p} \| g \|_{L^q}$.

2.3. Dunkl Transform of Distributions. References [5, 11, 12] study the actions of the Dunkl operators and Dunkl transform on the space $\mathcal{S}'(\mathbb{R}^d)$. Reference [4] gives the definition of the Dunkl transform for the local integrable functions under the measure $h_k^2(x) \, dx$.

Let $f \in L^1_{\text{loc}}(\mathbb{R}^d, h_k^2)$; the generalized function associated with f is defined by
\begin{equation}
\langle f, \varphi \rangle_k = \int_{\mathbb{R}^d} f(x) \varphi(x) h_k^2(x) \, dx, \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).
\end{equation}

The Dunkl transform of $f \in \mathcal{S}'(\mathbb{R}^d)$ is defined as
\begin{equation}
\langle \hat{f}, \varphi \rangle_k = \langle f, \hat{\varphi} \rangle_k, \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).
\end{equation}

Then, for $f \in L^1_{\text{loc}}(\mathbb{R}^d, h_k^2)$, the Dunkl transform of f is
\begin{equation}
\langle \hat{f}, \varphi \rangle_k = \int_{\mathbb{R}^d} f(x) \varphi(x) h_k^2(x) \, dx, \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).
\end{equation}

For $f \in \mathcal{S}'(\mathbb{R}^d)$, the dilation transform φf is defined as
\begin{equation}
\langle \varphi f, \varphi \rangle_k = \langle f, \varphi \rangle_k, \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).
\end{equation}

Let δ be the Dirac distribution associated with the measure $h_k^2(x) \, dx$; that is, $\langle \delta, \varphi \rangle_k = \varphi(0), \varphi \in \mathcal{S}(\mathbb{R}^d)$.

Lemma 3. Let $\varphi \in L^1(\mathbb{R}^d, h_k^2)$ satisfy $\int_{\mathbb{R}^d} \varphi(x) h_k^2(x) \, dx = 1$.

For any $\epsilon > 0$, define $\phi_\epsilon(x) = \epsilon^{-\lambda} \varphi(\epsilon x)$; then ϕ_ϵ is a δ-
sequence; that is,
\begin{equation}
\lim_{\epsilon \rightarrow 0^+} \langle \phi_\epsilon \varphi \rangle_k = \varphi(0), \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).
\end{equation}

Then by (9) and (10), we obtain the Dunkl transform of δ as $\delta(\xi) = 1$.

Define the action of the Dunkl operators \mathcal{D}_j, $j = 1, 2, \ldots, d$ on the space $\mathcal{S}'(\mathbb{R}^d)$ as
\begin{equation}
\langle \mathcal{D}_j f, \varphi \rangle_k = -\langle f, \mathcal{D}_j \varphi \rangle_k, \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).
\end{equation}

Denote $\beta = (\beta_1, \beta_2, \ldots, \beta_d) \in \mathbb{Z}^d$ and $\mathcal{D}^\beta = \mathcal{D}^{\beta_1} \circ \mathcal{D}^{\beta_2} \circ \cdots \circ \mathcal{D}^{\beta_d}$. Combining (9), (14), and Proposition 1 (iv), we have
\begin{equation}
\mathcal{D}^{\beta} \delta(\xi) = \int_{\mathbb{R}^d} \mathcal{D}^{\beta_1} \mathcal{D}^{\beta_2} \cdots \mathcal{D}^{\beta_d} \delta(\xi) = \delta(\xi) \delta(\xi).
\end{equation}
2.4. Dunkl Riesz Potentials. For simplicity, we call the Riesz
potential for Dunkl transform as the Dunkl Riesz potential
$I^α_1 f$, which is defined on $\mathcal{S}(\mathbb{R}^d)$ in [7] as
$$I^α_1 f(x) = (d^α_1)^{-1} \int_{\mathbb{R}^d} \tau_x f(x) \frac{1}{|y|^{\alpha - d}} h^2_{\alpha}(y) \, dy,$$
where $0 < \alpha < \lambda_\kappa$ and $d^α_1 = 2^{-\lambda_\kappa/2} \Gamma(\alpha/2)\Gamma((\lambda_\kappa - \alpha)/2)$. The
Dunkl transform and the Hardy-Littlewood-Sobolev theorem of
$I^α_1 f$ are given in [7].

Proposition 4. Let $0 < \alpha < \lambda_\kappa$. The identity
$$I^α_1 f(x) = |x|^{-\alpha} \tilde{f}(x)$$
holds in the sense that
$$\int_{\mathbb{R}^d} I^α_1 f(x) g(x) h^2_{\alpha}(x) \, dx = \int_{\mathbb{R}^d} \tilde{f}(x) |x|^{-\alpha} \tilde{g}(x) h^2_{\alpha}(x) \, dx$$
whenever $f, g \in \mathcal{S}(\mathbb{R}^d)$.

Proposition 5. Let $G = \mathbb{Z}_2^d$ and $0 < \alpha < \lambda_\kappa$. Let p and q satisfy
$$\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{\lambda_\kappa}, \quad 1 \leq p < q < \infty.$$
(1) For $f \in L^p(\mathbb{R}^d, h^2_{\alpha})$, $p > 1$, $\|I^α_1 f\|_{L^q} \leq c \|f\|_{L^p}$.
(2) For $f \in L^1(\mathbb{R}^d, h^2_{\alpha})$, the mapping $f \mapsto I^α_1 f$ is of weak
 type $(1, q)$.

3. Semyanistyi-Lizorkin Spaces

The following spaces were introduced by Semyanistyi and
generalized by Lizorkin and Samko; see [13–15].

Let $\Psi = \Psi(\mathbb{R}^d)$ be the class of functions ψ in $\mathcal{S}(\mathbb{R}^d)$
vanishing at the origin 0 with all their derivatives; that is,
$$\Psi = \{ \psi \in \mathcal{S}(\mathbb{R}^d) : \partial^{\beta}_{\psi}(0) = 0 \text{ for all } |\beta| = 0, 1, 2, \ldots \}.$$
(20)

The space Ψ is a closed linear subspace of $\mathcal{S}(\mathbb{R}^d)$. It can be
regarded as a linear topological space with the induced
topology generated by the sequence of norms
$$\|\psi\|_m = \max \{ 1 + |x|^m \sum_{|\beta| \leq m} \left| (\partial^{\beta}_{\psi})(x) \right| \},$$
(21)
$$m = 0, 1, 2, \ldots.$$
We claim that $\partial^{\beta}_{\psi}(0) = 0$ for $\psi \in \Psi$, since $\partial_j \psi(0) = 0$ implies
$\partial_j \psi(0) = 0$ for $j = 1, 2, \ldots, d$.

Let $\Phi = \Phi(\mathbb{R}^d)$ be the image of Ψ under the Dunkl
transform; that is, $\Phi = \{ \varphi \in \Psi : \hat{\varphi} \}$. Since the Dunkl
transform is an automorphism of $\mathcal{S}(\mathbb{R}^d)$, the space is a closed
linear subspace of $\mathcal{S}(\mathbb{R}^d)$. We equip Φ with the induced
topology of the ambient space $\mathcal{S}(\mathbb{R}^d)$. Then Φ becomes a
linear topology space which is isomorphic to Ψ under the
action of the Dunkl transform. According to the definition of
Φ, we conclude that the space Φ consists of all functions
φ which are orthogonal to all polynomials as for the measure
$h^2_{\alpha}(x) \, dx$; that is,
$$\varphi \in \Phi \iff \int_{\mathbb{R}^d} \varphi(x) h^2_{\alpha}(x) \, dx = 0, \text{ for all } k \in \mathbb{Z}_2^d.$$
(22)

In fact, if $\varphi \in \Phi$, then $\hat{\varphi} \in \Psi$, and for any multi-index k, by
Proposition 1 (iv), we have
$$\int_{\mathbb{R}^d} x^k \varphi(x) h^2_{\alpha}(x) \, dx = 0.$$
(23)

Denote that Φ' and Ψ' are the spaces of all semilinear
functionals on Φ and Ψ, respectively. Some properties of Φ
and Ψ are given in the following proposition.

Proposition 6. (i) The spaces Φ and Ψ are not empty.
(ii) The space Φ does not contain compactly supported
infinite differentiable functions, rather than 0.
(iii) The space Φ is invariant under the generalized
translations.
(iv) The space Φ is dense in $L^1(\mathbb{R}^d, h^2_{\alpha})$, $1 < p < \infty$.
(v) $\mathcal{S}'(\mathbb{R}^d)$-distributions that coincide in the Φ'-sense
differ from each other by a polynomial.
(vi) Let $f \in L^1(\mathbb{R}^d, h^2_{\alpha})$ and $g \in L^1(\mathbb{R}^d, h^2_{\alpha})$, $1 \leq r, p < \infty$.
If $f = g$ in the Φ'-sense, then $f \equiv g$ almost everywhere.

The proof of this proposition is similar to the ones in
[13–15] except with the reflection-invariant measure $h^2_{\alpha}(x) \, dx$.
Now we sketch it below.

Proof. (i) Choose $\psi \in \mathcal{S}(\mathbb{R}^d)$ satisfying that supp$\psi = \{ x \in \mathbb{R}^d : |x| > 1 \}$. Then $\psi \in \Psi$.
(ii) Suppose $\varphi \in C_{c}^{\infty}(\mathbb{R}^d)$; then we have
$$\hat{\varphi}(\xi) = \sum_{|\beta| \leq 0} \frac{\xi^\beta}{\partial^\beta_{\varphi}(0)}.$$
(24)

If $\varphi \in \Phi$, $\hat{\varphi} \in \Psi$, and $\partial^\beta_{\varphi}(0) = 0$, so $\hat{\varphi}(\xi) = 0$ for all $\xi \in \mathbb{R}^d$.
Then $\psi(x) = 0$.
(iii) This conclusion can be obtained by Proposition 2 (iii).
(iv) It suffices to approximate a function \(f \in \mathcal{S}(\mathbb{R}^d) \) by functions \(f_N \in \Phi \) in the \(L^1(\mathbb{R}^d, h_N^2) \) norm. We introduce the functions

\[
\psi_N(x) = \mu(N |x|) f(x)
\]

(25)

where \(\mu \in C^\infty([0, \infty)) \) such that \(\mu(t) = 1 \) for \(t \geq 2, \mu(t) = 0 \) for \(0 \leq t \leq 1 \) and \(0 \leq \mu \leq 1 \). We define \(f_N(x) = \psi_N(x) \).

Since \(\psi_N \in \mathcal{S}(\mathbb{R}^d) \) and \(\psi_N(x) = 0 \) as \(|x| \leq 1/N \), we have \(\psi \in \Psi \) and then \(f_N \in \Phi \). In order to show that \(f_N(x) \) approximate the function \(f(x) \), we represent them as

\[
f_N(x) = f(x) - \int_{\mathbb{R}^d} k(y) \tau_{Ny} f(x) h_N^2(y) \, dy
\]

(26)

where \(k(y) \) is the inverse Dunkl transform of the function \(1 - \mu(|x|) \). Then by Lemma 7, \(\| f - f_N \|_{\psi} \to 0 \) as \(N \to \infty \).

(v) Suppose \(f, g \in \mathcal{S}(\mathbb{R}^d) \) and \(f = g \) in the sense of \(\Phi^1 \); that is, for all \(\varphi \in \Phi \), \(\langle f - g, \varphi \rangle = 0 \). Then, for all \(\psi \in \Psi \),

\[
\langle f - g, \psi \rangle_{\psi} = \langle f - g, \hat{\psi} \rangle_{\psi} = 0.
\]

(27)

This means that \(\text{supp} (f - g) = \{0\} \), which implies that \(f - g \) is a finite linear combination of the derivatives of the delta function. Hence, by (15), \(f - g \) is a polynomial.

(vi) For \(y > 0 \), denote \(\mu_\psi(y) \) and \(\mu_\varphi(y) \) as the distributions of \(f \) and \(g \), respectively. Then

\[
\| f \|_{\psi,2} = \int_{\mathbb{R}^d} |f(x)|^2 h_N^2(x) \, dx
\]

\[
\geq \int_{\{x \in \mathbb{R}^d : f(x) \neq 0\}} |f(x)|^2 h_N^2(x) \, dx
\]

\[
\geq \int_{\{x \in \mathbb{R}^d : f(x) \neq 0\}} y^2 h_N^2(x) \, dx = y^2 \cdot \mu_f(y).
\]

(28)

Then \(\mu_f(y) \) is finite since \(f \in L^1(\mathbb{R}^d, h_N^2) \). The same argument gives that \(\mu_\varphi(y) \) is finite as well. We claim that \(f = g \) almost everywhere. In fact, \(f(x) = g(x) + P(x) \) by (v), where \(P(x) \) is a polynomial. Then, for all \(y > 0 \),

\[
\mu_P(2y) = \mu_{f-g}(2y) \leq \mu_f(y) + \mu_\varphi(y) < +\infty.
\]

(29)

Thus \(P(x) \equiv 0 \) a.e. So we have \(f = g \) a.e. consequently.

Lemma 7. Let \(\rho \in L^1(\mathbb{R}^d, h_N^2) \) and \(f \in L^p(\mathbb{R}^d, h_N^2) \), \(1 < p < \infty \). Define

\[
g_N(x) = \int_{\mathbb{R}^d} \rho(y) \tau_{Ny} f(\frac{x}{N}) h_N^2(y) \, dy.
\]

(30)

Then \(\| g_N \|_{\psi} \to 0 \) as \(N \to \infty \).

Proof. According to the definition,

\[
g_N(x) = N^{-2d} \int_{\mathbb{R}^d} \rho\left(\frac{x}{N}\right) \tau_{Ny} f\left(\frac{x}{N}\right) h_N^2(y) \, dy.
\]

(31)

If \(p = 2 \),

\[
\| g_N \|_{\psi,2} = N^{-4d} \int_{\mathbb{R}^d} \left| \rho\left(\frac{x}{N}\right) \tau_{Ny} f\left(\frac{x}{N}\right) \right|^2 h_N^2(x) \, dx.
\]

(32)

Then \(\| g_N \|_{\psi} \to 0 \) as \(N \to \infty \) by Lebesgue's dominated theorem.

When \(p \neq 2 \), by Proposition 2 (v),

\[
\| g_N \|_{\psi,2} \leq c \| \rho \|_{\psi,1} \| f \|_{\psi,2}.
\]

(33)

It suffices to verify \(\| g_N \|_{\psi} \to 0 \) for \(f \in C_0^\infty(\mathbb{R}^d) \). Let \(r > 1 \) be any number such that \(2 < p < r \). By H"older's inequality, we have

\[
\| g_N \|_{\psi,p} \leq \| g_N \|_{\psi,2}^{\frac{r}{p}} \| g_N \|_{\psi,r}^{\frac{p}{r}}.
\]

(34)

where \(r = 2(r-p)/p(r-2) \). Then, by (33)

\[
\| g_N \|_{\psi,p} \leq c \| \rho \|_{\psi,1} \| f \|_{\psi,2}^{\frac{r}{p}} \| g_N \|_{\psi,r}^{\frac{p}{r}}.
\]

(35)

tends to 0 as \(N \to \infty \).

Theorem 8. Let \(0 < \alpha < \lambda \). The operators \(I_\alpha \) are the automorphisms on the space \(\Phi \).

Proof. According to the last equation in the proof for Proposition 4.4 in [7], for \(\varphi \in \Phi \),

\[
I_\alpha \varphi(x) = | \cdot |^{-\alpha} \varphi(\cdot)(x).
\]

(36)

Since \(|y|^{-\alpha} \varphi(y) \) belongs to \(\Psi \) and Dunkl transform maps \(\Psi \) isomorphically onto \(\Phi \), it follows that the map \(\varphi \to | \cdot |^{-\alpha} \varphi(\cdot) \) is continuous from \(\Phi \) to itself. Owing to (36), \(I_\alpha \) is a linear continuous operator from \(\Phi \) to \(\Phi \). Conversely, we claim that \(I_\alpha \) is surjective. In fact, for \(\varphi \in \Phi \), let \(\varphi_0(x) = | \cdot |^{-\alpha} \varphi(\cdot)(x) \). Then \(\varphi_0 \in \Phi \) and \(I_\alpha \varphi_0 = \varphi \). Furthermore, the map \(\varphi \to \varphi_0 \) is continuous in the topology of the space \(\Phi \). This completes the proof.

4. The Inversion of \(I_\alpha \)

Now we can give the main result of this paper, the inversion of the Dunkl Riesz potentials \(I_\alpha \) when the group \(G = \mathbb{Z}^d \). The method follows the idea in [16]. Rubin [17] gave simpler proofs to some elementary approximate and explicit inversion formulæ for the classical Riesz potentials.

Theorem 9. Let \(f \in L^p(\mathbb{R}^d, h_N^2) \cap L^p(\mathbb{R}^d, h_N^2) \), \(p \geq 1, 0 < \alpha < \max\{\lambda_{2s}/2, \lambda_{2s}/p\} \). Suppose that \(w \) is a bounded radial function in \(L^1(\mathbb{R}^d, h_N^2) \) and the integral

\[
d_w(\alpha)(f)(x) = \int_{\mathbb{R}^d} \frac{\tilde{w}(\xi)}{|\xi|^{\lambda_s + \alpha}} h_N^2(\xi) \, d\xi
\]

(37)

is finite. Then

\[
d_w(\alpha)(f)(x) = \int_{\mathbb{R}^d} \frac{W_n(f_N)}{\rho(x)} \, dt
\]

(38)

\[
= \lim_{\lambda \to 0} \int_0^\infty \frac{W_n(f_N)}{\rho(x)} \, dt
\]
where

\[
(W_{\lambda} f)(x) = (f *_{\lambda} u_{\jmath})(x) = t^{-\lambda} \int_{\mathbb{R}^d} f(y) \, r_{\lambda} u \left(x | y \right) h_{\lambda}^2(y) \, dy.
\]

(39)

Proof. Denote

\[
(T_{\varphi} f)(x) = \int_{\mathbb{R}} \left(\frac{W_{\lambda}(\varphi)(x)}{t^{1+\alpha}} \right) \, dt,
\]

\[
\psi_{\varepsilon}(\xi) = \frac{1}{\sigma_{d-1}} \int_{|y|<\varepsilon \xi} |y|^{1+\alpha} h_{\lambda}^2(y) \, dy.
\]

(40)

We claim that the operator \(T_{\varphi} \) is bounded on \(L^p(\mathbb{R}^d, h_{\lambda}^2) \) for any \(1 \leq p < \infty \). Indeed, according to Proposition 2 (iv), we have

\[
\|W_{\lambda}(\varphi)\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)} = \left(\int_{\mathbb{R}^d} \left| \frac{W_{\lambda}(\varphi)(x)}{t^{1+\alpha}} \right|^p \, |h_{\lambda}^2(x)| \, dx \right)^{1/p} \leq \|\varphi\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)} \cdot \|\psi_{\varepsilon}\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)} \cdot \|\psi_{\varepsilon}\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)}.
\]

(41)

Then the generalized Minkowski’s inequality gives that

\[
\|T_{\varphi} f\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)} = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}} \left(\frac{W_{\lambda}(\varphi)(x)}{t^{1+\alpha}} \right)^p \, |h_{\lambda}^2(x)| \, dx \right)^{1/p} \, dt \right)^{1/p} \leq \|T_{\varphi} f\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)} \cdot \|\psi_{\varepsilon}\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)} \cdot \|\psi_{\varepsilon}\|_{L^p(\mathbb{R}^d, h_{\lambda}^2)}.
\]

(42)

If we can show that

\[
T_{\varepsilon} I_{\lambda}^\alpha f = (\psi_{\varepsilon} f)^\vee,
\]

(43)

where \(f^\vee \) denotes the inverse Dunkl transform of \(f \), then we have

\[
\|T_{\varepsilon} I_{\lambda}^\alpha f - d_{\alpha} (\alpha) f\|_{L^2(\mathbb{R}^d)} = \|T_{\varepsilon} I_{\lambda}^\alpha f - d_{\alpha} (\alpha) f\|_{L^2(\mathbb{R}^d)} \leq \|\psi_{\varepsilon} f - d_{\alpha} (\alpha) f\|_{L^2(\mathbb{R}^d)}.
\]

(44)

tending to 0 as \(\varepsilon \to 0 \), by Lebesgue’s theorem on dominated convergence.

Recall that \(f \in L^2(\mathbb{R}^d, h_{\lambda}^2) \cap L^p(\mathbb{R}^d, h_{\lambda}^2) \). Let first \(0 < \alpha < \lambda_{\lambda_{\lambda}/p} \), \(p > 1 \). Then Proposition 4 gives that \(I_{\lambda}^\alpha f \in L^p(\mathbb{R}^d, h_{\lambda}^2) \) when \(1/p - 1/\alpha = \alpha/\lambda_{\lambda_{\lambda}} \). And therefore, \(T_{\varepsilon} I_{\lambda}^\alpha f \in L^p(\mathbb{R}^d, h_{\lambda}^2) \) by replacing \(\varphi \) with \(I_{\lambda}^\alpha f \) in (42).

On the other hand, \((\psi_{\varepsilon} f)^\vee \in L^2(\mathbb{R}^d, h_{\lambda}^2) \). According to Proposition 6 (vii), it suffices to prove (43) in the \(\Phi' \)-sense; that is,

\[
\langle T_{\varepsilon} I_{\lambda}^\alpha f, u \rangle_{\Phi} = \langle (\psi_{\varepsilon} f)^\vee, u \rangle_{\Phi} \quad \text{for all } u \in \Phi.
\]

(45)

After changing the order of the integration, the left-hand side of (45) equals

\[
\langle I_{\lambda}^\alpha T_{\varepsilon} f, u \rangle_{\Phi} = \langle T_{\varepsilon} f, I_{\lambda}^\alpha u \rangle_{\Phi} = \langle f, T_{\varepsilon} I_{\lambda}^\alpha u \rangle_{\Phi}.
\]

(46)

Since the Dunkl transform of \(I_{\lambda}^\alpha u \) is \(|\xi|^{-\alpha} \tilde{u}(\xi) \), then

\[
\langle f, T_{\varepsilon} I_{\lambda}^\alpha u \rangle_{\Phi} = \left(\langle \tilde{f}(\xi), |\xi|^{-\alpha} \tilde{u}(\xi) \right)_{\mathbb{R}^d} \int_{\varepsilon}^{\infty} \frac{\tilde{w}(\xi)}{t^{1+\alpha}} \, dt \right). \]

(47)

Since \(w \) is radial, then

\[
\int_{\varepsilon}^{\infty} \frac{\tilde{w}(\xi)}{t^{1+\alpha}} \, dt = \frac{\|\hat{\xi}\|_{\mathbb{R}^d}}{\sigma_{d-1}} \int_{|y|<\varepsilon \xi} \frac{|\xi|^{-\alpha} \tilde{u}(y)}{|y|^{1+\alpha}} \, dy = \|\hat{\xi}\|_{\mathbb{R}^d} \psi_{\varepsilon}(\xi).
\]

(48)

Combining the above, we obtain (45) as desired.

When \(\lambda_{\lambda}/p < \alpha < \lambda_{\lambda}/2 \), \(p > 1 \), the argument is the same as the first case, except with \(q = 2\lambda_{\lambda}/(\lambda_{\lambda} - 2\alpha) \).

For the case \(p = 1 \), \(f \in L^1(\mathbb{R}^d, h_{\lambda}^2) \cap L^2(\mathbb{R}^d, h_{\lambda}^2) \) and \(0 < \alpha < \lambda_{\lambda} \). By interpolation, \(f \in L^s(\mathbb{R}^d, h_{\lambda}^2) \) for all \(1 < s < 2 \). Choosing \(s \) in the interval \((1, \min\{2, \lambda_{\lambda}/\alpha\}) \) and \(q = 2s/(\lambda_{\lambda} - \alpha) \) in the Hardy-Littlewood-Sobolev theorem, we can get the result by repeating the argument when \(p > 1 \). Thus we finish the proof.

\[\square \]

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by National Natural Science Foundation of China (no. 11275240).

References

