Integration in Orlicz-Bochner Spaces

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Ul. Szafrana 4A, 65–516 Zielona Góra, Poland

Correspondence should be addressed to Marian Nowak; m.nowak@wmie.uz.zgora.pl

Received 25 January 2018; Accepted 31 March 2018; Published 14 May 2018

1. Introduction and Preliminaries

Throughout the paper, $(X, \| \cdot \|_X)$ and $(Y, \| \cdot \|_Y)$ denote real Banach spaces and X^* and Y^* denote their Banach duals, respectively. By B_X and B_{Y^*} we denote the closed unit ball in X and in Y^*. Let $\mathcal{S}(X, Y)$ stand for the space of all bounded operators from X and Y, equipped with the uniform operator norm $\| \cdot \|$. We assume that (Ω, Σ, μ) is a complete σ-finite measure space. Denote by $\Sigma_f(\mu)$ the δ-ring of sets $A \in \Sigma$ with $\mu(A) < \infty$. By $L^0(X)$ we denote the linear space of μ-equivalence classes of all strongly Σ-measurable functions $f : \Omega \to X$, equipped with the topology T_0 of convergence in measure on sets of finite measure.

Now we recall the basic concepts and properties of Orlicz-Bochner spaces (see [1–6] for more details).

By a Young function we mean here a continuous convex mapping $\varphi : [0, \infty) \to [0, \infty]$ that vanishes only at 0 and $\varphi(t)/t \to 0$ as $t \to 0$ and $\varphi(t)/t \to \infty$ as $t \to \infty$. Let φ^* stand for the complementary Young function of φ in the sense of Young.

Let $L^0(X)$ (resp., L^p) denote the Orlicz-Bochner space (resp., Orlicz space) defined by a Young function φ; that is,

$$L^0(X) := \left\{ f \in L^0(X) : \int_\Omega \varphi(\lambda \| f(\omega) \|_X) \, d\mu < \infty \right\},$$

where $\lambda > 0$. Let $E^0(X)$ denote the Orlicz space defined by φ; that is,

$$E^0(X) := \left\{ f \in L^0(X) : \int_\Omega \varphi(\lambda \| f(\omega) \|_X) \, d\mu < \infty \right\}.$$

Then $E^0(X)$ is a $\| \cdot \|_\varphi$-closed subspace of $L^0(X)$.
Recall that a subset H of $L^p(X)$ is said to be **solid** whenever $\|f_1\|_X \leq \|f_2\|_X$ μ-a.e. and $f_1, f_2 \in H$ imply $f_1 + H \subseteq H$. A linear topology τ on $L^p(X)$ is said to be **locally solid** if it has a local basis at 0 consisting of solid sets (see [4]).

According to [7, Definition 2.2] and [6] we have the following definition.

Definition 1. A locally solid topology τ on $L^p(X)$ is said to be a **Lebesgue topology** if for a net (f_α) in $L^p(X)$, $\|f_\alpha\|_X \to 0$ in the Banach lattice L^p if and only if $\|f_\alpha\|_X \to 0$ μ-a.e. and $\|f_\alpha\|_X \leq u(\omega)$ μ-a.e. for some $0 \leq u \in L^p$.

In view of the super Dedekind completeness of L^p one can restrict in the above definition to usual sequences (f_α) in $L^p(X)$ (see [7, Definition 2.2, p. 173]).

Note that, for a sequence (f_n) in $L^p(X)$, $\|f_n\|_X \to 0$ in L^p if and only if $\|f_n\|_X \to 0$ μ-a.e. and $\|f_n\|_X \leq u(\omega)$ μ-a.e. for some $0 \leq u \in L^p$.

For $\varepsilon > 0$ let $U_\varepsilon(f) = \{ f \in L^p(X) : \int f(\omega) d\mu \leq \varepsilon \}$.

Then the family of all sets of the form:

$$\bigcup_{n=1}^{\infty} \left(\sum_{j=1}^{n} U_\varepsilon(e_j) \right),$$

where (e_j) is a sequence of positive numbers and is a local basis at 0 for a linear topology $\tau^\wedge(X)$ on $L^p(X)$ (see [4, 6] for more details). Using [4, Lemma 1.1] one can show that the sets of the form (\ast) are convex and solid, so $\tau^\wedge(X)$ is a locally convex-solid topology.

We now recall terminology and basic facts concerning the spaces of weak-*-measurable functions $g : \Omega \to X^*$ (see [8, 9]). Given a function $g : \Omega \to X^*$ and $x \in X$, let $g_\omega(x) = g(\omega)(x)$ for $\omega \in \Omega$. By $L^0(X^*, X)$ we denote the linear space of the weak-*-equivalence classes of all weak-*-measurable functions $g : \Omega \to X^*$. In view of the super Dedekind completeness of L^0, the set $[g_\omega] : x \in B_X$ is order bounded in L^0 for each $g \in L^0(X^*, X)$. Thus one can define the so-called **abstract norm** $\theta : L^0(X^*, X) \to L^0$ by

$$\theta(g) = \sup \{ \|g_\omega\|_X : x \in B_X \} \quad (\ast)$$

One can easily check that the following properties of θ hold:

1. $\theta(g) = 0$ if and only if $g = 0$ and $g \in L^0(X^*, X)$,
2. $\theta(\lambda g) = |\lambda| \theta(g)$ for $\lambda \in \mathbb{R}$ and $g \in L^0(X^*, X)$,
3. $\theta(g_1 + g_2) \leq \theta(g_1) + \theta(g_2)$ for $g_1, g_2 \in L^0(X^*, X)$,
4. $\theta(\chi A g) = \chi \theta(g)$ for $A \subseteq \Omega$ and $g \in L^0(X^*, X)$.

It is known that, for $f \in L^0(X)$, $g \in L^0(X^*, X)$, the function $\langle f, g \rangle : \Omega \to \mathbb{R}$ defined by $\langle f, g \rangle(\omega) = \langle f(\omega), g(\omega) \rangle$ is measurable and

$$\|\langle f, g(\omega) \rangle\|_X \leq \|f(\omega)\|_X \theta(g(\omega)) \quad (\mu\text{-a.e.})$$

Moreover, $\theta(g) = \|g(\cdot)\|_X$ for $g \in L^0(X^*)$. Let

$$L^p(X^*, X) = \{ g \in L^0(X^*, X) : \theta(g) \in L^p \}.$$ Clearly $L^p(X^*) \subset L^p(X^*, X)$. If, in particular, X^* has the Radon-Nikodym property (i.e., X is an Asplund space; see [10, p. 213]), then $L^p(X^*, X) = L^p(X^*)$.

Let $L^p(X)$ stand for the Banach dual of $L^p(X)$, equipped with the conjugate norm $\|\cdot\|_{L^p}^\ast$. Recall that a Young function φ satisfies the Δ_2-condition if $\varphi(2\varepsilon) \leq d\varphi(t)$ for some $\varepsilon > 1$ and all $t \geq 0$. We shall say that a Young function ψ is completely weaker than another φ (in symbols, $\varphi < \psi$) if for an arbitrary $c > 1$ there exists $d > 1$ such that $\psi(ct) \leq d\varphi(t)$ for all $t \geq 0$. Note that a Young function φ satisfies the Δ_2-condition if and only if $\varphi < \psi$. If $\psi < \varphi$, then $L^p \subset L^{p^\ast}$ and it follows that $L^p(X) \subset L^{p^\ast}(X)$.

Now we present basic properties of the topology $\tau^\wedge(X)$ on $L^p(X)$.

Theorem 2. Let φ be a Young function. Then the following statements hold:

(i) $\tau^\wedge < \tau^\wedge \varphi < \tau^\wedge$ if φ satisfies the Δ_2-condition.

(ii) τ^\wedge is the finest Lebesgue topology on $L^p(X)$.

(iii) τ^\wedge is generated by the family of norms $\{ \|\cdot\|_{\varphi}^\wedge : \psi < \varphi \}$.

(iv) $(L^p(X), \tau^\wedge)$ is a Banach space.

(v) $(L^p(X), \tau^\wedge)$ is a compact set for the Banach space $(L^p(X), \|\cdot\|_p)$.

(vi) If X^* has the Radon-Nikodym property, then the space $(L^p(X), \tau^\wedge)$ is strongly Mackey; hence τ^\wedge coincides with the Mackey topology $\tau(L^p(X), L^{p^\ast}(X^*))$.

Proof. (i)–(iii) See [4, Theorems 6.1, 6.3 and 6.5].

(iv) In view of [6, Corollary 4.4 and Theorem 1.2], we get $(L^p(X), \tau^\wedge) = (L^p(X^\ast), \tau)$ where $(L^p(X^\ast))$ stands for the order continuous dual of $L^p(X^\ast)$ (see [7, 8, 11] for more details). According to [8, Theorem 4.1] $L^p(X^\ast) = \{ F_g : g \in L^p(X^\ast) \}$.

Using [11, Theorem 1.3] for $g \in L^p(X^\ast, X)$ we have

$$\|F_g\|_{\varphi^\ast} = \sup \left\{ \int_\Omega \langle f, g(\omega) \rangle d\mu : f \in B_L(X^\ast) \right\}$$

$$\|\theta(g)\|_{\varphi^\ast}.$$ (v) See [12, § 3, Theorem 2].

(vi) See [6, Theorem 4.5].
Let \(\gamma_0[\mathcal{S}_q, \mathcal{T}_0] \) (briefly \(\gamma_q \)) denote the natural mixed topology on \(L^p(X) \); that is, \(\gamma_q \) is the finest linear topology that agrees with \(\mathcal{T}_0 \) on \(\| \cdot \|_q \)-bounded sets in \(L^p(X) \) (see [5, 13, 14] for more details). Then \(\gamma_q \) is a locally convex-solid Hausdorff topology (see [14, Theorem 3.2]) and \(\gamma_0 \) and \(\mathcal{S}_q \) have the same bounded sets. This means that \((L^p(X), \gamma_q) \) is a generalized DF-space (see [15]) and its follows that \((L^p(X), \gamma_q) \) is quasi-normable (see [15, p. 422]). Moreover, for a sequence \((f_n) \) in \(L^p(X) \), \(f_n \to 0 \) in \(\gamma_q \) if and only if \(f_n \to 0 \) in \(\mathcal{T}_0 \) and \(\sup \| f_n \|_q < \infty \) (see [14, Theorem 3.1]).

We say that a Young function \(\varphi \) increases essentially more rapidly than another \(\psi \) (in symbols, \(\psi \ll \varphi \)) if for arbitrary \(c > 0, \psi(ct)/\varphi(t) \to 0 \) as \(t \to 0 \) and \(t \to \infty \).

Theorem 3. Let \(\varphi \) be a Young function. Then the mixed topology \(\gamma_0 \) on \(L^p(X) \) is generated by the family of norms \(\{ \| \cdot \|_q \}_{q \in (0, \infty)} : X \to [0, \infty) \).

Proof. It is known that the mixed topology \(\gamma_0 \) on \(L^p \) is generated by the family of norms \(\{ \| \cdot \|_q \}_{q \in (0, \infty)}

\) (see [16, Theorem 2.1]). Since \(\| f \|_q = \| f \|_{L^q(X)} \) for \(f \in L^p(X) \), by [14, (5.4), p. 97], the mixed topology \(\gamma_0 \) on \(L^p(X) \) is generated by the family of norms \(\{ \| \cdot \|_q \}_{q \in (0, \infty)} : X \to [0, \infty) \).

Since \(\psi \ll \varphi \) implies \(\psi \ll \varphi \), in view of Theorems 2 and 3, we get

\[\gamma_0 \subset \mathcal{S}_q. \]

(10)

The problem of integral representation of bounded linear operators on Banach function spaces of vector-valued functions to Banach spaces in terms of the corresponding operator-valued measures has been the object of much study (see [5, 17–24]). In particular, Dinculeanu (see [19, § 13, Sect. 3], [20], [21, § 8, Sect. B]) studied the problem of integral representation of bounded linear operators from \(L^p(X) \) to a Banach space \(Y \). It is known that if \(1 \leq p < \infty, \mu(\Omega) < \infty \) and an operator measure \(m : \Sigma \to \mathcal{L}(X, Y) \) vanishes on \(\mu \)-null sets and has the finite \(q \)-seminorm \(\tilde{m}_q(\mu) \) (\(q \leq 1/p + 1/q = 1 \)), then one can define the integral \(\int f \, dm \) for all \(f \in L^p(X) \). Moreover, if \(T : L^p(X) \to Y \) is a bounded linear operator, then the associated operator measure \(m : \Sigma \to \mathcal{L}(X, Y) \) has the finite \(q \)-seminorm \(\tilde{m}_q(\mu) \) and \(T(f) = \int f \, dm \) for all \(f \in L^p(X) \) (see [19, § 13, Theorem 1, p. 239], [20, Theorem 4]). The relationships of the \(q \)-seminorm \(\tilde{m}_q \) to the properties of operators from \(L^p(X) \) to \(Y \) were studied in [22]. Diestel [23] found the integral representation of bounded linear operators from an Orlicz-Boccher space \(L^p(X) \) to a Banach spaces if \(\mu(\Omega) < \infty \) and a Young \(\varphi \) satisfies the \(\Delta_2 \)-condition.

The present paper is a continuation of [5], where we establish integral representation of \(\gamma_q \)-\(\| \cdot \|_q \)-continuous linear operators \(T : L^p(X) \to Y \). We study the problem of integration of functions in \(L^p(X) \) with respect to the representing operator measures of \(\mathcal{S}_q \)-\(\| \cdot \|_q \)-continuous linear operators \(T : L^p(X) \to Y \). An integral representation theorem for \(\mathcal{S}_q \)-\(\| \cdot \|_q \)-continuous linear operators \(T : L^p(X) \to Y \) is established (see Theorem 9 below). We study the relationships between \(\mathcal{S}_q \)-\(\| \cdot \|_q \)-continuous operators \(T : L^p(X) \to Y \) and the properties of their representing measures \(m : \Sigma_f(\mu) \to \mathcal{L}(X, Y) \).

2. \(\varphi^* \)-Semivariation of Operator Measures

Assume that \(m : \Sigma_f(\mu) \to \mathcal{L}(X, Y) \) is an additive measure such that \(m(\mu) = 0 \) if \(\mu(\Omega) = 0 \).

Let \(\delta(\Sigma_f(\mu), X) \) denote the space of all \(X \)-valued \(\Sigma_f(\mu) \)-simple functions on \(\Omega \). Then \(s \in \delta(\Sigma_f(\mu), X) \) if \(s = \sum (1_{A_i} \otimes x_i) \), where \((A_i) \) is a finite pairwise disjoint sequence in \(\Sigma_f(\mu) \) and \(x_i \in X \). For \(s = \sum_{i=1}^n (1_{A_i} \otimes x_i) \in \delta(\Sigma_f(\mu), X) \) and \(A \in \Sigma_f(\mu) \), we can define the integral \(\int_A s \, dm \) by

\[\int_A s \, dm = \sum_{i=1}^n m(A_i \cap A)(x_i). \]

(11)

Note that

\[\int_A s \, dm = \int_{\Omega} 1_A s \, dm. \]

(12)

For \(y^* \in Y^* \), we define a measure \(m_{y^*} : \Sigma_f(\mu) \to X^* \) by the equality

\[m_{y^*}(A)(x) = y^*(m(A)(x)) \]

for \(A \in \Sigma_f(\mu) \), \(x \in X \).

For \(s = \sum_{i=1}^n (1_{A_i} \otimes x_i) \in \delta(\Sigma_f(\mu), X) \) and \(A \in \Sigma_f(\mu) \), we define the integral \(\int_A s \, dm_{y^*} \) by the equality:

\[\int_A s \, dm_{y^*} = \sum_{i=1}^n m_{y^*}(A_i \cap A)(x_i). \]

(14)

Then

\[y^*(\int_A s \, dm) = \int_A s \, dm_{y^*}. \]

(15)

Following [23], [19, § 13] one can define the \(\varphi^* \)-semivariation \(\tilde{m}_{\varphi^*}(A) \) of \(m \) on \(A \in \Sigma_f(\mu) \) by

\[\tilde{m}_{\varphi^*}(A) = \sup \left\{ \sum_{i=1}^n m(A \cap A_i)(x_i) \right\}_Y, \]

(16)

where the supremum is taken over all finite pairwise disjoint sets \(\{A_1, \ldots, A_n\} \) in \(\Sigma_f(\mu) \) and \(x_i \in X \) for \(i = 1, \ldots, n \) such that \(\| \sum_{i=1}^n (1_{A_i} \otimes x_i) \|_\varphi \leq 1 \).

One can observe that

\[\tilde{m}_{\varphi^*}(A) = \sup \left\{ \int_A s \, dm : s \in \delta(\Sigma_f(\mu), X), \| s \|_\varphi \leq 1 \right\}. \]

(17)

Note that

\[\tilde{m}_{\varphi^*}(A \cup B) \leq \tilde{m}_{\varphi^*}(A) + \tilde{m}_{\varphi^*}(B) \]

for \(A, B \in \Sigma_f(\mu) \).
Let \((m_{\mu,\nu})_\nu(A)\) stand for the \(\varphi^*\)-semivariation of \(m_\mu\) on \(A \in \Sigma\); that is,
\[
(m_{\mu,\nu})_\nu(A) = \sup \left\{ \int_A s \, dm_{\mu,\nu} : s \in \delta(S_f(\mu),X), \|s\|_\varphi \leq 1 \right\}.
\]

The following lemma will be useful.

Lemma 4. Let \(\varphi\) be a Young function and \(m : \Sigma_f(\mu) \to \mathcal{L}(X,Y)\) be a measure with \(m \ll \mu\) and \(m_{\mu,\nu}(\Omega) < \infty\). Then the following statements hold:

(i) If \(f \in E^\varphi(X)\), then there exists a \(\|\cdot\|_\varphi\)-Cauchy sequence \((s_n)\) in \(\delta(S_f(\mu),X)\) such that \(\|s_n(\omega) - f(\omega)\|_X \to 0\) \(\mu\)-a.e.

(ii) If \((s_n)\) is a \(\|\cdot\|_\varphi\)-Cauchy sequence in \(\delta(S_f(\mu),X)\), then for \(A \in \Sigma\), \(\int_A s_n dm\) is a Cauchy sequence in a Banach space \(Y\) and for every \(y^* \in Y^*\), \((\int_A s_n dm_{y^*})\) is a Cauchy sequence in \(\mathbb{R}\).

(iii) If \(f \in E^\varphi(X)\) and \((s'_n)\) and \((s''_n)\) are \(\|\cdot\|_\varphi\)-Cauchy sequence in \(\delta(S_f(\mu),X)\) such that \(\|s'_n(\omega) - f(\omega)\|_X \to 0\) \(\mu\)-a.e. and \(\|s''_n(\omega) - f(\omega)\|_X \to 0\) \(\mu\)-a.e., then for \(A \in \Sigma\), one has
\[
\lim \int_A s'_n dm = \lim \int_A s''_n dm,
\]
and for every \(y^* \in Y^*\), one has
\[
\lim \int_A s'_n dm_{y^*} = \lim \int_A s''_n dm_{y^*}.
\]

Proof.

(i) Let \(f \in E^\varphi(X)\). Then there exists a sequence \((s_n)\) in \(\delta(S_f(\mu),X)\) such that \(\|s_n(\omega) - f(\omega)\|_X \to 0\) \(\mu\)-a.e. and \(\|s_n(\omega)\|_X \leq \|f(\omega)\|_X\) \(\mu\)-a.e. for all \(n \in \mathbb{N}\) (see [21, Theorem 6, p. 4]). Using the Lebesgue dominated convergence theorem, we obtain that \(\int_A \varphi(\lambda(\|s_n(\omega) - f(\omega)\|_X))d\mu \to 0\) for all \(\lambda > 0\), so \(s_n - f\|_\varphi \to 0\). Hence \((s_n)\) is a \(\|\cdot\|_\varphi\)-Cauchy sequence.

(ii) Assume that \((s_n)\) is a \(\|\cdot\|_\varphi\)-Cauchy sequence in \(\delta(S_f(\mu),X)\). Hence for \(n, k \in \mathbb{N}\), we have
\[
\left\| \int_A s_n dm - \int_A s_k dm \right\|_Y = \left\| \int (s_n - s_k) dm \right\|_Y \\
\leq \|s_n - s_k\|_\varphi \overline{m}_\varphi(A) \leq \|s_n - s_k\|_\varphi \overline{m}_\varphi(\Omega).
\]

It follows that \((\int_A s_k dm)\) is a Cauchy sequence in \(Y\). Hence in view of (15), for \(y^* \in Y^*\), \((\int_A s_n dm_{y^*})\) is a Cauchy sequence in \(\mathbb{R}\).

(iii) Note that \((s'_n - s''_n)\) is a \(\|\cdot\|_\varphi\)-Cauchy sequence and \(\|s'_n(\omega) - s''_n(\omega)\|_X \to 0\) \(\mu\)-a.e. Hence there exists \(h \in E^\varphi(X)\) such that \(\|s'_n - s''_n - h\|_\varphi \to 0\). Note that \(\mathcal{T}_{\mu,\nu}(X,Y) \subset \mathcal{T}_{\varphi}(E^\varphi(X))\).

3. Integral Representation of Continuous Operators on Orlicz-Bochner Spaces

For a bounded linear operator \(T : L^\varphi(X) \to Y\) let
\[
\|T\|_\varphi = \sup \left\{ \|T(f)\|_Y : f \in B_{L^\varphi(X)} \right\}.
\]

Proposition 6. Let \(T : L^\varphi(X) \to Y\) be a bounded linear operator
and
\[
m(A,\mu) = T(\mathbb{1}_A \otimes x) \quad \text{for} \quad A \in \Sigma_f(\mu), \quad x \in X.
\]

Then the following statements hold:

(i) If \(A \in \Sigma_f(\mu)\) and \(m(A) \leq \|T\|_\varphi \cdot \|1_A\|_\varphi\).

(ii) If \(m \ll \mu\).

(iii) \(\|m(A,\mu)\| \to 0\) if \(A_n \downarrow \emptyset\) with \(A_n \in \Sigma_f(\mu)\).

(iv) \(m : \Sigma_f(\mu) \to \mathcal{L}(X,Y)\) is countably additive; that is,
\[
m(\bigcup_{n=1}^\infty B_n) = \sum_{n=1}^\infty m(B_n) \quad \text{if} \quad (B_n) \text{ is a pairwise disjoint sequence in } \Sigma_f(\mu) \text{ with } \bigcup_{n=1}^\infty B_n \in \Sigma_f(\mu).
\]

(v) \(\overline{m}_\varphi(\Omega) \leq \|T\|_\varphi\).
Proof. (i) Let \(A \in \Sigma_f(\mu) \). Then for \(x \in B_X \), we have \(\|1_A \otimes x\|_p \leq \|1_A\|_p \) and hence
\[
\|m(A)(x)\|_Y = \|T(1_A \otimes x)\|_Y \leq \|T\|_p \cdot \|1_A \otimes x\|_p \\
\leq \|T\|_p \cdot \|1_A\|_p,
\]
so \(\|m(A)\| \leq \|T\|_p \cdot \|1_A\|_p \).

(ii) This follows from (i) because \(\|1_A\|_p = 0 \) if \(\mu(A) = 0 \).

(iii) Assume that \(A_n \downarrow 0 \) with \(A_n \in \Sigma_f(\mu) \). Then \(1_{A_n}(\omega) \geq 1_{A_n}(\omega) \downarrow 0 \) for \(\omega \in \Omega \). By the Lebesgue dominated convergence theorem, we obtain that \(\int_{\Omega} \phi(A_n(\omega))d\mu \to 0 \) for every \(\lambda > 0 \). This means that \(\|1_{A_n}\|_p \to 0 \) and by (i), \(\|m(A_n)\| \to 0 \).

(iv) Assume that \((B_n) \) is a pairwise disjoint sequence in \(\Sigma_f(\mu) \) with \(B = \bigcup_{n=1}^{\infty} B_n \in \Sigma_f(\mu) \). Let \(A_n = B \setminus \bigcup_{i=1}^{n} B_i \) for \(n \in \mathbb{N} \). Then \(A_n \in \Sigma_f(\mu) \) and \(A_n \downarrow 0 \). Hence by (iii) \(\|m(B) - \sum_{i=1}^{n} m(B_i)\| = \|m(B) - m(\bigcup_{i=1}^{n} B_i)\| = \|m(A_n)\| \to 0 \).

Statement (v) is obvious. \(\square \)

Definition 7. Let \(T : L^q(X) \to Y \) be a bounded linear operator and
\[
m(A)(x) = T(1_A \otimes x) \quad \text{for} \ A \in \Sigma_f(\mu), \ x \in X.
\]
Then the measure \(m : \Sigma_f(\mu) \to \mathcal{L}(X,Y) \) will be called a representing measure of \(T \).

Proposition 8. Let \(T : L^q(X) \to Y \) be a \((\mathcal{T}_q^\wedge, \|\cdot\|_Y)\)-continuous linear operator and \(m : \Sigma_f(\mu) \to \mathcal{L}(X,Y) \) be its representing measure. Then there exists a Young function \(\psi \) such that \(\psi \preccurlyeq \varphi \) and \(m_q(\psi) < \infty \).

Proof. According to Theorem 2 there exist a finite set \(\{\psi_i : i = 1, \ldots, n\} \) of Young functions with \(\psi_i \preccurlyeq \varphi \) for \(i = 1, \ldots, n \) and \(a > 0 \) such that
\[
\|T(f)\|_Y \leq a \max_{1 \leq i \leq n} \|f\|_{\psi_i} \quad \forall f \in L^q(X).
\]
Let \(\psi(t) = \max_{1 \leq i \leq n} \psi_i(t) \) for \(t \geq 0 \). Then \(\psi \) is a Young function with \(\psi \preccurlyeq \varphi \) and
\[
\|T(f)\|_Y \leq a \|f\|_{\psi} \quad \forall f \in L^q(X).
\]
Hence
\[
\overline{m}_q(\psi)(\Omega) = \sup \{\|T(s)\|_Y : s \in \mathcal{S}(\Sigma_f(\mu), X), \|s\|_{\psi} \leq 1\}
\leq a < \infty.
\]
\(\square \)

For a linear operator \(T : L^q(X) \to Y \) and \(A \in \Sigma \), let
\[
T_A(f) = T(1_A f) \quad \text{for} \ f \in L^q(X).
\]

Now we can state our main result that extends the classical results concerning the integral representation of operators on Lebesgue-Bochner spaces \(L^p(X) \) (1 \(\leq p < \infty \) (see [19, § 13, Theorem 1, pp. 259–261]) to operators on Orlicz-Bochner spaces \(L^q(X) \).

Theorem 9. Let \(T : L^q(X) \to Y \) be a \((\mathcal{T}_q^\wedge, \|\cdot\|_Y)\)-continuous linear operator and \(m : \Sigma_f(\mu) \to \mathcal{L}(X,Y) \) be its representing measure. Then for \(A \in \Sigma \) the following statements hold:

(i) \(T_A : L^q(X) \to Y \) is a \((\mathcal{T}_q^\wedge, \|\cdot\|_Y)\)-continuous linear operator.

(ii) For \(f \in L^q(X) \), one has
\[
T_A(f) = \int_A f \ dm
\]
and for \(y^* \in Y^* \), one has
\[
y^*(T_A(f)) = \int_A f \ dm_{y^*}.
\]

(iii) For \(f \in L^q(X) \), the measure \(m_f : \Sigma \to Y \) defined by the equality
\[
m_f(A) = \int_A f \ dm \quad \text{for} \ A \in \Sigma
\]
is countably additive.

(iv) \(\|T_A\|_p = \overline{m}_q(A) \)

and for \(y^* \in Y^* \), \(\|y^* \circ T_A\|_{\psi} = \|y^* \circ T\|_{\psi} \cdot \overline{m}_q(\psi)(A) \).

(v) \(\overline{m}_q(A) = \sup \{\|\overline{m}_{\psi_i}(\psi_i)(A) : \psi_i \in \mathcal{S}(\Sigma_f(\mu), X)\} \).

(vi) For \(f \in L^q(X) \), one has
\[
\left\| \int_A f \ dm \right\|_{\psi} \leq \overline{m}_q(A) \|f\|_{\psi}
\]
and for \(y^* \in Y^* \), one has
\[
\left\| \int_A f \ dm_{y^*} \right\|_{\psi} \leq \left(\overline{m}_q(\psi)\right)^*_{\psi}(A) \|f\|_{\psi}.
\]
Since $T_A(s_n) = \int_A s_n dm$ and by (i), T_A is $(\mathcal{S}_\varphi^\wedge, \| \cdot \|_Y)$-continuous, we get
\[T_A(f) = \lim_{n \to \infty} \int_A s_n dm. \tag{43} \]
Hence
\[T_A(f) = \int_A f dm \tag{44} \]
and for $y^* \in Y^*$, we have
\[y^*(T_A(f)) = \lim_{n \to \infty} y^*(\int_A s_n dm) = \lim_{n \to \infty} \int_A s_n dm. \tag{45} \]

(iii) Let $f \in L^p_\mathcal{S}(X)$ and (A_n) be a sequence in Σ such that $A_n \downarrow A$. Then $1_{A_n}(\omega) \downarrow 0$ for $\omega \in \Omega$, and hence $\| 1_{A_n}(\omega) f(\omega) \| X \to 0$ μ-a.e. and $\| 1_{A_n}(\omega) f(\omega) \| X \leq \| f(\omega) \| X$ μ-a.e. Hence $1_{A_n} f \to 0$ in $\mathcal{S}_\varphi^\wedge$ because $\mathcal{S}_\varphi^\wedge$ is a Lebesgue topology, and by (i) we get
\[\| m_f(A_n) \|_Y = \int_{A_n} f dm \to 0. \tag{46} \]

(iv) Note that $\bar{m}_\varphi(A) \leq \| T_A \|_\varphi$. To show that $\| T_A \|_\varphi \leq \bar{m}_\varphi(A)$, assume that $f \in L^\varphi(X)$, Choose a sequence (s_n) in $\mathcal{S}(\varphi)$ such that $\| s_n(\omega) - f(\omega) \| X \to 0$ μ-a.e. and $\| s_n(\omega) \| X \leq \| f(\omega) \| X$ μ-a.e. for all $n \in \mathbb{N}$. Since $\mathcal{S}_\varphi^\wedge$ is a Lebesgue topology, we have $s_n \to f$ in $\mathcal{S}_\varphi^\wedge$ and hence $\| T_A(s_n) - T_A(f) \|_Y \to 0$. Note that $T_A(s_n) = \int_A s_n dm$.

Let $\varepsilon > 0$ be given. Choose $n_0 \in \mathbb{N}$ such that $\| T_A(f) - \int_A s_{n_0} dm \|_Y < \varepsilon$. Then
\[\| T_A(f) \|_Y \leq \| T_A(f) - \int_A s_{n_0} dm \|_Y + \| \int_A s_{n_0} dm \|_Y \tag{47} \]
\[\leq \varepsilon + \bar{m}_\varphi(A). \]

It follows that $\| T_A \|_\varphi \leq \bar{m}_\varphi(A)$, so $\bar{m}_\varphi(A) = \| T_A \|_\varphi$. Hence for $y^* \in Y^*$, we easily get
\[\| (y^* \circ T_A) \|_\varphi = \| y^* \circ T_A \|_\varphi = \left(\bar{m}_\varphi \right)_\varphi(A). \tag{48} \]

(v) Using (iv) we have
\[\bar{m}_\varphi(A) = \| T_A \|_\varphi \]
\[= \sup \{ \| T_A(f) \|_Y : f \in L^\varphi(X), \| f \|_Y \leq 1 \} \]
\[= \sup_{y^* \in \mathcal{E}_\varphi^\wedge} \{ \| y^* \circ T_A(f) \|_Y : f \in L^\varphi(X), \| f \|_Y \leq 1 \} \tag{49} \]
\[= \sup_{y^* \in \mathcal{E}_\varphi^\wedge} \| y^* \circ T_A \|_\varphi = \sup_{y^* \in \mathcal{E}_\varphi^\wedge} \left(\bar{m}_\varphi \right)_\varphi(A). \]

(vi) This follows from (ii) and (iv).

For a sequence (A_n) in Σ, we will write $A_n \searrow 0$ if $A_n \downarrow 0$ and $\mu(A_n \cap A) \to 0$ for every $A \in \mathcal{F}_\varphi(\mu)$.

Definition 10. A measure $m : \Sigma_f(\mu) \to \mathcal{L}(X,Y)$ with $m \ll \mu$ and $\bar{m}_\varphi(\Omega) < \infty$ is said to be φ^*-semivariationally μ-continuous if $\bar{m}_\varphi(A_n) \to 0$ whenever $A_n \searrow A \in \Sigma_f(\mu)$.

Using a standard argument we can show the following.

Proposition 11. Let $m : \Sigma_f(\mu) \to \mathcal{L}(X,Y)$ be an additive measure such that $m \ll \mu$ and $\bar{m}_\varphi(\Omega) < \infty$. Then the following statements are equivalent:

(i) m is φ^*-semivariationally μ-continuous.

(ii) The following two conditions hold simultaneously:

(a) For every $\varepsilon > 0$ there exists $\delta > 0$ such that $\bar{m}_\varphi(A) \leq \varepsilon$ whenever $\mu(A) \leq \delta$, $A \in \Sigma_f(\mu)$.

(b) For every $\varepsilon > 0$ there exists $A_0 \in \Sigma_f(\mu)$ such that $\bar{m}_\varphi(\Omega \setminus A_0) \leq \varepsilon$.

The following theorem characterizes φ^*-semivariationally μ-continuous representing measures.

Theorem 12. Let $T : L^\varphi(X) \to Y$ be a $(\mathcal{S}_\varphi^\wedge, \| \cdot \|_Y)$-continuous linear operator and $m : \Sigma_f(\mu) \to \mathcal{L}(X,Y)$ be its representing measure. Then the following statements are equivalent:

(i) m is φ^*-semivariationally μ-continuous.

(ii) T is $\left(\mathcal{S}_\varphi^\wedge, \| \cdot \|_Y \right)$-continuous.

(iii) $\| T(f_n) \|_Y \to 0$ if $f_n \to 0$ in $\mathcal{S}_\varphi(\mu)$ and $\sup_n \| f_n \|_\varphi < \infty$.

(iv) $\| T_{A_n} \|_Y \to 0$ if $A_n \searrow A \in \Sigma_f(\mu)$.

Proof. (i) \iff (ii) \iff (iii) See [5, Corollary 2.8 and Proposition 11].

(i) \iff (iv) This follows from Theorem 9.

Now assume that Ω is a completely regular Hausdorff space. Let \mathcal{B}_φ denote the σ-algebra of Baire sets in Ω, which is the σ-algebra generated by the class \mathcal{E} of all zero sets of bounded continuous positive functions on ω. By \mathcal{P} we denote the family of all cozero (=positive) in Ω (see [25, p. 108]).

Let $\mu : \mathcal{B}_\varphi \to [0,\infty)$ be a countably additive measure. Then μ is zero-set regular; that is, for every $A \in \mathcal{B}_\varphi$ and $\varepsilon > 0$ there exists $Z \in \mathcal{E}$ with $Z \subset A$ such that $\mu(A \setminus Z) \leq \varepsilon$ (see [25, p. 118]). It follows that for every $A \in \mathcal{B}_\varphi$ and $\varepsilon > 0$ there exist $U \in \mathcal{P}, U \supset A$ such that $\mu(U \setminus A) \leq \varepsilon$.

We can assume that μ to be complete (if necessary we can take the completion $(\Omega, \mathcal{B}_\varphi, \overline{\mu})$ of the measure space $(\Omega, \mathcal{B}_\varphi, \mu)$).

Proposition 13. Assume that Ω is a completely regular Hausdorff space and $(\Omega, \mathcal{B}_\varphi, \mu)$ is a complete finite measure space. Let $T : L^\varphi(X) \to Y$ be a $(\mathcal{S}_\varphi^\wedge, \| \cdot \|_Y)$-continuous linear operator and $m : \mathcal{B}_\varphi \to \mathcal{L}(X,Y)$ be its representing measure. Then the following statements are equivalent:

(i) m is φ^*-semivariationally μ-continuous.
Choose \mathcal{A} such that $A_n \downarrow$ and $\mu(A_{n}) \to 0$. Then there exists a sequence (U_{n}) in \mathcal{P} with $A_{n} \subset U_{n}$ such that $\overline{m}_{\varphi}(U_{n}) \to 0$.

(iii) For every sequence (A_{n}) in \mathcal{B} such that $A_n \downarrow$ and $\mu(A_{n}) \to 0$ there exists a sequence (U_{n}) in \mathcal{P} with $A_{n} \subset U_{n}$ such that

$$\sup \{\|T(f)\|_{Y} : f \in B_{L^{\varphi}(X)}, \text{ supp } f \subset U_{n} \} \to 0. \quad (50)$$

Proof. (i) \Rightarrow (ii) Assume that (i) holds and (A_{n}) is a sequence in \mathcal{B} such that $A_{n} \downarrow$ and $\mu(A_{n}) \to 0$. Then there exists a sequence (U_{n}) in \mathcal{P} such that $A_{n} \subset U_{n}$ and $\mu(U_{n} \setminus A_{n}) \leq 1/n$ for $n \in \mathbb{N}$.

Let $\varepsilon > 0$ be given. Then in view of Proposition 11 there exists $\delta > 0$ such that $\overline{m}_{\varphi}(U_{n}) \leq \varepsilon/2$ if $\mu(A_{n}) \leq \delta$ with $A_{n} \in \mathcal{B}$. Choose $n_{1} \in \mathbb{N}$ such that $\mu(U_{n} \setminus A_{n}) \leq \delta$ for $n \geq n_{2}$. Then $\overline{m}_{\varphi}(U_{n}) \leq \varepsilon/2$ for $n \geq n_{2}$. Therefore, for $n \geq n_{0} = \max(n_{1}, n_{2})$, we get

$$\overline{m}_{\varphi}(U_{n}) \leq \overline{m}_{\varphi}(U_{n} \setminus A_{n}) + \overline{m}_{\varphi}(A_{n}) \leq \varepsilon; \quad (51)$$

that is, (ii) holds.

(ii) \Rightarrow (iii) Assume that (ii) holds and (A_{n}) is a sequence in \mathcal{B} such that $A_{n} \downarrow$ and $\mu(A_{n}) \to 0$. Then there exists a sequence (U_{n}) in \mathcal{P} with $A_{n} \subset U_{n}$ such that $\overline{m}_{\varphi}(U_{n}) \to 0$. Note that, for $f \in B_{L^{\varphi}(X)}$ with $\text{ supp } f \subset U_{n}$ for $n \in \mathbb{N}$, by Theorem 9 we have

$$\|T(f)\|_{Y} = \int_{\Omega} f \, dm \leq \int_{U_{n}} f \, dm \leq \overline{m}_{\varphi}(U_{n}). \quad (52)$$

It follows that (iii) holds.

(iii) \Rightarrow (i) Assume that (iii) holds and $A_{n} \downarrow$ with $\mu(A_{n}) \to 0$. Then there exists a sequence (U_{n}) in \mathcal{P} with $A_{n} \subset U_{n}$ such that

$$\sup \{\|T(f)\|_{Y} : f \in B_{L^{\varphi}(X)}, \text{ supp } f \subset U_{n} \} \to 0. \quad (53)$$

Assume on the contrary that (i) fails to hold. Then without loss of generality we can assume that

$$\overline{m}_{\varphi}(A_{n}) > \varepsilon_{0} \quad \text{for some } \varepsilon_{0} > 0, \quad \text{all } n \in \mathbb{N}. \quad (54)$$

Choose $n_{0} \in \mathbb{N}$ such that

$$\sup \{\|T(f)\|_{Y} : f \in B_{L^{\varphi}(X)}, \text{ supp } f \subset U_{n_{0}} \} < \varepsilon_{0}/2. \quad (55)$$

In view of (54) there exists a pairwise disjoint set $\{B_{1}, \ldots, B_{k}\}$ in \mathcal{B} and $x_{i} \in X$ for $i = 1, \ldots, k$ and $y^{*} \in B_{Y^{*}}$, such that

$$\| \sum_{i=1}^{k} \|1_{B_{i}} \otimes x_{i}\|_{\varphi} \leq 1 \quad \text{and} \quad \left| y^{*} \left(\sum_{i=1}^{k} m(A_{n_{0}} \cap B_{i}) (x_{i}) \right) \right| \geq \varepsilon_{0}. \quad (56)$$

Let $s_{0} = \sum_{i=1}^{k} \|1_{A_{n_{0}} \cap B_{i}} \otimes x_{i}\|_{\varphi}$. Then $\|s_{0}\|_{\varphi} \leq 1$ and $\text{ supp } s_{0} \subset A_{n_{0}} \subset U_{n_{0}}$. Then by (55) we get $\|T(s_{0})\|_{Y} < \varepsilon_{0}/2$. On the other hand, in view of (56) we have $\|T(s_{0})\|_{Y} \geq \varepsilon_{0}$.

This contradiction establishes that (i) holds.

Corollary 14. Assume that Ω is a completely regular Hausdorff space and $(\Omega, \mathcal{B}, \mu)$ is a complete finite measure space. Let $T : L^{\varphi}(X) \to Y$ be a $(\varphi, \|\cdot\|_{Y})$-continuous linear operator and $m : \mathcal{B} \to \mathcal{L}(X, Y)$ be its representing measure. Then m_{φ} is regular; that is, for every $A \in \mathcal{B}$ and $\varepsilon > 0$ there exists $Z \in \mathcal{L}$ and $U \in \mathcal{P}$ with $Z \subset A \subset U$ such that $\overline{m}_{\varphi}(U \setminus Z) \leq \varepsilon$.

Proof. In view of Theorem 12 m is φ^{*}-semivariationally μ-continuous. Let $A \in \mathcal{B}$ and $\varepsilon > 0$ be given. Then by Proposition 11 there exists $\delta > 0$ such that $\overline{m}_{\varphi}(B) \leq \varepsilon$ whenever $B \in \mathcal{B}$ and $\mu(B) \leq \delta$. By the regularity of μ one can choose $Z \in \mathcal{L}$ and $U \in \mathcal{P}$ with $Z \subset A \subset U$ such that $\mu(U \setminus Z) \leq \delta$. Hence $\overline{m}_{\varphi}(U \setminus Z) \leq \varepsilon$, as desired.

4. Compact Operators on Orlicz-Bochner Spaces

The following theorem presents necessary conditions for a $(\varphi, \|\cdot\|_{Y})$-continuous operator $T : L^{\varphi}(X) \to Y$ to be compact.

Theorem 15. Assume that a Young function φ such that φ^{*} satisfies the Δ_{2}-condition. Let $T : L^{\varphi}(X) \to Y$ be a $(\varphi, \|\cdot\|_{Y})$-continuous linear operator and $m : \Sigma(\mu) \to \mathcal{L}(X, Y)$ be its representing measure. If T is compact, then m is φ^{*}-semivariationally μ-continuous.

Proof. Assume that T is compact and m fails to be φ^{*}-semivariationally μ-continuous. Then there exist $\varepsilon > 0$ and a sequence (A_{n}) in Σ with $A_{n} \subset \Omega_{0}$ such that $\|T_{A_{n}}\|_{\varphi} = \overline{m}_{\varphi}(A_{n}) > \varepsilon$ for $n \in \mathbb{N}$ (see Theorem 9). Hence one can choose a sequence (y^{*}_{n}) in $B_{Y^{*}}$ such that

$$\|y^{*}_{n} \circ T_{A_{n}}\|_{\varphi} \geq \varepsilon \quad \forall n \in \mathbb{N}. \quad (57)$$

By Schauder's theorem the conjugate mapping $T^{*} : Y^{*} \to L^{\varphi}(X)$ is compact. Note that $T^{*}(y^{*}_{n}) = y^{*}_{n} \circ T \in L^{\varphi}(X)_{n}$ for all $n \in \mathbb{N}$, where $L^{\varphi}(X)_{n}$ is a closed subspace of the Banach space $(L^{\varphi}(X)^{*}, \|\cdot\|_{\varphi}^{*})$ (see Theorem 2). Then for every $n \in \mathbb{N}$ there exists $g_{n} \in L^{\varphi}(X^{*}, X)$ such that

$$\langle y^{*}_{n} \circ T(f) \rangle = \int_{\Omega} \langle f(\omega), g_{n}(\omega) \rangle \, d\mu$$

$$\text{ for } f \in L^{\varphi}(X), \quad (58)$$

$$\|y^{*}_{n} \circ T\|_{\varphi}^{*}$$

$$= \sup \left\{ \int_{\Omega} \|f(\omega)\|_{X} \theta(g_{n}(\omega)) \, d\mu : f \in B_{L^{\varphi}(X)} \right\}$$

$$= \|\theta(g_{n})\|_{\varphi^{*}}. \quad (59)$$

Hence we obtain that, for each $n \in \mathbb{N}$,

$$\|y^{*}_{n} \circ T_{A_{n}}\|_{\varphi}^{*} = \|1_{A_{n}} \circ \theta(g_{n})\|_{\varphi^{*}} = \|\theta(1_{A_{n}}g_{n})\|_{\varphi^{*}}. \quad (59)$$
Since $T^*(B_{Y^*})$ is a relatively sequentially compact subset of $(L^p(X), \| \cdot \|_p)$, there exist a subsequence (g_{k_n}) of (g_n) and $g \in L^p(X^*, X)$ such that
\[\left\| F_{g_n} - F_g \right\|_p = \left\| \theta(g_{k_n} - g) \right\|_p \to 0. \]
(60)
Choose $n_\varepsilon \in \mathbb{N}$ such that $\left\| \theta(g_{k_n} - g) \right\|_p \leq \varepsilon / 2$ for $n \geq n_\varepsilon$.

Hence for $n \geq n_\varepsilon$,
\[\left\| \theta \left(1_A \theta(g_{k_n} - g) \right) \right\|_p^* \leq \left\| \theta(g_{k_n} - g) \right\|_p \leq \frac{\varepsilon}{2}. \]
(61)
Using (57) and (61), for $n \geq n_\varepsilon$, we get
\[\varepsilon \leq \left\| \theta^* T_{A \theta}(g_{k_n}) \right\|_p^* = \left\| \theta \left(1_A \theta(g_{k_n}) \right) \right\|_p \leq \frac{\varepsilon}{2} + \left\| \theta(1_A g) \right\|_p. \]
(62)
and hence
\[\left\| 1_A \theta(g) \right\|_p = \left\| \theta(1_A g) \right\|_p \geq \frac{\varepsilon}{2}. \]
(63)

On the other hand, since φ^* is supposed to satisfy the Δ_2-condition, we have that $\left\| 1_A \theta(g) \right\|_p \to 0$ (see [26, Theorem 3, pp. 58-59]). This contradiction establishes that m is φ^*-semivariationally μ-continuous. \hfill \Box

Corollary 16. Assume that φ is a Young function such that φ^* satisfies the Δ_2-condition. Let $T : L^p(X) \to Y$ be a $(\mathcal{F}_\varphi^*, \| \cdot \|_\varphi)$-continuous linear operator. Then the following statements are equivalent:

(i) T is compact.

(ii) T is $(y_{p*}, \| \cdot \|_\varphi)$-compact; that is, there exists a y_{p*}-neighborhood V of 0 in $L^p(X)$ such that $T(V)$ is a relatively compact set in Y.

(iii) There exists a Young function ψ with $\varphi \ll \psi$ such that
\[\left\{ \int f \, dm : f \in L^p(X), \| f \|_p \leq 1 \right\} \text{ is a relatively compact set in } Y. \]

Proof. (i) \Rightarrow (ii) Assume that (i) holds. Then by Theorems 12 and 15 T is $(y_{p*}, \| \cdot \|_\varphi)$-continuous. Since the space $(L^p(X), y_{p*})$ is quasinormable, by Grothendieck's classical result (see [15, p. 429]), we obtain that T is $(y_{p*}, \| \cdot \|_\varphi)$-compact.

(ii) \Rightarrow (i) The implication is obvious.

(iii) \Rightarrow (ii) This follows from Theorem 3. \hfill \Box

5. Topology Associated with the φ^*-Semivariation of a Representing Measure

Assume that $T : L^p(X) \to Y$ be a $(\mathcal{F}_\varphi^*, \| \cdot \|_\varphi)$-continuous linear operator. Let $m : \Sigma_f(\mu) \to \mathcal{L}(X, Y)$ be its representing measure. Let us put
\[p_m(y^*) = (m_{y^*})^*_\varphi, (\Omega) \text{ for } y^* \in Y^*. \]
(64)
Note that p_m is a seminorm on Y^*. Following [22, 27] let $\delta_{m,p}$ stand for the topology on B_{Y^*} defined by the seminorm p_m restricted to B_{Y^*}.

The following theorem characterizes $(\mathcal{F}_\varphi^*, \| \cdot \|_\varphi)$-continuous compact operators $T : L^p(X) \to Y$ in terms of the topological properties of the space $(B_{Y^*}, \delta_{m,p})$ (see [22, Theorem 3]).

Theorem 17. Let $T : L^p(X) \to Y$ be a $(\mathcal{F}_\varphi^*, \| \cdot \|_\varphi)$-continuous linear operator and $m : \Sigma_f(\mu) \to \mathcal{L}(X, Y)$ be its representing measure. Then the following statements are equivalent:

(i) The space $(B_{Y^*}, \delta_{m,p})$ is compact.

(ii) T is compact.

Proof. (i) \Rightarrow (ii) Assume that $(B_{Y^*}, \delta_{m,p})$ is compact. Let (y_{p*}^n) be a sequence in B_{Y^*}. Without loss of generality we can assume that $y_{p*}^n \to y_0^*$ in $\delta_{m,p}$ for some $y^* \in B_{Y^*}$. Then using Theorem 9 for $f \in L^p(X)$, we have
\[\left| (T^*(y_{p*}^n) - T^*(y_0^*)) (f) \right| = \left| (y_{p*}^n - y_0^*) (T (f)) \right| \]
\[= \left\{ \int f \, dm \big| y_{p*}^n - y_0^* \big(m, \varphi \beta \big) \leq \left(\frac{m_{y_{p*}^n - y_0^*}}{\varphi^*_\beta}, (\Omega) \right) \right\} \to 0. \]
(65)
It follows that $\left\| T^*(y_{p*}^n) - T^*(y_0^*) \right\|_\varphi \leq (m_{y_{p*}^n - y_0^*})^*_\varphi, (\Omega)$, where $\delta_{m,p}$ is a seminorm on $(\mathcal{F}_\varphi^*, \| \cdot \|_\varphi)$. This means that T^* is compact and hence T is compact.

(ii) \Rightarrow (i) Assume that T is compact and (y_{p*}^n) is a net in B_{Y^*}. Since B_{Y^*} is $\sigma(Y^*, Y)$-compact, without loss of generality we can assume that $y_{p*}^n \to y_0^*$ in $\sigma(Y^*, Y)$ for some $y^* \in B_{Y^*}$.

In view of the compactness of the conjugate operator $T^* : Y^* \to L^p(X)^*$, there exists a subset (y_{p*}) of (y_{p*}^n) and $\Phi_0 \in L^p(X)^*$ such that $\left\| T^* (y_{p*}) - \Phi_0 \right\|_p \to 0$. On the other hand, since T^* is $\sigma(Y^*, Y), \sigma(L^p(X)^*, L^p(X))$-continuous, we get $T^*(y_{p*}^n) \to T^*(y_0^*)$ in $\sigma(L^p(X)^*, L^p(X))$. Hence $\Phi_0 = T^*(y_0^*)$; that is, $\left\| T^* (y_{p*}^n) - T^*(y_0^*) \right\|_\varphi \to 0$.

Let $\varepsilon > 0$ be given. Then there exist a pairwise disjoint set A_1, \ldots, A_n in $\Sigma_f(\mu)$ and $x_i \in X$ for $i = 1, \ldots, n$ such that $\left\| \sum_{i=1}^n (1_A \otimes x_i) \right\|_p \leq 1$ and
\[\left(m_{y_{p*}^n - y_0^*}
ight)^*_\varphi, (\Omega) \leq \left(\sum_{i=1}^n (y_{p*}^n - y_0^*) (m (A_i) (x_i)) \right) + \varepsilon. \]
(66)
Hence
\[\left(m_{y_{p*}^n - y_0^*}
ight)^*_\varphi, (\Omega) \leq \left(\sum_{i=1}^n (y_{p*}^n - y_0^*) (T (1_A \otimes x_i)) \right) + \varepsilon \]
\[\leq \left(y_{p*}^n - y_0^* \right) T \left(\sum_{i=1}^n (1_A \otimes x_i) \right) + \varepsilon + \varepsilon \]
Assume that Corollary 18.

Hence \(p \Delta \) satisfies the space \(\Delta_2 \)-condition. Let \(T \colon L^p(X) \to Y \) be a \((\mathcal{F}^n, \|\cdot\|_Y) \)-continuous linear operator and \(m : \Sigma_1(\mu) \to \mathcal{L}(X, Y) \) be its representing measure. If the space \((B_{Y^*}, \delta_{m, \rho^*}) \) is compact, then \(m \) is \(\rho^* \)-seminormally \(\mu \)-continuous.

Corollary 18. Assume that \(\varphi \) is a Young function such that \(\varphi^* \) satisfies the \(\Delta_2 \)-condition. Let \(T : L^p(X) \to Y \) be a \((\mathcal{F}^n, \|\cdot\|_Y) \)-continuous linear operator and \(m : \Sigma_1(\mu) \to \mathcal{L}(X, Y) \) be its representing measure. If the space \((B_{Y^*}, \delta_{m, \rho^*}) \) is compact, then \(m \) is \(\rho^* \)-semivariationally \(\mu \)-continuous.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

