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Abstract. 
In this note we establish certain weighted estimates for a class of maximal functions with rough kernels along “polynomial curves” on . As applications, we obtain the bounds of the above operators on the mixed radial-angular spaces, on the vector-valued mixed radial-angular spaces, and on the vector-valued function spaces. Particularly, the above bounds are independent of the coefficients of the polynomials in the definition of the operators.

1. Introduction
During the last several years, a considerable amount of attention has been given to the investigation of the boundedness for various kinds of integral operators on the Lebesgue spaces and other more general function spaces (see [1–8], for examples). The primary aim of this article is to establish the boundedness for maximal operators related to singular integrals on the mixed radial-angular spaces.
Let  be the -dimensional Euclidean space and  denote the unit sphere in  equipped with the induced Lebesgue measure . Assume that  is a homogeneous function of degree zero and satisfiesLet  be a real polynomial on  of degree  satisfying  and  be a suitable function defined on ; we define the singular integral operator  along the “polynomial curve”  on  bywhere  for . Let  and  denote the set of all measurable functions  satisfyingLet  be defined as in (2) and let  denote the closed unit ball in . Define the maximal function  by
If  and , we denote  and .
As a formal extension of the Lebesgue space , the mixed radial-angular space  has already been successfully used in studying Strichartz estimates and dispersive equations (see [9–16]) over the last several years. Recall that the mixed radial-angular spaces , , consist of all functions  satisfying , where and It is clear that the spaces  have the following easy properties.
(i) If  and , then
(ii) If  is a radial function on  and , , then 
(iii) If  and , then Here the notation  means that there are two positive constants  such that  and . Throughout this paper, we use  to denote positive constants that depend on parameters .
Recently, the mixed radial-angular space  is also playing active roles in the theory of singular integral operator (see [17–19]). In [18], among other things, Córdoba proved that  is bounded on  for all  and , provided that . Later on, D’Ancona and Lucà [19] extended the above index  to the range  by applying the same argument in [18, Theorem 2.1] (see also [17, Theorem 1.1] for the weighted case). Recently, Liu and Fan [20] improved the above result to the case  and extended the above results to the singular integral operators along polynomial curves. Precisely, let  be the set of all measurable functions  defined on  satisfying Liu and Fan [20] proved the following result. Our main results can be formulated as follows.
Theorem A (see [20]).  Let  be a real polynomial on  of degree  and satisfy . Suppose that  satisfies (1) and  for some . Then for , the following inequalities hold: Here the above constants  are independent of the coefficients of .
On the other hand, the classical maximal operator  was originally introduced by Chen and Lin [21] who proved that if , then  is of type  for any  and the range of  is best possible. Subsequently, the  mapping properties of  have been discussed extensively by many authors (see [22–26], for example). Particularly, Al-Salman [23] proved the following result.
Theorem B (see [23]).  Let  satisfy (1) and . Thenfor all . Here  is independent of the coefficients of .
It is well known that the following are valid.
It follows from (14) and Theorem B that the condition  implies the -boundedness of  for . A question that arises naturally is the following.
Question A. Is the operator  bounded on  for  if  for some ?
In this paper we will give an affirmative answer to Question A. In order to obtain the  boundedness for , we shall establish the following weighted estimates for .
Theorem 1.  Let  be a real polynomial on  of degree  and satisfy . Suppose that  satisfies (1) and  for some . Then, for any nonnegative measurable function  on , it holds that provided that one of the following conditions holds:(i) and ;(ii) and . Here  and ,  for any .  is the Hardy-Littlewood maximal operator  iterated  times for all . Specially,  when .  is a maximal operator defined as in Section 2.
As applications of Theorem 1, we can obtain the following result.
Theorem 2.  Let  be the maximal operator defined by (4). Let  be a real polynomial on  of degree  and satisfy . Suppose that  satisfies (1) and  for some . Then, for  and  or , the following inequalities hold:Here the constants  are independent of the coefficients of .
Remark 3.  We remark that our main results are new even in the special case .
The rest of this paper is organized as follows. In Section 2 we shall present some notations and auxiliary lemmas. The proofs of Theorems 1 and 2 will be given in Section 3. It should be pointed out that the main idea in the proof of Theorem 1 is a combination of ideas and arguments from [18–20, 27–29]. The proof of Theorem 2 is based on Theorem 1 and a criterion established in Section 2 (see Proposition 7). Throughout this note, for any , we let  denote the dual exponent to  defined as . We also use the convention . In what follows, for any function , we define  by . For , we set
2. Preliminary Lemmas
In this section we shall give some notations and necessary lemmas, which will play key roles in the proof of our main results. In what follows, we assume that  with . Let  for  and . For , we define a family of measures  and the related maximal operator  by where  is defined in the same way as , but with  replaced by . We also define the maximal operator  by where  is defined in the following way 
Lemma 4 ([30, p.186, corollary]).  Let  and , where  are real parameters and  are distinct positive (not necessarily integer) exponents. Thenwith  and  does not depend on  as long as .
Lemma 5.  Let  satisfy (1) and  for some . Then for  and , the following estimates hold:
Proof.   Estimate (24) is trivial. By Lemma 4, Hölder’s inequality, and the changes of variable, we have for any . This together with (24) yields (25). Similarly, we can prove (26). It is clear that which together with (24) and the fact that  yields (27)-(28) and completes the proof.
Lemma 6.  Let  satisfy (1) and  for some . Then for , we havefor all .
Proof.  We shall prove (31) by induction on . It is easy to see thatThis yields (31) for . Suppose that (31) holds for  with . We shall prove (31) for . Let  be a nonnegative Schwartz function supported in  satisfying  when . Define the measures  by By Lemma 5 and the definition of , we havewhereBy (34) and Plancherel’s theorem, we getFrom (36)-(38) and our assumption, we haveBy the lemma on page 544 of [27] (, ), we haveFrom our assumption, (35) and (40), we getBy the lemma on page 544 of [27] (, ), we haveBy using this argument repeatedly, one can obtain ultimatelyCombining (43) with (35) and assumption yields thatThis completes the proof of Lemma 6.
To prove Theorem 1, we need the following proposition, which is of interest in its own right.
Proposition 7.  Let  and . Suppose that  is a linear or sublinear operator such thatfor any nonnegative measurable function  on , where  is a bounded operator from  to itself for all . Then for any , the following inequalities hold:
Proof.  We only prove (46) since (47) and (48) can be proved similarly. The argument of the proof for (46) is similar to those of the proof in [19, Theorem 2.6] essentially. Fix  and write . We can choose a number  such that . Let  denote the set of all  with . By changes of variables, one hasFix . Let  and . By (45), Hölder’s inequality, and changes of variables, which together with (49) leads to (46).
3. Proofs of Theorems 1 and 2
We begin with the proof of Theorem 1.
Proof of Theorem 1.  By the duality we can writeLet  be a nonnegative Schwartz function supported in  satisfying  when . For , we define the Borel measures  on  by One can verify thatEquation (51) together with (53) and Minkowski’s inequality yields thatIt follows from [31] that  and  for . From (55) we haveBy (56) and (57), to prove Theorem 1, it suffices to show thatholds for all  and any nonnegative measurable function  on , provided that one of the following conditions holds:(i) and ;(ii) and .We now prove (58) for the case  and . For , let  such that  and . Define the Fourier multiplier operators  by , where . It was shown in [28] thatandfor all  and .
By the changes of variables and Minkowski’s inequality, we can writeHence, by (61), to prove (58) for the case  and , it suffices to show that for any  and , there exists  independent of  such thatWe now prove (62). Fix a nonnegative measurable function  on . By (54) and Plancherel’s theorem, we havefor arbitrary function  on . One can easily check thatfor any . By (63)-(64) and the interpolation of -spaces with change of measure ([32, Theorem 5.4.1]), we obtainfor any . By (65) with , (60), and the well-known property of the Rademacher’s function, we obtain It follows thatfor any .
On the other hand, fix , and it is easy to see thatThe interpolation between (68) and (69) implies thatfor all . It follows from (70) thatfor all . On the other hand, we havefor all . By interpolating between (71) and (72),for all , where . Substituting  for  in (73), we obtainSince , by the weighted Littlewood-Paley theory and (74),for all . Letting , (67) gives us thatBy an interpolation between (75) and (76), one hasfor all , where . Note that  for  by Hölder’s inequality. This together with (61) yields (58).
It remains to show (58) for the case  and . We want to show thatfor all . Actually, by (67), (78), and an interpolation (see [32, Corollary 5.5.4]), one hasfor  and . Here  depends only on , and . Combining (79) with (61) yields (58) for the case  and .
Next we shall prove (78). Fix . By duality we can choose a function  with unit norm such that This together with the fact that  shows thatFix  and let . By Hölder’s inequality,By Hölder’s inequality with exponents  and  again and (81)-(82),On the other hand, by Lemma 6 and (55), we haveSince , then . (84) leads to This together with (84) yields thatfor all  and any .
It follows from (59), (60), (86), and the fact that  that for all  and any . This gives (78) and completes the proof of Theorem 1.
Proof of Theorem 2.  By Lemma 6, one hasfor any . By (88), Theorem 1, and Proposition 7, we obtain (16)-(18) for the case  and  or . It was known that  is bounded on  for . This together with (7) yields (16)-(18) for the case of .
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