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Abstract. 
Let  be a complete -finite measure space,  be a Young function, and  and  be Banach spaces. Let  denote the Orlicz-Bochner space, and  denote the finest Lebesgue topology on . We study the problem of integral representation of -continuous linear operators  with respect to the representing operator-valued measures. The relationships between -continuous linear operators  and the topological properties of their representing operator measures are established.



1. Introduction and Preliminaries
Throughout the paper,  and  denote real Banach spaces and  and  denote their Banach duals, respectively. By  and  we denote the closed unit ball in  and in . Let  stand for the space of all bounded operators from  and , equipped with the uniform operator norm .
We assume that  is a complete -finite measure space. Denote by  the -ring of sets  with . By  we denote the linear space of -equivalence classes of all strongly -measurable functions , equipped with the topology  of convergence in measure on sets of finite measure.
Now we recall the basic concepts and properties of Orlicz-Bochner spaces (see [1–6] for more details).
By a Young function we mean here a continuous convex mapping  that vanishes only at 0 and  as  and  as . Let  stand for the complementary Young function of  in the sense of Young.
Let  (resp., ) denote the Orlicz-Bochner space (resp., Orlicz space) defined by a Young function ; that is,Then , equipped with the topology  of the normis a Banach space. For a sequence  in ,  if and only if  for all . LetLetThen  is a -closed subspace of .
Recall that a subset  of  is said to be solid whenever -a.e. and ,  imply . A linear topology  on  is said to be locally solid if it has a local basis at 0 consisting of solid sets (see [4]).
According to [7, Definition 2.2] and [6] we have the following definition.
Definition 1.  A locally solid topology  on  is said to be a Lebesgue topology if for a net  in ,  in the Banach lattice  implies  in .
In view of the super Dedekind completeness of  one can restrict in the above definition to usual sequences  in  (see [7, Definition 2.2, p. 173]).
Note that, for a sequence  in ,  in  if and only if   -a.e. and   -a.e. for some .
For  let . Then the family of all sets of the form:where  is a sequence of positive numbers and is a local basis at 0 for a linear topology  on  (see [4, 6] for more details). Using [4, Lemma 1.1] one can show that the sets of the form  are convex and solid, so  is a locally convex-solid topology.
We now recall terminology and basic facts concerning the spaces of weak-measurable functions  (see [8, 9]). Given a function  and , let  for . By  we denote the linear space of the -equivalence classes of all -measurable functions . In view of the super Dedekind completeness of  the set  is order bounded in  for each . Thus one can define the so-called abstract norm byOne can easy check that the following properties of  hold:  if and only if  and ,  for  and ,  if ,  for  and .
 It is known that, for , , the function  defined by  is measurable andMoreover,  for . LetClearly . If, in particular,  has the Radon-Nikodym property (i.e.,  is an Asplund space; see [10, p. 213]), then .
Let  stand for the Banach dual of , equipped with the conjugate norm .
Recall that a Young function  satisfies the -condition if  for some  and all . We shall say that a Young function  is completely weaker than another  (in symbols, ) if for an arbitrary  there exists  such that  for all . Note that a Young function  satisfies the -condition if and only if . If , then  and it follows that .
Now we present basic properties of the topology  on .
Theorem 2.  Let  be a Young function. Then the following statements hold:(i) and  if  satisfies the -condition.(ii) is the finest Lebesgue topology on .(iii) is generated by the family of norms .(iv), where for ,(v) is a closed subset of the Banach space .(vi)If  has the Radon-Nikodym property, then the space  is strongly Mackey; hence  coincides with the Mackey topology .
Proof.  (i)–(iii) See [4, Theorems 6.1, 6.3 and 6.5].
(iv) In view of [6, Corollary 4.4 and Theorem 1.2], we get , where  stands for the order continuous dual of  (see [7, 8, 11] for more details). According to [8, Theorem 4.1] .
Using [11, Theorem 1.3] for  we have(v) See [12, § 3, Theorem 2].
(vi) See [6, Theorem 4.5].
Let  (briefly ) denote the natural mixed topology on ; that is,  is the finest linear topology that agrees with  on -bounded sets in  (see [5, 13, 14] for more details). Then  is a locally convex-solid Hausdorff topology (see [14, Theorem 3.2]) and  and  have the same bounded sets. This means that  is a generalized DF-space (see [15]) and its follows that  is quasinormable (see [15, p. 422]). Moreover, for a sequence  in ,  in  if and only if  in  and  (see [14, Theorem 3.1]).
We say that a Young function  increases essentially more rapidly than another  (in symbols, ) if for arbitrary ,  as  and .
Theorem 3.  Let  be a Young function. Then the mixed topology  on  is generated by the family of norms .
Proof.  It is known that the mixed topology  on  is generated by the family of norms  (see [16, Theorem 2.1]). Since  for , by [14, (54), p. 97], the mixed topology  on  is generated by the family of norms .
Since  implies , in view of Theorems 2 and 3, we get
The problem of integral representation of bounded linear operators on Banach function spaces of vector-valued functions to Banach spaces in terms of the corresponding operator-valued measures has been the object of much study (see [5, 17–24]). In particular, Dinculeanu (see [19, § 13, Sect. 3], [20], [21, § 8, Sect. B]) studied the problem of integral representation of bounded linear operators from  to a Banach space . It is known that if ,  and an operator measure  vanishes on -null sets and has the finite -semivariation , then one can define the integral  for all . Moreover, if  is a bounded linear operator, then the associated operator measure  has the finite -semivariation  and  for all  (see [19, § 13, Theorem 1 p. 259], [20, Theorem 4]). The relationships of the -semivariation  to the properties of operators from  to  were studied in [22]. Diestel [23] found the integral representation of bounded linear operators from an Orlicz-Bochner space  to a Banach spaces if  and a Young  satisfies the -condition.
The present paper is a continuation of [5], where we establish integral representation of -continuous linear operators . We study the problem of integration of functions in  with respect to the representing operator measures of -continuous linear operators . An integral representation theorem for -continuous linear operators  is established (see Theorem 9 below). We study the relationships between -continuous operators  and the properties of their representing measures .
2. -Semivariation of Operator Measures
Assume that  is an additive measure such that ; that is,  if .
Let  denote the space of all -valued -simple functions on . Then  if , where  is a finite pairwise disjoint sequence in  and . For  and , we can define the integral byNote thatFor , we define a measure  by the equality
For  and , we define the integral  by the equality:Then
Following [23], [19, § 13] one can define the -semivariation of  on  bywhere the supremum is taken over all finite pairwise disjoint sets  in  and  for  such that .
One can observe thatNote thatLet  stand for the -semivariation of  on ; that is,
The following lemma will be useful.
Lemma 4.  Let  be a Young function and  be a measure with  and . Then the following statements hold:(i)If , then there exists a -Cauchy sequence  in  such that -a.e.(ii)If  is a -Cauchy sequence in , then for ,  is a Cauchy sequence in a Banach space  and for every ,  is a Cauchy sequence in .(iii)If  and  and  are -Cauchy sequence in  such that -a.e. and -a.e., then for , one has and for every , one has
Proof.  (i) Let . Then there exists a sequence  in  such that -a.e. and -a.e. for all  (see [21, Theorem 6, p. 4]). Using the Lebesgue dominated convergence theorem, we obtain that  for all , so . Hence  is a -Cauchy sequence.
(ii) Assume that  is a -Cauchy sequence in . Hence for , we haveIt follows that  is a Cauchy sequence in . Hence in view of (15), for ,  is a Cauchy sequence in .
(iii) Note that  is a -Cauchy sequence and -a.e. Hence there exists  such that . Note that . Hence  in  and it follows that there exists a subsequence  of  such that -a.e. Then -a.e., so  and for , we getIt follows thatand hence, in view of (15) for every , we have
Following [21, § 13, Definition 1, p. 254], in view of Lemma 4 we have the following.
Definition 5.  Let  be a Young function and  be an additive measure such that  and . Then for every  and , we can define the integral by the equalityand for , we can define the integral by the equalitywhere  is an arbitrary -Cauchy sequence in  such that -a.e.
3. Integral Representation of Continuous Operators on Orlicz-Bochner Spaces
For a bounded linear operator  let
Proposition 6.  Let  be a bounded linear operator andThen the following statements hold:(i)For  and .(ii).(iii) if  with .(iv) is countably additive; that is,  if  is a pairwise disjoint sequence in  with .(v).
Proof.  (i) Let . Then for , we have  and henceso .
(ii) This follows from (i) because  if .
(iii) Assume that  with . Then  for . By the Lebesgue dominated convergence theorem, we obtain that  for every . This means that  and by (i), .
(iv) Assume that  is a pairwise disjoint sequence in  with . Let  for . Then  and . Hence by (iii) .
Statement (v) is obvious.
Definition 7.  Let  be a bounded linear operator andThen the measure  will be called a representing measure of .
Proposition 8.  Let  be a -continuous linear operator and  be its representing measure. Then there exists a Young function  such that  and .
Proof.  According to Theorem 2 there exist a finite set  of Young functions with  for  and  such thatLet  for . Then  is a Young function with  andHence
For a linear operator  and , let
Now we can state our main result that extends the classical results concerning the integral representation of operators on Lebesgue-Bochner spaces  (see [19, § 13, Theorem 1, pp. 259–261]) to operators on Orlicz-Bochner spaces .
Theorem 9.  Let  be a -continuous linear operator and  be its representing measure. Then for  the following statements hold:(i) is a -continuous linear operator.(ii)For , one has and for , one has(iii)For , the measure  defined by the equality is countably additive.(iv) and for , .(v).(vi)For , one has and for , one has
Proof.  (i) Assume that  is a net in  such that  in . Since  is a locally solid topology on , we get  in . Hence(ii) In view of Proposition 8 there exists a Young function  such that  and . Then . Let . Then there exists a sequence  in  such that -a.e. and -a.e. for all  (see [21, Theorem 6, p. 4]). Then  in  because  is a Lebesgue topology. Hence . In view of Lemma 4 we can define the integral  by the equalitySince  and by (i),  is -continuous, we getHenceand for , we have (iii) Let  and  be a sequence in  such that . Then  for , and hence -a.e. and -a.e. Hence  in  because  is a Lebesgue topology, and by (i) we get (iv) Note that . To show that , assume that . Choose a sequence  in  such that -a.e. and -a.e. for all . Since  is a Lebesgue topology, we have  in  and hence . Note that .
Let  be given. Choose  such that . ThenIt follows that , so . Hence for , we easily get (v) Using (iv) we have (vi) This follows from (ii) and (iv).
For a sequence  in , we will write  if  and  for every .
Definition 10.  A measure  with  and  is said to be -semivariationally -continuous if  whenever , .
Using a standard argument we can show the following.
Proposition 11.  Let  be an additive measure such that  and . Then the following statements are equivalent:(i) is -semivariationally -continuous.(ii)The following two conditions hold simultaneously:(a)For every  there exists  such that  whenever , .(b)For every  there exists  such that .
The following theorem characterizes -semivariationally -continuous representing measures.
Theorem 12.  Let  be a -continuous linear operator and  be its representing measure. Then the following statements are equivalent:(i) is -semivariationally -continuous.(ii) is -continuous.(iii) if  in  and .(iv) if , .
Proof.  (i) ⇔ (ii) ⇔ (iii) See [5, Corollary 2.8 and Proposition 1.1].
(i) ⇔ (iv) This follows from Theorem 9.
Now assume that  is a completely regular Hausdorff space. Let  denote the -algebra of Baire sets in , which is the -algebra generated by the class  of all zero sets of bounded continuous positive functions on . By  we denote the family of all cozero (=positive) in  (see [25, p. 108]).
Let  be a countably additive measure. Then  is zero-set regular; that is, for every  and  there exists  with  such that  (see [25, p. 118]). It follows that for every  and  there exist ,  such that .
We can assume that  to be complete (if necessary we can take the completion  of the measure space ).
Proposition 13.  Assume that  is a completely regular Hausdorff space and  is a complete finite measure space. Let  be a -continuous linear operator and  be its representing measure. Then the following statements are equivalent:(i) is -semivariationally -continuous.(ii)For every sequence  in  such that  and  there exists a sequence  in  with  such that .(iii)For every sequence  in  such that  and  there exists a sequence  in  with  such that
Proof.  (i) ⇒ (ii) Assume that (i) holds and  is a sequence in  such that  and . Then there exists a sequence  in  such that  and  for .
Let  be given. Then in view of Proposition 11 there exists  such that  if  with . Choose  such that  for . Then  for . Since , we can choose  such that  for . Then for , we getthat is, (ii) holds.
(ii) ⇒ (iii) Assume that (ii) holds and  is a sequence in  such that  and . Then there exists a sequence  in  with  such that . Note that, for  with  for , by Theorem 9 we haveIt follows that (iii) holds.
(iii) ⇒ (i) Assume that (iii) holds and  with . Then there exists a sequence  in  with  such thatAssume on the contrary that (i) fails to hold. Then without loss of generality we can assume thatChoose  such thatIn view of (54) there exists a pairwise disjoint set  in ,  for  and  such that  andLet . Then  and . Then by (55) we get .
On the other hand, in view of (56) we have . This contradiction establishes that (i) holds.
Corollary 14.  Assume that  is a completely regular Hausdorff space and  is complete finite measure space. Let  be a -continuous linear operator and  be its representing measure. Then  is regular; that is, for every  and  there exist  and  with  such that .
Proof.  In view of Theorem 12   is -semivariationally -continuous. Let  and  be given. Then by Proposition 11 there exists  such that  whenever  and . By the regularity of  one can choose  and  with  such that . Hence , as desired.
4. Compact Operators on Orlicz-Bochner Spaces
The following theorem presents necessary conditions for a -continuous operator  to be compact.
Theorem 15.  Assume that a Young function  such that  satisfies the -condition. Let  be a -continuous linear operator and  be its representing measure. If  is compact, then  is -semivariationally -continuous.
Proof.  Assume that  is compact and  fails to be -semivariationally -continuous. Then there exist  and a sequence  in  with  such that  for  (see Theorem 9). Hence one can choose a sequence  in  such thatBy Schauder’s theorem the conjugate mapping  is compact. Note that  for all , where  is a closed subspace of the Banach space  (see Theorem 2). Then for every  there exists  such thatHence we obtain that, for each ,Since  is a relatively sequentially compact subset of , there exist a subsequence  of  and  such thatChoose  such that  for . Hence for ,Using (57) and (61), for , we getand henceOn the other hand, since  is supposed to satisfy the -condition, we have that  (see [26, Theorem 3, pp. 58-59]). This contradiction establishes that  is -semivariationally -continuous.
Corollary 16.  Assume that  is a Young function such that  satisfies the -condition. Let  be a -continuous linear operator. Then the following statements are equivalent:(i) is compact.(ii) is -compact; that is, there exists a -neighborhood  of  in  such that  is a relatively norm compact set in .(iii)There exists a Young function  with  such that ,  is a relatively norm compact set in .
Proof.  (i) ⇒ (ii) Assume that (i) holds. Then by Theorems 12 and 15   is -continuous. Since the space  is quasinormable, by Grothendieck's classical result (see [15, p. 429]), we obtain that  is -compact.
(ii) ⇒ (i) The implication is obvious.
(ii) ⇔ (iii) This follows from Theorem 3.
5. Topology Associated with the -Semivariation of a Representing Measure
Assume that  be a -continuous linear operator. Let  be its representing measure. Let us putNote that  is a seminorm on . Following [22, 27] let  stand for the topology on  defined by the seminorm  restricted to .
The following theorem characterizes -continuous compact operators  in terms of the topological properties of the space  (see [22, Theorem 3]).
Theorem 17.  Let  be a -continuous linear operator and  be its representing measure. Then the following statements are equivalent:(i)The space  is compact.(ii) is compact.
Proof.  (i) ⇒ (ii) Assume that  is compact. Let  be a sequence in . Without loss of generality we can assume that  in  for some . Then using Theorem 9 for , we haveIt follows that , where . This means that  is compact and hence  is compact.
(ii) ⇒ (i) Assume that  is compact and  is a net in . Since  is -compact, without loss of generality we can assume that  in  for some . In view of the compactness of the conjugate operator , there exists a subset  of  and  such that . On the other hand, since  is -continuous, we get  in . Hence ; that is, .
Let  be given. Then there exist a pairwise disjoint set  in  and  for  such that  andHenceHence , and this means that the space  is compact.
As a consequence of Theorems 17 and 15, we have the following.
Corollary 18.  Assume that  is a Young function such that  satisfies the -condition. Let  be a -continuous linear operator and  be its representing measure. If the space  is compact, then  is -semivariationally -continuous.
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