Research Article

Continuous \star-K-G-Frame in Hilbert C^*-Modules

Mohamed Rossafi †, Abdeslam Touri 1, Hatim Labrigui 1, and Abdellatif Akhlidj 2

1Department of Mathematics, University of Ibn Tofail, B. P. 133, Kenitra, Morocco
2Department of Mathematics, University of Hassan II, Casablanca, Morocco

Correspondence should be addressed to Mohamed Rossafi; rossafimohamed@gmail.com

Received 11 May 2019; Accepted 21 July 2019; Published 31 July 2019

Academic Editor: Gestur Olafsson

Copyright © 2019 Mohamed Rossafi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Frame theory is exciting and dynamic with applications to a wide variety of areas in mathematics and engineering. In this paper, we introduce the concept of Continuous \star-K-G-frame in Hilbert C^*-Modules and we give some properties.

1. Introduction and Preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [1] in 1952 to study some deep problems in nonharmonic Fourier series, after the fundamental paper [2] by Daubechies, Grossman and Meyer, frame theory began to be widely used, particularly in the more specialized context of wavelet frames and Gabor frames [3].

Traditionally, frames have been used in signal processing, image processing, data compression, and sampling theory. Discrete frames are referred to as coherent states [5].

As frames are referred to as coherent states [5]. Askari-Hemmat, Dehghan, and Radjabalipour in [7] called them generalized frames and in mathematical physics they are referred to as coherent states [5].

In this paper, we introduce the notion of Continuous \star-K-g-frame which are generalization of \star-K-g-Frame in Hilbert C^*-Modules introduced by M. Rossafi and S. Kabbaj [8] and we establish some new results.

The paper is organized as follows: we continue this introductory section we briefly recall the definitions and basic properties of C^*-algebra, Hilbert C^*-modules. In Section 2, we introduce the Continuous \star-K-g-Frame, the Continuous pre-\star-K-g-frame operator, and the Continuous \star-K-g-frame operator; also we establish here properties.

In the following we briefly recall the definitions and basic properties of C^*-algebra, Hilbert \mathcal{A}-modules. Our reference for C^*-algebras is [9, 10]. For a C^*-algebra \mathcal{A} if $a \in \mathcal{A}$ is positive we write $a \geq 0$ and \mathcal{A}^+ denotes the set of positive elements of \mathcal{A}.

Definition 1 (see [11]). Let \mathcal{A} be a unital C^*-algebra and \mathcal{H} a left \mathcal{A}-module, such that the linear structures of \mathcal{A} and \mathcal{H} are compatible. \mathcal{H} is a pre-Hilbert \mathcal{A}-module if \mathcal{H} is equipped with an \mathcal{A}-valued inner product $\langle \ldots , \ldots \rangle_{\mathcal{A}} : \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{A}$, such that is sesquilinear, positive definite, and respects the module action. In the other words,

(i) $\langle x, x \rangle_{\mathcal{A}} \geq 0$ for all $x \in \mathcal{H}$ and $\langle x, x \rangle_{\mathcal{A}} = 0$ if and only if $x = 0$.

(ii) $\langle ax + y, z \rangle_{\mathcal{A}} = a\langle x, y \rangle_{\mathcal{A}} + \langle y, z \rangle_{\mathcal{A}}$ for all $a \in \mathcal{A}$ and $x, y, z \in \mathcal{H}$.

(iii) $\langle x, y \rangle_{\mathcal{A}} = \langle y, x \rangle_{\mathcal{A}}^*$ for all $x, y \in \mathcal{H}$.

For $x \in \mathcal{H}$, we define $\|x\| = \|\langle x, x \rangle_{\mathcal{A}}\|^{1/2}$. If \mathcal{H} is complete with $\|\|$, it is called a Hilbert \mathcal{A}-module and a Hilbert C^*-module over \mathcal{A}. For every $a \in C^*$-algebra \mathcal{A}, we have $|a| = (a^*a)^{1/2}$ and the \mathcal{A}-valued norm on \mathcal{H} is defined by $\|x\| = \langle x, x \rangle_{\mathcal{A}}^{1/2}$ for $x \in \mathcal{H}$.

Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A}-modules. A map $T : \mathcal{H} \longrightarrow \mathcal{K}$ is said to be adjointable if there exists a map $T^* : \mathcal{K} \longrightarrow \mathcal{H}$ such that $\langle Tx, y \rangle_{\mathcal{A}} = \langle x, T^* y \rangle_{\mathcal{A}}$ for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$.

We reserve the notation $\text{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K})$ for the set of all
adjointable operators from \mathcal{H} to \mathcal{K} and $\text{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K})$ is abbreviated to $\text{End}_{\mathcal{A}}^*(\mathcal{H})$.

The following lemmas will be used to prove our main results

Lemma 2 (see [11]). Let \mathcal{H} be Hilbert \mathcal{A}-module. If $T \in \text{End}_{\mathcal{A}}^*(\mathcal{H})$, then
\[
(Tx, Tx) \leq \|T\|^2 (x, x), \quad \forall x \in \mathcal{H}. \tag{1}
\]

Lemma 3 (see [12]). Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A}-Modules and $T \in \text{End}^*(\mathcal{H}, \mathcal{K})$. Then the following statements are equivalent:

(i) T is surjective.

(ii) T^* is bounded below with respect to norm; i.e., there is $m > 0$ such that $\|T^*x\| \geq m \|x\|$ for all $x \in \mathcal{H}$.

(iii) T^* is bounded below with respect to the inner product; i.e., there is $m' > 0$ such that $(T^*x, T^*x) \geq m' (x, x)$ for all $x \in \mathcal{H}$.

Lemma 4 (see [13]). Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A}-Modules and $T \in \text{End}^*(\mathcal{H}, \mathcal{K})$. Then,

(i) if T is injective and T has closed range, then the adjointable map $T^* T$ is invertible and
\[
\left\|(T^* T)^{-1}\right\|_\mathcal{H} \leq T^* T \leq \|T\|^2 I_\mathcal{H}. \tag{2}
\]

(ii) If T is surjective, then the adjointable map $T^* T$ is invertible and
\[
\left\|(T^* T)^{-1}\right\|_\mathcal{H} \leq T^* T \leq \|T\|^2 I_\mathcal{H}. \tag{3}
\]

2. Continuous $*$-K-frame in Hilbert C^*-Modules

Let X be a Banach space, (Ω, μ) a measure space, and function $f : \Omega \to X$ a measurable function. Integral of the Banach-valued function f has been defined by Bochner and others. Most properties of this integral are similar to those of the integral of real-valued functions. Because every C^*-algebra and Hilbert C^*-module is a Banach space thus we can use this integral and its properties.

Let (Ω, μ) be a measure space, let U and V be two Hilbert C^*-modules, $\{V_w : w \in \Omega\}$ is a sequence of subspaces of V, and $\text{End}_{\mathcal{A}}^*(U, V_w)$ is the collection of all adjointable \mathcal{A}-linear maps from U into V_w. We define
\[
\bigoplus_{w \in \Omega} V_w = \left\{ x = \{x_w : x_w \in V_w\}, \int_\Omega |x_w|^2 d\mu(w) < \infty \right\}. \tag{4}
\]

For any $x = \{x_w : w \in \Omega\}$ and $y = \{y_w : w \in \Omega\}$, if the \mathcal{A}-valued inner product is defined by $(x, y) = \int_\Omega (x_w, y_w) d\mu(w)$, the norm is defined by $\|x\| = \|\{x, y\}\|^{1/2}$, the $\bigoplus_{w \in \Omega} V_w$ is a Hilbert C^*-module.

Definition 5. Let $K \in \text{End}_{\mathcal{A}}^*(U)$; we call $\{A_w \in \text{End}_{\mathcal{A}}^*(U, V_w) : w \in \Omega\}$ a Continuous $*$-K-frame for Hilbert C^*-module U with respect to $\{V_w : w \in \Omega\}$ if

(a) for any $x \in U$, the function $\bar{x} : \Omega \to V_w$ defined by $\bar{x}(w) = A_w x$ is measurable;

(b) there exist two strictly nonzero elements A and B in \mathcal{A} such that
\[
A \langle K^* x, K^* x \rangle A^* \leq \int_\Omega \langle A_w x, A_w x \rangle d\mu(w) \leq B \langle x, x \rangle B^*, \quad \forall x \in U. \tag{5}
\]

The elements A and B are called Continuous $*$-K-frame bounds.

If $A = B$ we call this Continuous $*$-K-frame a continuous tight $*$-K-frame, and if $A = B = 1$ it is called a continuous Parseval $*$-K-frame. If only the right-hand inequality of (5) is satisfied, we call $\{A_w : w \in \Omega\}$ a continuous $*$-K-Bessel for U with respect to $\{A_w : w \in \Omega\}$ with Bessel bound B.

Example 6. Let $f^{(1)}$ be the set of all bounded complex-valued sequences. For any $u = \{u_n\}_{n \in \mathbb{N}}, v = \{v_n\}_{n \in \mathbb{N}} \in f^{(1)}$, we define
\[
u v = \{u_n v_n\}_{n \in \mathbb{N}}, \quad u^* = \{\overline{u_n}\}_{n \in \mathbb{N}}, \tag{6}
\]

Then $\mathcal{A} = \{f^{(1)}, \|x\|\}$ is a C^*-algebra.

Let $\mathcal{H} = C_0$ be the set of all sequences converging to zero. For any $u, v \in \mathcal{H}$ we define
\[
\langle u, v \rangle = uv^* = \{u_n \overline{v_n}\}_{n \in \mathbb{N}}. \tag{7}
\]

Then \mathcal{H} is a Hilbert \mathcal{A}-module.

Define $f_j = \{f_j^n\}_{n \in \mathbb{N}}$ by $f_j^n = 1/2^n + 1/2^j$ if $i = j$ and $f_j^n = 0$ if $i \neq j \forall j \in \mathbb{N}^*$.

Now define the adjointable operator $A_j : \mathcal{H} \to \mathcal{A}, \Lambda_j x = \langle x, f_j \rangle$.

Then for every $x \in \mathcal{H}$ we have
\[
\sum_{j \in \mathbb{N}} \langle A_j x, A_j x \rangle = \left(\frac{1}{2} + \frac{1}{2^j}\right)_{j \in \mathbb{N}^*}, \tag{8}
\]

So $\{A_j\}_{j \in \mathbb{N}}$ is a $\{1/2 + 1/2^j\}_{j \in \mathbb{N}^*}$-tight $*$-frame.

Let $K : \mathcal{H} \to \mathcal{A}$ defined by $K x = \{x_j\}_{j \in \mathbb{N}^*}$.

Then for every $x \in \mathcal{H}$ we have
\[
\langle K^* x, K^* x \rangle_{\mathcal{A}} \leq \sum_{j \in \mathbb{N}} \langle A_j x, A_j x \rangle = \left(\frac{1}{2} + \frac{1}{2^j}\right)_{j \in \mathbb{N}^*}. \tag{9}
\]

Now, let (Ω, μ) be a σ-finite measure space with infinite measure and $\{H_w\}_{w \in \Omega}$ be a family of Hilbert \mathcal{A}-module $(H_w = C_0, \forall w \in \Omega)$.

Journal of Function Spaces
Since \(\Omega \) is a \(\sigma \)-finite, it can be written as a disjoint union
\(\Omega = \bigcup \Omega_w \) of countably many subsets \(\Omega_w \subseteq \Omega \), such that
\(\mu(\Omega_w) < \infty \), \(\forall k \in \mathbb{N} \). Without less of generality, assume that
\(\mu(\Omega_w) > 0 \) \(\forall k \in \mathbb{N} \).

For each \(\omega \in \Omega \), define the operator: \(\Lambda_{\omega} : H \to H_w \) by
\[
\Lambda_{\omega}(x) = \frac{1}{\mu(\Omega_w)} \langle x, f_k \rangle h_{\omega}, \quad \forall x \in H
\]
(10)
where \(k \) is such that \(w \in \Omega_w \) and \(h_{\omega} \) is an arbitrary element of
\(H_w \), such that \(\|h_{\omega}\| = 1 \).

For each \(x \in H \), \(\{\Lambda_{\omega}x\}_{\omega \in \Omega} \) is strongly measurable (since
\(h_{\omega} \) are fixed) and
\[
\int_{\Omega} \langle \Lambda_{\omega}x, \Lambda_{\omega}x \rangle \, d\mu(\omega) = \sum_{j \in \mathbb{N}} \langle x, f_j \rangle \langle f_j, x \rangle
\]
(11)
so, therefore
\[
\langle K^*x, K^*x \rangle \leq \int_{\Omega} \langle \Lambda_{\omega}x, \Lambda_{\omega}x \rangle \, d\mu(\omega)
\]
\[
= \sum_{j \in \mathbb{N}} \langle x, f_j \rangle \langle f_j, x \rangle
\]
(12)
Indeed,
if \(K \) is surjective there exists \(m > 0 \) such that
\[
m \langle x, x \rangle \leq \langle K^*x, K^*x \rangle
\]
(16)
then
\[
(A \sqrt{m}) \langle x, x \rangle (A \sqrt{m})^* \leq A \langle K^*x, K^*x \rangle A^*
\]
(17)
or if \(\{\Lambda_{\omega} \in \text{End}_{\omega}^*(U, V_w) : w \in \Omega \} \) is a continuous
\(* \)-K-g-frame, we have
\[
(A \sqrt{m}) \langle x, x \rangle (A \sqrt{m})^* \leq \int_{\Omega} \langle \Lambda_{\omega}x, \Lambda_{\omega}x \rangle \, d\mu(w)
\]
(18)
\[
\leq B \langle x, x \rangle B^*
\]
hence \(\{\Lambda_{\omega} \in \text{End}_{\omega}^*(U, V_w) : w \in \Omega \} \) is a continuous
\(* \)-g-frame for \(U \) with lower and upper bounds \(A \sqrt{m} \) and \(B \), respectively.

Let \(K \in \text{End}_{\omega}^*(U) \), and \(\{\Lambda_{\omega} \in \text{End}_{\omega}^*(U, V_w) : w \in \Omega \} \) be a continuous
\(* \)-K-g-frame for Hilbert \(C^* \)-module \(U \) with respect to \(\{V_w : w \in \Omega \} \),
then \(T \) is called the continuous \(* \)-K-g-frame transform.
So its adjoint operator is \(T^* : \bigoplus_{\omega \in \Omega} V_w \to U \) given by
\[
T^*(\{x_\omega \}_{\omega \in \Omega}) = \int_{\Omega} \Lambda^*_\omega x_\omega \, d\mu(\omega)
\]
(20)
By composing \(T \) and \(T^* \), the frame operator \(S = T^*T \) given by
\[
Sx = \int_{\Omega} \Lambda^*_\omega \Lambda_\omega x \, d\mu(\omega), \quad S \text{ is called continuous } * \text{-K-g frame operator}
\]

Theorem 8. The continuous \(* \)-K-g frame operator \(S \) is bounded, positive, self-adjoint, and \(\|A^{-1}\| \|K\| \leq \|S\| \leq \|B\| \).

Proof. First we show, \(S \) is a self-adjoint operator. By definition we have \(\forall x, y \in U \)
\[
\langle Sx, y \rangle = \int_{\Omega} \Lambda^*_\omega \Lambda_\omega x \, d\mu(\omega), \quad y
\]
\[
= \int_{\Omega} \langle \Lambda^*_\omega \Lambda_\omega x, y \rangle \, d\mu(\omega)
\]
\[
= \int_{\Omega} \langle x, \Lambda^*_\omega \Lambda_\omega y \rangle \, d\mu(\omega)
\]
\[
= \langle x, \int_{\Omega} \Lambda^*_\omega \Lambda_\omega y \, d\mu(\omega) \rangle = \langle x, Sy \rangle.
\]
(21)
Then \(S \) is a self-adjoint. Clearly \(S \) is positive.

By definition of a continuous \(* \)-K-g-frame we have
\[
A \langle K^*x, K^*x \rangle A^* \leq \int_{\Omega} \langle \Lambda_{\omega}x, \Lambda_{\omega}x \rangle \, d\mu(\omega)
\]
\[
\leq B \langle x, x \rangle B^*.
\]
(22)
So
\[A(K^*x, K^*x) A^* \leq \langle Sx, x \rangle \leq B \langle x, x \rangle B^*. \] (23) This gives
\[\|A^{-1}\|^2 \|KK^*, x, x\| \leq \|Sx, x\| \leq \|B\|^2 \|x, x\|. \] (24)
If we take supremum on all \(x \in U \), where \(\|x\| \leq 1 \), we have
\[\|A^{-1}\|^2 \|K\|^2 \leq \|S\| \leq \|B\|^2. \] (25)
\[\square \]
\[\text{Theorem 9.} \text{ Let } K \in \text{End}_d^d(H) \text{ be surjective and } \{\Lambda_w \in \text{End}_d^d(U, V_w) : w \in \Omega\} \text{ a continuous } \ast\text{-K-g-frame for } U, \text{ with lower and upper bounds } A \text{ and } B, \text{ respectively, and with the continuous } \ast\text{-K-g-frame operator } S.
\] Let \(T \in \text{End}_d^d(U) \) be invertible; then \(\{\Lambda_w T : w \in \Omega\} \) is a continuous \(\ast\text{-K-g-frame for } U \) with continuous \(\ast\text{-K-g-frame operator } T^*ST. \)
\[\text{Proof.} \text{ We have}
\[A(K^*Tx, K^*Tx) A^* \leq \int_{\Omega} \langle \Lambda_w Tx, \Lambda_w Tx \rangle d\mu(w) \] (26)
\[\leq B \langle Tx, Tx \rangle B^*, \hspace{1em} \forall x \in U. \]
Using Lemma 3, we have \(\|T^*T^{-1}\|^2 \langle x, x \rangle \leq \langle Tx, Tx \rangle, \forall x \in U. \)
K is surjective, then there exists \(m \) such that
\[m \langle Tx, Tx \rangle \leq \langle K^*Tx, K^*Tx \rangle \] (27)
and then
\[m \|T^*T^{-1}\|^2 \langle x, x \rangle \leq \langle K^*Tx, K^*Tx \rangle \] (28)
so
\[m \|T^*T^{-1}\|^2 A \langle x, x \rangle A^* \leq A \langle K^*Tx, K^*Tx \rangle A^* \] (29)
Or \(\|T^{-1}\|^2 \leq \|T^*T^{-1}\|^2 \), this implies
\[\left(\|T^{-1}\|^2 \sqrt{m} \right) \langle x, x \rangle \left(\|T^{-1}\|^2 \sqrt{m} \right)^* \]
\[\leq A \langle K^*Tx, K^*Tx \rangle A^*, \hspace{1em} \forall x \in U. \] (30)
And we know that \(\langle Tx, Tx \rangle \leq \|T\|^2 \langle x, x \rangle, \forall x \in U. \) This implies that
\[B \langle Tx, Tx \rangle B^* \leq \langle \|T\| B, \langle x, x \rangle \langle \|T\| B \rangle \rangle^*, \hspace{1em} \forall x \in U. \] (31)
Using (26), (30), (31) we have
\[\left(\|T^{-1}\|^2 \sqrt{m} \right) \langle x, x \rangle \left(\|T^{-1}\|^2 \sqrt{m} \right)^* \]
\[\leq \int_{\Omega} \langle \Lambda_w Tx, \Lambda_w Tx \rangle d\mu(w) \]
\[\leq \langle \|T\| B, \langle x, x \rangle \rangle \langle \|T\| B \rangle^* \]
So \(\{\Lambda_w T : w \in \Omega\} \) is a continuous \(\ast\text{-K-g-frame for } U. \)
Moreover for every \(x \in U \), we have
\[T^*STx = T^* \int_{\Omega} \Lambda_w^* \Lambda_w Tx d\mu(w) \]
\[= \int_{\Omega} T^* \Lambda_w^* \Lambda_w Tx d\mu(w) \]
\[= \int_{\Omega} (\Lambda_w T)^* (\Lambda_w T) x d\mu(w). \] (33)
This completes the proof. \[\square \]
\[\text{Corollary 10.} \text{ Let } \{\Lambda_w \in \text{End}_d^d(U, V_w) : w \in \Omega\} \text{ be a continuous } \ast\text{-K-g-frame for } U \text{ and let } K \in \text{End}_d^d(U) \text{ be surjective, with continuous } \ast\text{-K-g-frame operator } S. \text{ Then } \{\Lambda_w S^{-1} : w \in \Omega\} \text{ is a continuous } \ast\text{-K-g-frame for } U. \)
\[\text{Proof.} \text{ Result from the last theorem by taking } T = S^{-1}. \][3]
\[\square \]
The following theorem characterizes a continuous \(\ast\text{-K-g-frame} \) by its frame operator.
\[\text{Theorem 11.} \text{ Let } \{\Lambda_w \in \Omega\} \text{ be a continuous } \ast\text{-K-g-Bessel for } H \text{ with bounded } A \text{ and } B \text{ if and only if}
\[A \langle K^*x, K^*x \rangle A^* \leq \int_{\Omega} \langle \Lambda_w x, \Lambda_w x \rangle d\mu(w) \]
\[\leq B \langle x, x \rangle B^* \] (34)
If and only if
\[A \langle KK^*x, x \rangle A^* \leq \int_{\Omega} \langle \Lambda_w^* \Lambda_w x, x \rangle d\mu(w) \]
\[\leq B \langle x, x \rangle B^* \] (35)
If and only if
\[A \langle KK^*x, x \rangle A^* \leq \langle Sx, x \rangle \leq B \langle x, x \rangle B^* \] (36)
where \(S \) is the continuous \(\ast\text{-K-g-frame operator for } \{\Lambda_w \in \Omega\}. \)
Therefore, the conclusion holds. \[\square \]
\[\text{Data Availability} \]
No data were used to support this study.
\[\text{Conflicts of Interest} \]
The authors declare that they have no conflicts of interest.
References

